@lobehub/chat 1.98.1 → 1.98.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/models.json +36 -9
- package/locales/bg-BG/models.json +36 -9
- package/locales/de-DE/models.json +36 -9
- package/locales/en-US/models.json +36 -9
- package/locales/es-ES/models.json +36 -9
- package/locales/fa-IR/models.json +36 -9
- package/locales/fr-FR/models.json +36 -9
- package/locales/it-IT/models.json +36 -9
- package/locales/ja-JP/models.json +36 -9
- package/locales/ko-KR/models.json +36 -9
- package/locales/nl-NL/models.json +36 -9
- package/locales/pl-PL/models.json +36 -9
- package/locales/pt-BR/models.json +36 -9
- package/locales/ru-RU/models.json +36 -9
- package/locales/tr-TR/models.json +36 -9
- package/locales/vi-VN/models.json +36 -9
- package/locales/zh-CN/models.json +36 -9
- package/locales/zh-TW/models.json +36 -9
- package/package.json +1 -1
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL è il nuovo membro della serie Qwen, dotato di potenti capacità di comprensione visiva. È in grado di analizzare il testo, i grafici e il layout all'interno delle immagini, nonché di comprendere video lunghi e catturare eventi. Può effettuare ragionamenti, manipolare strumenti, supportare la localizzazione di oggetti in diversi formati e generare output strutturati. Inoltre, è stato ottimizzato per la formazione dinamica di risoluzione e frame rate nella comprensione video, migliorando l'efficienza dell'encoder visivo."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking è un modello di linguaggio visivo open source (VLM) rilasciato congiuntamente da Zhipu AI e dal laboratorio KEG dell'Università di Tsinghua, progettato specificamente per gestire compiti cognitivi multimodali complessi. Basato sul modello di base GLM-4-9B-0414, il modello introduce il meccanismo di ragionamento \"Catena di Pensiero\" (Chain-of-Thought) e utilizza strategie di apprendimento rinforzato, migliorando significativamente la capacità di ragionamento cross-modale e la stabilità."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat è la versione open source del modello pre-addestrato GLM-4 della serie sviluppata da Zhipu AI. Questo modello ha dimostrato prestazioni eccellenti in vari aspetti, tra cui semantica, matematica, ragionamento, codice e conoscenza. Oltre a supportare conversazioni multi-turno, GLM-4-9B-Chat offre anche funzionalità avanzate come navigazione web, esecuzione di codice, chiamate a strumenti personalizzati (Function Call) e ragionamento su testi lunghi. Il modello supporta 26 lingue, tra cui cinese, inglese, giapponese, coreano e tedesco. Ha mostrato prestazioni eccellenti in vari benchmark, come AlignBench-v2, MT-Bench, MMLU e C-Eval. Questo modello supporta una lunghezza di contesto massima di 128K, rendendolo adatto per ricerche accademiche e applicazioni commerciali."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 è un modello di inferenza guidato dall'apprendimento per rinforzo (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva grazie a metodi di addestramento ben progettati."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 è un modello di ragionamento guidato da apprendimento rinforzato (RL) che risolve problemi di ripetitività e leggibilità. Prima del RL, ha introdotto dati di cold start per ottimizzare ulteriormente le prestazioni di ragionamento. Le sue prestazioni in matematica, codice e ragionamento sono comparabili a OpenAI-o1, con miglioramenti complessivi grazie a metodi di addestramento accuratamente progettati."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B è un modello ottenuto attraverso il distillamento del knowledge da Qwen2.5-Math-7B. Questo modello è stato fine-tunato utilizzando 800.000 campioni selezionati generati da DeepSeek-R1, dimostrando un'ottima capacità di inferenza. Ha ottenuto risultati eccellenti in diversi benchmark, raggiungendo una precisione del 92,8% su MATH-500, un tasso di passaggio del 55,5% su AIME 2024 e una valutazione di 1189 su CodeForces, dimostrando una forte capacità matematica e di programmazione per un modello di 7B."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 è un modello di linguaggio con 6710 miliardi di parametri, basato su un'architettura di esperti misti (MoE) che utilizza attenzione multilivello (MLA) e la strategia di bilanciamento del carico senza perdite ausiliarie, ottimizzando l'efficienza di inferenza e addestramento. Pre-addestrato su 14,8 trilioni di token di alta qualità e successivamente affinato tramite supervisione e apprendimento per rinforzo, DeepSeek-V3 supera altri modelli open source, avvicinandosi ai modelli chiusi di punta."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 è un modello linguistico ibrido esperto (MoE) con 6710 miliardi di parametri, che utilizza l'attenzione multilivello (MLA) e l'architettura DeepSeekMoE, combinando strategie di bilanciamento del carico senza perdite ausiliarie per ottimizzare l'efficienza di inferenza e addestramento. Pre-addestrato su 14,8 trilioni di token di alta qualità e successivamente affinato supervisionato e tramite apprendimento rinforzato, DeepSeek-V3 supera le prestazioni di altri modelli open source, avvicinandosi ai modelli closed source leader."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview è un modello di elaborazione del linguaggio naturale innovativo, in grado di gestire in modo efficiente compiti complessi di generazione di dialoghi e comprensione del contesto."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 è un modello di piccole dimensioni della serie GLM, con 9 miliardi di parametri. Questo modello eredita le caratteristiche tecniche della serie GLM-4-32B, ma offre opzioni di distribuzione più leggere. Nonostante le dimensioni ridotte, GLM-4-9B-0414 mostra ancora capacità eccezionali in generazione di codice, progettazione di pagine web, generazione di grafica SVG e scrittura basata su ricerca."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking è un modello di linguaggio visivo open source (VLM) rilasciato congiuntamente da Zhipu AI e dal laboratorio KEG dell'Università di Tsinghua, progettato specificamente per gestire compiti cognitivi multimodali complessi. Basato sul modello di base GLM-4-9B-0414, il modello introduce il meccanismo di ragionamento \"Catena di Pensiero\" (Chain-of-Thought) e utilizza strategie di apprendimento rinforzato, migliorando significativamente la capacità di ragionamento cross-modale e la stabilità."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 è un modello di inferenza con capacità di pensiero profondo. Questo modello è stato sviluppato sulla base di GLM-4-32B-0414 attraverso un avvio a freddo e un apprendimento rinforzato esteso, ed è stato ulteriormente addestrato in compiti di matematica, codice e logica. Rispetto al modello di base, GLM-Z1-32B-0414 ha migliorato significativamente le capacità matematiche e la capacità di risolvere compiti complessi."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 può generare risposte quasi istantanee o un ragionamento esteso e graduale, che gli utenti possono osservare chiaramente. Gli utenti API possono anche controllare con precisione il tempo di riflessione del modello."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B è un modello linguistico di grandi dimensioni a parametri sparsi con 72 miliardi di parametri totali e 16 miliardi di parametri attivati, basato sull'architettura Mixture of Group Experts (MoGE). Durante la fase di selezione degli esperti, gli esperti sono raggruppati e il token attiva un numero uguale di esperti all'interno di ogni gruppo, garantendo un bilanciamento del carico degli esperti e migliorando significativamente l'efficienza di distribuzione del modello sulla piattaforma Ascend."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 è un modello multilingue lanciato da Cohere, supporta 23 lingue, facilitando applicazioni linguistiche diversificate."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B è un modello di linguaggio open source sviluppato da Baichuan Intelligence, con 13 miliardi di parametri, che ha ottenuto i migliori risultati nella sua categoria in benchmark autorevoli sia in cinese che in inglese."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B è un modello linguistico di grandi dimensioni sviluppato da Baidu basato sull'architettura Mixture of Experts (MoE). Il modello ha un totale di 300 miliardi di parametri, ma durante l'inferenza attiva solo 47 miliardi di parametri per token, garantendo così un equilibrio tra prestazioni elevate ed efficienza computazionale. Come uno dei modelli principali della serie ERNIE 4.5, eccelle in compiti di comprensione del testo, generazione, ragionamento e programmazione. Il modello utilizza un innovativo metodo di pre-addestramento multimodale eterogeneo MoE, addestrando congiuntamente testo e modalità visive, migliorando efficacemente le capacità complessive, con risultati particolarmente evidenti nell'aderenza alle istruzioni e nella memoria della conoscenza mondiale."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse è un modello multilingue ad alte prestazioni da 32B, progettato per sfidare le prestazioni dei modelli monolingue attraverso innovazioni in ottimizzazione delle istruzioni, arbitraggio dei dati, addestramento delle preferenze e fusione dei modelli. Supporta 23 lingue."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro è il modello di pensiero più avanzato di Google, capace di ragionare su codice, matematica e problemi complessi nei campi STEM, oltre a utilizzare contesti lunghi per analizzare grandi dataset, codebase e documenti."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi in codice, matematica e nei campi STEM, e di analizzare grandi set di dati, codebase e documenti utilizzando contesti lunghi."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi in codice, matematica e nei campi STEM, oltre a utilizzare analisi di lungo contesto per grandi set di dati, codici sorgente e documenti."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus, come flagship ad alta intelligenza, ha potenti capacità di elaborazione di testi lunghi e compiti complessi, con prestazioni complessive migliorate."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "La serie GLM-4.1V-Thinking è attualmente il modello visivo più performante tra i modelli VLM di livello 10 miliardi di parametri noti, integrando le migliori prestazioni SOTA nelle attività di linguaggio visivo di pari livello, tra cui comprensione video, domande sulle immagini, risoluzione di problemi disciplinari, riconoscimento OCR, interpretazione di documenti e grafici, agent GUI, coding front-end web, grounding e altro. Le capacità in molteplici compiti superano persino il modello Qwen2.5-VL-72B con 8 volte più parametri. Grazie a tecniche avanzate di apprendimento rinforzato, il modello padroneggia il ragionamento tramite catena di pensiero per migliorare accuratezza e ricchezza delle risposte, superando significativamente i modelli tradizionali non-thinking in termini di risultati finali e interpretabilità."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "La serie GLM-4.1V-Thinking è attualmente il modello visivo più performante tra i modelli VLM di livello 10 miliardi di parametri noti, integrando le migliori prestazioni SOTA nelle attività di linguaggio visivo di pari livello, tra cui comprensione video, domande sulle immagini, risoluzione di problemi disciplinari, riconoscimento OCR, interpretazione di documenti e grafici, agent GUI, coding front-end web, grounding e altro. Le capacità in molteplici compiti superano persino il modello Qwen2.5-VL-72B con 8 volte più parametri. Grazie a tecniche avanzate di apprendimento rinforzato, il modello padroneggia il ragionamento tramite catena di pensiero per migliorare accuratezza e ricchezza delle risposte, superando significativamente i modelli tradizionali non-thinking in termini di risultati finali e interpretabilità."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V offre potenti capacità di comprensione e ragionamento visivo, supportando vari compiti visivi."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "La serie GLM-Z1 possiede potenti capacità di ragionamento complesso, eccellendo in logica, matematica e programmazione. La lunghezza massima del contesto è di 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Alta velocità e basso costo: versione potenziata Flash, con velocità di inferenza ultra-rapida e migliore garanzia di concorrenza."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview possiede potenti capacità di ragionamento complesso, eccellendo nei campi del ragionamento logico, della matematica e della programmazione."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) offre capacità di elaborazione di istruzioni di base, adatta per applicazioni leggere."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B è un modello linguistico open source di Google che ha stabilito nuovi standard in termini di efficienza e prestazioni."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B è un modello linguistico open source di Google, che ha stabilito nuovi standard in termini di efficienza e prestazioni."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B è un modello linguistico che combina creatività e intelligenza, unendo diversi modelli di punta."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan è il primo modello di ragionamento ibrido, versione aggiornata di hunyuan-standard-256K, con 80 miliardi di parametri totali e 13 miliardi attivati. Di default opera in modalità pensiero lento, ma supporta il passaggio tra modalità pensiero lento e veloce tramite parametri o istruzioni, con il cambio che avviene aggiungendo / no_think prima della query. Le capacità complessive sono migliorate rispetto alla generazione precedente, con miglioramenti significativi in matematica, scienze, comprensione di testi lunghi e capacità agent."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Ultimo modello di generazione di codice di Hunyuan, addestrato su un modello di base con 200B di dati di codice di alta qualità, con sei mesi di addestramento su dati SFT di alta qualità, la lunghezza della finestra di contesto è aumentata a 8K, e si posiziona tra i primi in cinque indicatori di valutazione automatica della generazione di codice; nelle valutazioni di alta qualità su dieci aspetti di codice in cinque lingue, le prestazioni sono nella prima fascia."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Modello di comprensione multimodale profonda Hunyuan, supporta catene di pensiero native multimodali, eccelle in vari scenari di ragionamento visivo e migliora significativamente rispetto ai modelli di pensiero rapido nei problemi scientifici."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "L'ultima versione del modello di pensiero profondo multimodale t1-vision di Hunyuan, supporta catene di pensiero native multimodali e presenta miglioramenti completi rispetto alla versione predefinita della generazione precedente."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Anteprima della nuova generazione di modelli di linguaggio di Hunyuan, utilizza una nuova struttura di modello ibrido di esperti (MoE), con una maggiore efficienza di inferenza e prestazioni superiori rispetto a hunyuan-pro."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Ultima versione del modello di role-playing di Hunyuan, finemente addestrato ufficialmente, basato sul modello Hunyuan e ulteriormente addestrato con dataset specifici per scenari di role-playing, offrendo migliori prestazioni di base in tali contesti."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Questo modello è adatto per scenari di comprensione testo-immagine ed è basato sulla più recente versione turbos di Hunyuan, una nuova generazione di modello linguistico visivo di punta focalizzato su compiti di comprensione testo-immagine, inclusi riconoscimento di entità basato su immagini, domande di conoscenza, creazione di testi e risoluzione di problemi tramite foto, con miglioramenti completi rispetto alla generazione precedente."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "L'ultima versione del modello linguistico visivo di punta turbos-vision di Hunyuan, con miglioramenti completi rispetto alla versione predefinita della generazione precedente in compiti di comprensione testo-immagine, inclusi riconoscimento di entità basato su immagini, domande di conoscenza, creazione di testi e risoluzione di problemi tramite foto."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Ultimo modello multimodale di Hunyuan, supporta l'input di immagini e testo per generare contenuti testuali."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VLはQwenシリーズの新メンバーで、強力な視覚理解能力を備えています。画像内のテキスト、チャート、レイアウトを分析でき、長い動画の理解やイベントの捕捉が可能です。推論やツール操作が行え、多様な形式の物体位置特定や構造化された出力生成をサポートします。動画理解のための動的解像度とフレームレートのトレーニングが最適化され、視覚エンコーダーの効率も向上しています。"
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking は、智譜AIと清華大学KEG研究室が共同で発表したオープンソースの視覚言語モデル(VLM)であり、複雑なマルチモーダル認知タスクの処理に特化して設計されています。本モデルはGLM-4-9B-0414の基礎モデルをベースに、「思考の連鎖(Chain-of-Thought)」推論メカニズムを導入し、強化学習戦略を採用することで、マルチモーダル間の推論能力と安定性を大幅に向上させています。"
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chatは智譜AIが提供するGLM-4シリーズの事前訓練モデルのオープンバージョンです。このモデルは意味、数学、推論、コード、知識などの複数の側面で優れたパフォーマンスを示します。多輪対話をサポートするだけでなく、GLM-4-9B-Chatはウェブブラウジング、コード実行、カスタムツール呼び出し(Function Call)、長文推論などの高度な機能も備えています。モデルは中国語、英語、日本語、韓国語、ドイツ語など26の言語をサポートしています。多くのベンチマークテストで、GLM-4-9B-Chatは優れた性能を示し、AlignBench-v2、MT-Bench、MMLU、C-Evalなどでの評価が行われています。このモデルは最大128Kのコンテキスト長をサポートし、学術研究や商業アプリケーションに適しています。"
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルで、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等の性能を発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させています。"
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1は強化学習(RL)駆動の推論モデルで、モデルの反復性と可読性の問題を解決しました。RL導入前にコールドスタートデータを導入し、推論性能をさらに最適化。数学、コード、推論タスクにおいてOpenAI-o1と同等の性能を示し、精緻に設計された訓練手法により全体的な効果を向上させています。"
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B は、Qwen2.5-Math-7B を基に知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1 によって生成された80万の精選されたサンプルを使用して微調整されており、優れた推論能力を発揮します。複数のベンチマークテストで優れた性能を示し、MATH-500では92.8%の精度、AIME 2024では55.5%の合格率、CodeForcesでは1189のスコアを達成し、7B規模のモデルとして強力な数学およびプログラミング能力を実証しています。"
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3は、6710億パラメータを持つ混合専門家(MoE)言語モデルで、多頭潜在注意力(MLA)とDeepSeekMoEアーキテクチャを採用し、無補助損失の負荷バランス戦略を組み合わせて推論とトレーニングの効率を最適化しています。14.8兆の高品質トークンで事前トレーニングを行い、監視付き微調整と強化学習を経て、DeepSeek-V3は他のオープンソースモデルを超え、先進的なクローズドモデルに近づいています。"
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3は、6710億のパラメータを持つ混合専門家(MoE)言語モデルであり、マルチヘッド潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用し、補助損失なしの負荷バランス戦略を組み合わせて、推論とトレーニングの効率を最適化しています。14.8兆の高品質トークンで事前トレーニングを行い、監視付き微調整と強化学習を経て、DeepSeek-V3は他のオープンソースモデルを超え、先進的なクローズドソースモデルに近づいています。"
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Previewは、複雑な対話生成と文脈理解タスクを効率的に処理できる革新的な自然言語処理モデルです。"
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414はGLMシリーズの小型モデルで、90億パラメータを持ちます。このモデルはGLM-4-32Bシリーズの技術的特徴を継承しつつ、より軽量なデプロイメントオプションを提供します。規模は小さいものの、GLM-4-9B-0414はコード生成、ウェブデザイン、SVGグラフィック生成、検索ベースの執筆などのタスクで優れた能力を示しています。"
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking は、智譜AIと清華大学KEG研究室が共同で発表したオープンソースの視覚言語モデル(VLM)であり、複雑なマルチモーダル認知タスクの処理に特化して設計されています。本モデルはGLM-4-9B-0414の基礎モデルをベースに、「思考の連鎖(Chain-of-Thought)」推論メカニズムを導入し、強化学習戦略を採用することで、マルチモーダル間の推論能力と安定性を大幅に向上させています。"
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414は深い思考能力を持つ推論モデルです。このモデルはGLM-4-32B-0414に基づき、コールドスタートと拡張強化学習を通じて開発され、数学、コード、論理タスクにおいてさらに訓練されています。基礎モデルと比較して、GLM-Z1-32B-0414は数学能力と複雑なタスクの解決能力を大幅に向上させています。"
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 はほぼ即時の応答や段階的な思考の延長を生成でき、ユーザーはこれらのプロセスを明確に確認できます。API ユーザーはモデルの思考時間を細かく制御することも可能です。"
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B は、720億パラメータ、160億アクティベーションパラメータのスパース大規模言語モデルであり、グループ化された混合エキスパート(MoGE)アーキテクチャに基づいています。エキスパート選択段階でエキスパートをグループ化し、各グループ内でトークンが均等にエキスパートをアクティベートするよう制約を設けることで、エキスパートの負荷バランスを実現し、昇騰プラットフォーム上でのモデル展開効率を大幅に向上させています。"
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23は、Cohereが提供する多言語モデルであり、23の言語をサポートし、多様な言語アプリケーションを便利にします。"
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13Bは百川智能が開発した130億パラメータを持つオープンソースの商用大規模言語モデルで、権威ある中国語と英語のベンチマークで同サイズの中で最良の結果を達成しています。"
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B は、百度(Baidu)が開発した混合エキスパート(MoE)アーキテクチャに基づく大規模言語モデルです。総パラメータ数は3000億ですが、推論時には各トークンで470億パラメータのみをアクティベートし、強力な性能を維持しつつ計算効率も両立しています。ERNIE 4.5シリーズの中核モデルの一つとして、テキスト理解、生成、推論、プログラミングなどのタスクで卓越した能力を発揮します。本モデルは革新的なマルチモーダル異種MoE事前学習手法を採用し、テキストと視覚モダリティの共同学習により、特に指示遵守と世界知識の記憶において優れた効果を発揮しています。"
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanseは、高性能な32B多言語モデルで、指示調整、データアービトラージ、好みのトレーニング、モデル統合の革新を通じて、単一言語モデルのパフォーマンスに挑戦します。23の言語をサポートしています。"
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 ProはGoogleの最先端思考モデルで、コード、数学、STEM分野の複雑な問題の推論が可能であり、長文コンテキストを用いて大規模データセット、コードベース、ドキュメントの分析を行います。"
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimentalは、Googleの最先端の思考モデルであり、コード、数学、STEM分野の複雑な問題に対して推論を行うことができ、長いコンテキストを利用して大規模なデータセット、コードベース、文書を分析します。"
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Previewは、Googleの最先端の思考モデルであり、コード、数学、STEM分野の複雑な問題に対して推論を行い、長いコンテキストを使用して大規模なデータセット、コードベース、文書を分析することができます。"
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plusは高い知能を持つフラッグシップモデルで、長文や複雑なタスクを処理する能力が強化され、全体的なパフォーマンスが向上しています。"
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "GLM-4.1V-Thinking シリーズモデルは、現時点で知られている10BクラスのVLMモデルの中で最も性能の高い視覚モデルであり、同クラスのSOTAの各種視覚言語タスクを統合しています。これには動画理解、画像質問応答、学科問題解決、OCR文字認識、文書およびグラフ解析、GUIエージェント、フロントエンドウェブコーディング、グラウンディングなどが含まれ、多くのタスク能力は8倍のパラメータを持つQwen2.5-VL-72Bをも上回ります。先進的な強化学習技術により、思考の連鎖推論を通じて回答の正確性と豊かさを向上させ、最終的な成果と説明可能性の両面で従来の非thinkingモデルを大きく凌駕しています。"
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "GLM-4.1V-Thinking シリーズモデルは、現時点で知られている10BクラスのVLMモデルの中で最も性能の高い視覚モデルであり、同クラスのSOTAの各種視覚言語タスクを統合しています。これには動画理解、画像質問応答、学科問題解決、OCR文字認識、文書およびグラフ解析、GUIエージェント、フロントエンドウェブコーディング、グラウンディングなどが含まれ、多くのタスク能力は8倍のパラメータを持つQwen2.5-VL-72Bをも上回ります。先進的な強化学習技術により、思考の連鎖推論を通じて回答の正確性と豊かさを向上させ、最終的な成果と説明可能性の両面で従来の非thinkingモデルを大きく凌駕しています。"
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4Vは強力な画像理解と推論能力を提供し、さまざまな視覚タスクをサポートします。"
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "GLM-Z1シリーズは強力な複雑推論能力を持ち、論理推論、数学、プログラミングなどの分野で優れたパフォーマンスを発揮します。最大コンテキスト長は32Kです。"
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "高速かつ低価格:Flash強化版で、超高速推論速度とより速い同時処理を保証します。"
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Previewは、強力な複雑な推論能力を備え、論理推論、数学、プログラミングなどの分野で優れたパフォーマンスを発揮します。"
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B)は、基本的な指示処理能力を提供し、軽量アプリケーションに適しています。"
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B はGoogleのオープンソース言語モデルであり、効率と性能の面で新たな基準を打ち立てました。"
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27Bは、Googleのオープンソース言語モデルで、効率と性能の面で新たな基準を打ち立てました。"
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13Bは複数のトップモデルを統合した創造性と知性を兼ね備えた言語モデルです。"
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "混元の初のハイブリッド推論モデルであるhunyuan-standard-256Kのアップグレード版で、総パラメータ80B、アクティベーション13Bを持ちます。デフォルトはスロースルーモードで、パラメータまたは指示によって高速・低速思考モードの切り替えが可能です。切り替え方法はクエリの前に「/」または「no_think」を付加します。全体的な能力は前世代に比べて大幅に向上しており、特に数学、科学、長文理解、エージェント能力が顕著に強化されています。"
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "混元の最新のコード生成モデルで、200Bの高品質コードデータで基盤モデルを増強し、半年間の高品質SFTデータトレーニングを経て、コンテキストウィンドウの長さが8Kに増加しました。5つの主要言語のコード生成自動評価指標で上位に位置し、5つの言語における10項目の総合コードタスクの人工高品質評価で、パフォーマンスは第一梯隊にあります。"
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "混元多モーダル理解の深層思考モデルで、多モーダルのネイティブ長思考チェーンをサポートし、さまざまな画像推論シナリオに優れています。理系の難問においては速思考モデルよりも包括的に向上しています。"
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "混元の最新バージョンt1-vision多モーダル理解深層思考モデルで、マルチモーダルのネイティブな長い思考の連鎖をサポートし、前世代のデフォルトモデルに比べて全体的に性能が向上しています。"
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "混元の新世代大規模言語モデルのプレビュー版で、全く新しい混合専門家モデル(MoE)構造を採用し、hunyuan-proに比べて推論効率が向上し、パフォーマンスも強化されています。"
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "混元の最新ロールプレイングモデルで、混元公式による精調整訓練を経たロールプレイングモデルです。混元モデルを基にロールプレイングシナリオのデータセットで追加訓練されており、ロールプレイングシナリオでより良い基礎性能を持ちます。"
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "本モデルは画像と言語の理解シーンに適しており、混元の最新turbosに基づく次世代の視覚言語フラッグシップ大規模モデルです。画像に基づく実体認識、知識質問応答、コピーライティング、写真による問題解決などのタスクに焦点を当てており、前世代モデルに比べて全体的に性能が向上しています。"
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "混元の最新バージョンturbos-vision視覚言語フラッグシップ大規模モデルであり、画像に基づく実体認識、知識質問応答、コピーライティング、写真による問題解決などの画像と言語の理解関連タスクにおいて、前世代のデフォルトモデルに比べて全体的に性能が向上しています。"
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "混元の最新のマルチモーダルモデルで、画像とテキストの入力をサポートし、テキストコンテンツを生成します。"
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL은 Qwen 시리즈의 새로운 멤버로, 강력한 시각 이해 능력을 갖추고 있습니다. 이미지 내 텍스트, 차트, 레이아웃을 분석할 수 있으며, 긴 동영상을 이해하고 이벤트를 포착할 수 있습니다. 추론을 수행하고 도구를 조작할 수 있으며, 다중 형식 객체 위치 지정과 구조화된 출력 생성을 지원합니다. 동영상 이해를 위한 동적 해상도 및 프레임 속도 훈련이 최적화되었으며, 시각 인코더 효율성이 향상되었습니다."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking은 지푸 AI와 칭화대 KEG 연구실이 공동으로 발표한 오픈소스 비주얼 언어 모델(VLM)로, 복잡한 다중 모달 인지 작업을 처리하도록 설계되었습니다. 이 모델은 GLM-4-9B-0414 기본 모델을 기반으로 하며, '사고 사슬'(Chain-of-Thought) 추론 메커니즘을 도입하고 강화 학습 전략을 채택하여 교차 모달 추론 능력과 안정성을 크게 향상시켰습니다."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat은 Zhizhu AI가 출시한 GLM-4 시리즈의 사전 훈련 모델 중 오픈 소스 버전입니다. 이 모델은 의미, 수학, 추론, 코드 및 지식 등 여러 측면에서 뛰어난 성능을 보입니다. GLM-4-9B-Chat은 다중 회전 대화를 지원할 뿐만 아니라 웹 브라우징, 코드 실행, 사용자 정의 도구 호출(Function Call) 및 긴 텍스트 추론과 같은 고급 기능도 갖추고 있습니다. 이 모델은 중국어, 영어, 일본어, 한국어 및 독일어를 포함한 26개 언어를 지원합니다. 여러 벤치마크 테스트에서 GLM-4-9B-Chat은 AlignBench-v2, MT-Bench, MMLU 및 C-Eval 등에서 뛰어난 성능을 보였습니다. 이 모델은 최대 128K의 컨텍스트 길이를 지원하며, 학술 연구 및 상업적 응용에 적합합니다."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1은 강화 학습(RL) 기반 추론 모델로, 모델 내 반복성과 가독성 문제를 해결했습니다. RL 이전에 콜드 스타트 데이터를 도입하여 추론 성능을 추가 최적화했으며, 수학, 코드, 추론 작업에서 OpenAI-o1과 유사한 성능을 보이고, 정교한 훈련 방법을 통해 전체 성능을 향상시켰습니다."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B는 Qwen2.5-Math-7B를 기반으로 지식 증류를 통해 개발된 모델입니다. 이 모델은 DeepSeek-R1에서 생성된 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 우수한 추론 능력을 보여줍니다. 다양한 벤치마크에서 뛰어난 성능을 발휘하며, MATH-500에서 92.8%의 정확도, AIME 2024에서 55.5%의 통과율, CodeForces에서 1189점을 기록하여 7B 규모 모델로서 강력한 수학 및 프로그래밍 능력을 입증했습니다."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3는 6710억 개의 매개변수를 가진 혼합 전문가(MoE) 언어 모델로, 다중 헤드 잠재 주의(MLA) 및 DeepSeekMoE 아키텍처를 사용하여 보조 손실 없는 부하 균형 전략을 결합하여 추론 및 훈련 효율성을 최적화합니다. 14.8조 개의 고품질 토큰에서 사전 훈련을 수행하고 감독 미세 조정 및 강화 학습을 통해 DeepSeek-V3는 성능 면에서 다른 오픈 소스 모델을 초월하며, 선도적인 폐쇄형 모델에 근접합니다."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3는 6710억 개의 매개변수를 가진 혼합 전문가(MoE) 언어 모델로, 다중 헤드 잠재 주의(MLA) 및 DeepSeekMoE 아키텍처를 채택하고, 보조 손실 없는 부하 균형 전략을 결합하여 추론 및 훈련 효율성을 최적화합니다. 14.8조 개의 고품질 토큰에서 사전 훈련을 거치고 감독 미세 조정 및 강화 학습을 통해 DeepSeek-V3는 성능 면에서 다른 오픈 소스 모델을 초월하며, 선도적인 폐쇄형 모델에 근접합니다."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview는 복잡한 대화 생성 및 맥락 이해 작업을 효율적으로 처리할 수 있는 혁신적인 자연어 처리 모델입니다."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414는 GLM 시리즈의 소형 모델로, 90억 개의 매개변수를 가지고 있습니다. 이 모델은 GLM-4-32B 시리즈의 기술적 특징을 계승하면서도 더 경량화된 배포 옵션을 제공합니다. 규모가 작음에도 불구하고, GLM-4-9B-0414는 코드 생성, 웹 디자인, SVG 그래픽 생성 및 검색 기반 작문 등 작업에서 뛰어난 능력을 보여줍니다."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking은 지푸 AI와 칭화대 KEG 연구실이 공동으로 발표한 오픈소스 비주얼 언어 모델(VLM)로, 복잡한 다중 모달 인지 작업을 처리하도록 설계되었습니다. 이 모델은 GLM-4-9B-0414 기본 모델을 기반으로 하며, '사고 사슬'(Chain-of-Thought) 추론 메커니즘을 도입하고 강화 학습 전략을 채택하여 교차 모달 추론 능력과 안정성을 크게 향상시켰습니다."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414는 깊은 사고 능력을 갖춘 추론 모델로, GLM-4-32B-0414를 기반으로 냉각 시작 및 확장 강화 학습을 통해 개발되었으며, 수학, 코드 및 논리 작업에서 추가 훈련을 받았습니다. 기본 모델에 비해 GLM-Z1-32B-0414는 수학 능력과 복잡한 작업 해결 능력이 크게 향상되었습니다."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4는 거의 즉각적인 응답이나 단계별 심층 사고를 생성할 수 있으며, 사용자는 이러한 과정을 명확하게 볼 수 있습니다. API 사용자는 모델의 사고 시간을 세밀하게 제어할 수도 있습니다."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B는 720억 개의 파라미터와 160억 활성 파라미터를 가진 희소 대형 언어 모델로, 그룹 혼합 전문가(MoGE) 아키텍처를 기반으로 합니다. 전문가 선택 단계에서 전문가를 그룹화하고 각 그룹 내에서 토큰이 동일 수의 전문가를 활성화하도록 제한하여 전문가 부하 균형을 달성함으로써 Ascend 플랫폼에서의 모델 배포 효율성을 크게 향상시켰습니다."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23은 Cohere에서 출시한 다국어 모델로, 23개 언어를 지원하여 다양한 언어 응용에 편리함을 제공합니다."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B는 백천 인공지능이 개발한 130억 개의 매개변수를 가진 오픈 소스 상용 대형 언어 모델로, 권위 있는 중국어 및 영어 벤치마크에서 동일한 크기에서 최고의 성과를 달성했습니다."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B는 바이두에서 개발한 혼합 전문가(MoE) 아키텍처 기반의 대형 언어 모델입니다. 총 3천억 개의 파라미터를 보유하지만 추론 시 각 토큰당 470억 파라미터만 활성화하여 강력한 성능과 계산 효율성을 동시에 달성합니다. ERNIE 4.5 시리즈의 핵심 모델 중 하나로, 텍스트 이해, 생성, 추론 및 프로그래밍 작업에서 뛰어난 능력을 보여줍니다. 이 모델은 텍스트와 시각 모달리티의 공동 학습을 통한 혁신적인 다중 모달 이기종 MoE 사전학습 방식을 채택하여, 특히 명령 준수와 세계 지식 기억 측면에서 탁월한 성능을 발휘합니다."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse는 지시 조정, 데이터 차익 거래, 선호 훈련 및 모델 통합의 혁신을 통해 단일 언어 모델의 성능에 도전하는 고성능 32B 다국어 모델입니다. 23개 언어를 지원합니다."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro는 구글의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론할 수 있으며, 긴 문맥을 활용해 대규모 데이터셋, 코드베이스 및 문서를 분석합니다."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental은 Google의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론할 수 있으며, 긴 문맥을 활용하여 대규모 데이터 세트, 코드베이스 및 문서를 분석할 수 있습니다."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview는 Google의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론하고 긴 맥락을 사용하여 대규모 데이터 세트, 코드베이스 및 문서를 분석할 수 있습니다."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus는 고지능 플래그십 모델로, 긴 텍스트 및 복잡한 작업 처리 능력이 뛰어나며 성능이 전반적으로 향상되었습니다."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "GLM-4.1V-Thinking 시리즈 모델은 현재 알려진 10B급 VLM 모델 중 가장 성능이 뛰어난 비주얼 모델로, 동급 SOTA의 다양한 비주얼 언어 작업을 통합합니다. 여기에는 비디오 이해, 이미지 질문응답, 학과 문제 해결, OCR 문자 인식, 문서 및 차트 해석, GUI 에이전트, 프론트엔드 웹 코딩, 그라운딩 등이 포함되며, 여러 작업 능력은 8배 이상의 파라미터를 가진 Qwen2.5-VL-72B를 능가합니다. 선도적인 강화 학습 기술을 통해 사고 사슬 추론 방식을 습득하여 답변의 정확성과 풍부함을 향상시키며, 최종 결과와 해석 가능성 측면에서 전통적인 비사고 모델을 현저히 능가합니다."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "GLM-4.1V-Thinking 시리즈 모델은 현재 알려진 10B급 VLM 모델 중 가장 성능이 뛰어난 비주얼 모델로, 동급 SOTA의 다양한 비주얼 언어 작업을 통합합니다. 여기에는 비디오 이해, 이미지 질문응답, 학과 문제 해결, OCR 문자 인식, 문서 및 차트 해석, GUI 에이전트, 프론트엔드 웹 코딩, 그라운딩 등이 포함되며, 여러 작업 능력은 8배 이상의 파라미터를 가진 Qwen2.5-VL-72B를 능가합니다. 선도적인 강화 학습 기술을 통해 사고 사슬 추론 방식을 습득하여 답변의 정확성과 풍부함을 향상시키며, 최종 결과와 해석 가능성 측면에서 전통적인 비사고 모델을 현저히 능가합니다."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V는 강력한 이미지 이해 및 추론 능력을 제공하며, 다양한 시각적 작업을 지원합니다."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "GLM-Z1 시리즈는 강력한 복잡한 추론 능력을 갖추고 있으며, 논리 추론, 수학, 프로그래밍 등 분야에서 뛰어난 성능을 발휘합니다. 최대 문맥 길이는 32K입니다."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "고속 저가: Flash 강화 버전으로, 매우 빠른 추론 속도와 더 빠른 동시성 보장을 제공합니다."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview는 강력한 복잡한 추론 능력을 갖추고 있으며, 논리 추론, 수학, 프로그래밍 등 분야에서 우수한 성능을 발휘합니다."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B)는 기본적인 지시 처리 능력을 제공하며, 경량 애플리케이션에 적합합니다."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B는 구글의 오픈소스 언어 모델로, 효율성과 성능 면에서 새로운 기준을 세웠습니다."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B는 구글의 오픈 소스 언어 모델로, 효율성과 성능 면에서 새로운 기준을 세웠습니다."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B는 여러 최상위 모델을 통합한 창의성과 지능이 결합된 언어 모델입니다."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "혼위안의 첫 혼합 추론 모델인 hunyuan-standard-256K의 업그레이드 버전으로, 총 800억 파라미터, 활성화 130억 파라미터를 갖추고 있습니다. 기본적으로 느린 사고 모드이며, 파라미터나 명령어를 통해 빠른/느린 사고 모드 전환을 지원합니다. 빠른/느린 사고 전환 방식은 쿼리 앞에 /no_think를 추가하는 방식입니다. 전반적인 능력은 이전 세대에 비해 전면적으로 향상되었으며, 특히 수학, 과학, 긴 문서 이해 및 에이전트 능력이 크게 개선되었습니다."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "혼원 최신 코드 생성 모델로, 200B 고품질 코드 데이터로 증훈된 기초 모델을 기반으로 하며, 6개월간 고품질 SFT 데이터 훈련을 거쳤습니다. 컨텍스트 길이는 8K로 증가하였으며, 다섯 가지 언어의 코드 생성 자동 평가 지표에서 상위에 위치하고 있습니다. 다섯 가지 언어의 10개 항목에서 종합 코드 작업의 인공지능 고품질 평가에서 성능이 1위입니다."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "혼원 다중모달 이해 심층 사고 모델로, 다중모달 원천 사고 체인을 지원하며 다양한 이미지 추론 시나리오에 능숙합니다. 이과 문제에서 빠른 사고 모델 대비 전반적인 성능 향상을 보입니다."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "혼위안 최신 버전 t1-vision 다중 모달 이해 심층 사고 모델로, 다중 모달 원생 사고 사슬을 지원하며 이전 세대 기본 모델에 비해 전면적으로 향상되었습니다."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "혼원 최신 세대 대형 언어 모델의 미리보기 버전으로, 새로운 혼합 전문가 모델(MoE) 구조를 채택하여 hunyuan-pro보다 추론 효율이 더 빠르고 성능이 더 뛰어납니다."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "혼원 최신 버전 역할극 모델로, 혼원 공식 미세 조정 훈련을 거친 역할극 모델입니다. 혼원 모델과 역할극 시나리오 데이터셋을 결합해 추가 훈련하여 역할극 시나리오에서 더 우수한 기본 성능을 제공합니다."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "이 모델은 이미지-텍스트 이해 시나리오에 적합하며, 혼위안 최신 turbos 기반의 차세대 비주얼 언어 플래그십 대형 모델입니다. 이미지 기반 엔티티 인식, 지식 질문응답, 문안 작성, 사진 촬영 문제 해결 등 이미지-텍스트 이해 관련 작업에 집중하며, 이전 세대 모델에 비해 전면적으로 향상되었습니다."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "혼위안 최신 버전 turbos-vision 비주얼 언어 플래그십 대형 모델로, 이미지 기반 엔티티 인식, 지식 질문응답, 문안 작성, 사진 촬영 문제 해결 등 이미지-텍스트 이해 관련 작업에서 이전 세대 기본 모델에 비해 전면적으로 향상되었습니다."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "혼원 최신 다중 모달 모델로, 이미지와 텍스트 입력을 지원하여 텍스트 콘텐츠를 생성합니다."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL is een nieuw lid van de Qwen-serie, met krachtige visuele inzichtscapaciteiten. Het kan tekst, grafieken en lay-outs in afbeeldingen analyseren en langere video's begrijpen en gebeurtenissen vastleggen. Het kan redeneren en tools bedienen, ondersteunt multi-formaat objectlocalisatie en structuuroutput genereren. De video-begripstraining is geoptimaliseerd voor dynamische resolutie en framesnelheid, en de efficiëntie van de visuele encoder is verbeterd."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking is een open source visueel-taalmodel (VLM) dat gezamenlijk is uitgebracht door Zhipu AI en het KEG-laboratorium van de Tsinghua Universiteit. Het is speciaal ontworpen voor het verwerken van complexe multimodale cognitieve taken. Dit model is gebaseerd op het GLM-4-9B-0414 basismodel en verbetert aanzienlijk de crossmodale redeneercapaciteiten en stabiliteit door de introductie van een 'Chain-of-Thought' redeneermethode en het gebruik van versterkend leren."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat is de open-source versie van het GLM-4-serie voorgetrainde model, gelanceerd door Zhipu AI. Dit model presteert uitstekend in semantiek, wiskunde, redenering, code en kennis. Naast ondersteuning voor meerdaagse gesprekken, beschikt GLM-4-9B-Chat ook over geavanceerde functies zoals webbrowser, code-uitvoering, aangepaste tool-aanroepen (Function Call) en lange tekstredenering. Het model ondersteunt 26 talen, waaronder Chinees, Engels, Japans, Koreaans en Duits. In verschillende benchmarktests toont GLM-4-9B-Chat uitstekende prestaties, zoals AlignBench-v2, MT-Bench, MMLU en C-Eval. Dit model ondersteunt een maximale contextlengte van 128K, geschikt voor academisch onderzoek en commerciële toepassingen."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 is een inferentiemodel aangedreven door versterkend leren (RL), dat de problemen van herhaling en leesbaarheid in modellen aanpakt. Voor RL introduceert DeepSeek-R1 koude startdata, wat de inferentieprestaties verder optimaliseert. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 is een door versterkend leren (RL) aangedreven redeneermodel dat problemen met herhaling en leesbaarheid in modellen aanpakt. Voor RL introduceert DeepSeek-R1 cold-start data om de redeneerprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en redeneertaken en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B is een model dat is afgeleid van Qwen2.5-Math-7B door middel van kennisdistillatie. Dit model is fijn afgesteld met 800.000 zorgvuldig geselecteerde voorbeelden die zijn gegenereerd door DeepSeek-R1, waardoor het uitstekende inferentiecapaciteiten vertoont. Het presteert goed op verschillende benchmarks, met een nauwkeurigheid van 92,8% op MATH-500, een doorlooptarief van 55,5% op AIME 2024 en een score van 1189 op CodeForces. Als een model van 7B schaal toont het sterke wiskundige en programmeringvaardigheden."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 is een hybride expert (MoE) taalmodel met 6710 miljard parameters, dat gebruikmaakt van multi-head latent attention (MLA) en de DeepSeekMoE-architectuur, gecombineerd met een load balancing-strategie zonder extra verlies, om de inferentie- en trainingsefficiëntie te optimaliseren. Door voorgetraind te worden op 14,8 biljoen hoogwaardige tokens en vervolgens te worden fijngesteld met supervisie en versterkend leren, overtreft DeepSeek-V3 andere open-source modellen in prestaties en komt het dicht in de buurt van toonaangevende gesloten modellen."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 is een hybride expert (MoE) taalmodel met 6710 miljard parameters, dat gebruikmaakt van multi-head latent attention (MLA) en de DeepSeekMoE-architectuur, gecombineerd met een load balancing strategie zonder extra verlies, om de efficiëntie van inferentie en training te optimaliseren. Door voorgetraind te worden op 14,8 biljoen hoogwaardige tokens en vervolgens te worden verfijnd met supervisie en versterkend leren, overtreft DeepSeek-V3 andere open-source modellen in prestaties en benadert het de toonaangevende gesloten-source modellen."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview is een innovatief natuurlijk taalverwerkingsmodel dat efficiënt complexe dialooggeneratie en contextbegripstaken kan verwerken."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 is een klein model uit de GLM-serie met 9 miljard parameters. Dit model erft de technische kenmerken van de GLM-4-32B-serie, maar biedt een lichtere implementatieoptie. Ondanks de kleinere schaal toont GLM-4-9B-0414 nog steeds uitstekende capaciteiten in taken zoals codegeneratie, webdesign, SVG-graphics generatie en op zoek gebaseerde schrijfopdrachten."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking is een open source visueel-taalmodel (VLM) dat gezamenlijk is uitgebracht door Zhipu AI en het KEG-laboratorium van de Tsinghua Universiteit. Het is speciaal ontworpen voor het verwerken van complexe multimodale cognitieve taken. Dit model is gebaseerd op het GLM-4-9B-0414 basismodel en verbetert aanzienlijk de crossmodale redeneercapaciteiten en stabiliteit door de introductie van een 'Chain-of-Thought' redeneermethode en het gebruik van versterkend leren."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 is een redeneringsmodel met diep denkvermogen. Dit model is ontwikkeld op basis van GLM-4-32B-0414 door middel van koude start en versterkend leren, en is verder getraind op wiskunde, code en logische taken. In vergelijking met het basismodel heeft GLM-Z1-32B-0414 aanzienlijke verbeteringen in wiskundige vaardigheden en het oplossen van complexe taken."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 kan bijna onmiddellijke reacties genereren of uitgebreide stapsgewijze overwegingen, waarbij gebruikers deze processen duidelijk kunnen volgen. API-gebruikers kunnen ook de denktijd van het model nauwkeurig regelen."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B is een sparsely activated groot taalmodel met 72 miljard parameters en 16 miljard geactiveerde parameters. Het is gebaseerd op de Group Mixture of Experts (MoGE) architectuur, waarbij experts worden gegroepeerd tijdens de selectie en tokens binnen elke groep een gelijk aantal experts activeren, wat zorgt voor een gebalanceerde expertbelasting en de efficiëntie van modelimplementatie op het Ascend-platform aanzienlijk verbetert."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 is een meertalig model van Cohere, ondersteunt 23 talen en biedt gemak voor diverse taaltoepassingen."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B is een open-source, commercieel bruikbaar groot taalmodel ontwikkeld door Baichuan Intelligent, met 13 miljard parameters, dat de beste prestaties in zijn klasse heeft behaald op gezaghebbende Chinese en Engelse benchmarks."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B is een groot taalmodel ontwikkeld door Baidu, gebaseerd op een hybride expert (MoE) architectuur. Het model heeft in totaal 300 miljard parameters, maar activeert slechts 47 miljard parameters per token tijdens inferentie, wat krachtige prestaties combineert met rekenefficiëntie. Als een kernmodel van de ERNIE 4.5-serie toont het uitstekende capaciteiten in tekstbegrip, generatie, redenering en programmeren. Het model gebruikt een innovatieve multimodale heterogene MoE pre-trainingsmethode, waarbij tekst- en visuele modaliteiten gezamenlijk worden getraind, wat de algehele prestaties verbetert, vooral in instructienaleving en wereldkennis."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse is een hoogwaardig 32B meertalig model, ontworpen om de prestaties van eentalige modellen uit te dagen door middel van instructietuning, data-arbitrage, voorkeurstraining en modelintegratie. Het ondersteunt 23 talen."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro is het meest geavanceerde denkmodel van Google, in staat om complexe problemen op het gebied van code, wiskunde en STEM te redeneren, en grote datasets, codebases en documenten te analyseren met lange context."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental is Google's meest geavanceerde denkmodel, dat in staat is om te redeneren over complexe problemen in code, wiskunde en STEM-gebieden, en bovendien gebruik maakt van lange contexten om grote datasets, codebases en documenten te analyseren."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkmodel, dat in staat is om te redeneren over complexe problemen in code, wiskunde en STEM-gebieden, en grote datasets, codebases en documenten te analyseren met behulp van lange context."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus, als vlaggenschip van hoge intelligentie, heeft krachtige capaciteiten voor het verwerken van lange teksten en complexe taken, met algehele prestatieverbeteringen."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "De GLM-4.1V-Thinking serie modellen zijn momenteel de krachtigste visuele modellen binnen de bekende 10 miljard parameter VLM's. Ze integreren state-of-the-art visuele-taaltaakprestaties op hetzelfde niveau, waaronder videoverwerking, beeldvraag-antwoordsystemen, vakinhoudelijke probleemoplossing, OCR-tekstherkenning, document- en grafiekanalyse, GUI-agenten, frontend webcodering en grounding. De capaciteiten van meerdere taken overtreffen zelfs die van Qwen2.5-VL-72B met acht keer zoveel parameters. Door geavanceerde versterkend leren technologie beheerst het model chain-of-thought redenering om de nauwkeurigheid en rijkdom van antwoorden te verbeteren, wat resulteert in aanzienlijk betere eindresultaten en interpretatie dan traditionele niet-thinking modellen."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "De GLM-4.1V-Thinking serie modellen zijn momenteel de krachtigste visuele modellen binnen de bekende 10 miljard parameter VLM's. Ze integreren state-of-the-art visuele-taaltaakprestaties op hetzelfde niveau, waaronder videoverwerking, beeldvraag-antwoordsystemen, vakinhoudelijke probleemoplossing, OCR-tekstherkenning, document- en grafiekanalyse, GUI-agenten, frontend webcodering en grounding. De capaciteiten van meerdere taken overtreffen zelfs die van Qwen2.5-VL-72B met acht keer zoveel parameters. Door geavanceerde versterkend leren technologie beheerst het model chain-of-thought redenering om de nauwkeurigheid en rijkdom van antwoorden te verbeteren, wat resulteert in aanzienlijk betere eindresultaten en interpretatie dan traditionele niet-thinking modellen."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V biedt krachtige beeldbegrip- en redeneercapaciteiten, ondersteunt verschillende visuele taken."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "De GLM-Z1 serie beschikt over krachtige complexe redeneringscapaciteiten en presteert uitstekend in logische redenering, wiskunde en programmeren. De maximale contextlengte is 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Snel en betaalbaar: Flash verbeterde versie met ultrahoge inferentiesnelheid en snellere gelijktijdige verwerking."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview heeft krachtige complexe redeneercapaciteiten en presteert uitstekend in logische redenering, wiskunde en programmeren."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) biedt basis instructieverwerkingscapaciteiten, geschikt voor lichte toepassingen."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B is een open source taalmodel van Google dat nieuwe standaarden zet op het gebied van efficiëntie en prestaties."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B is een open-source taalmodel van Google dat nieuwe normen heeft gesteld op het gebied van efficiëntie en prestaties."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B is een taalmodel dat creativiteit en intelligentie combineert door meerdere topmodellen te integreren."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan's eerste hybride redeneermodel, een upgrade van hun hunyuan-standard-256K, met in totaal 80 miljard parameters en 13 miljard geactiveerde parameters. Standaard werkt het in een langzame denkwijze, maar ondersteunt schakeling tussen snelle en langzame denkwijzen via parameters of instructies, waarbij de snelle/langzame wisseling wordt geactiveerd door het toevoegen van 'query' of 'no_think' vooraf. De algehele capaciteiten zijn aanzienlijk verbeterd ten opzichte van de vorige generatie, vooral op het gebied van wiskunde, wetenschap, lange tekstbegrip en agentfunctionaliteit."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Het nieuwste codegeneratiemodel van Hunyuan, getraind op 200B hoogwaardige codegegevens, met een half jaar training op hoogwaardige SFT-gegevens, met een vergroot contextvenster van 8K, en staat bovenaan de automatische evaluatie-indicatoren voor codegeneratie in vijf grote programmeertalen; presteert in de eerste divisie op basis van handmatige kwaliteitsbeoordelingen van 10 aspecten van code-taken in vijf grote talen."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Hunyuan multimodaal begrip en diepdenkend model, ondersteunt native multimodale lange-denk-ketens, excelleert in diverse beeldredeneerscenario's en verbetert aanzienlijk ten opzichte van snelle denkers bij exacte wetenschappen."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "De nieuwste versie van Hunyuan's t1-vision multimodale diepdenkende model, ondersteunt native lange chain-of-thought in multimodale contexten en biedt een algehele verbetering ten opzichte van de vorige standaardversie."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Een previewversie van het nieuwe generatie grote taalmodel van Hunyuan, met een nieuwe hybride expertmodel (MoE) structuur, die sneller inferentie-efficiëntie biedt en betere prestaties levert dan hunyan-pro."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "De nieuwste versie van het Hunyuan rollenspelmodel, officieel fijngetuned door Hunyuan, getraind met datasets voor rollenspelscenario's, biedt betere basisprestaties in rollenspelsituaties."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Dit model is geschikt voor beeld- en tekstbegripsscenario's en is gebaseerd op Hunyuan's nieuwste turbos, een nieuwe generatie vlaggenschip visueel-taalmodel dat zich richt op taken zoals entiteitsherkenning op basis van afbeeldingen, kennisvraag-antwoordsystemen, copywriting en foto-gebaseerde probleemoplossing. Het biedt een algehele verbetering ten opzichte van de vorige generatie modellen."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "De nieuwste versie van Hunyuan's turbos-vision vlaggenschip visueel-taalmodel, met algehele verbeteringen in taken gerelateerd aan beeld- en tekstbegrip, waaronder entiteitsherkenning op basis van afbeeldingen, kennisvraag-antwoordsystemen, copywriting en foto-gebaseerde probleemoplossing, vergeleken met de vorige standaardversie."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Het nieuwste multimodale model van Hunyuan, ondersteunt het genereren van tekstinhoud op basis van afbeelding + tekstinvoer."
|
1459
1486
|
},
|