@lobehub/chat 1.93.3 → 1.94.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.i18nrc.js +1 -0
- package/CHANGELOG.md +60 -0
- package/changelog/v1.json +21 -0
- package/docs/self-hosting/advanced/auth/next-auth/google.mdx +82 -0
- package/docs/self-hosting/advanced/auth.mdx +3 -0
- package/locales/ar/models.json +21 -18
- package/locales/ar/setting.json +12 -0
- package/locales/bg-BG/models.json +21 -18
- package/locales/bg-BG/setting.json +12 -0
- package/locales/de-DE/models.json +21 -18
- package/locales/de-DE/setting.json +12 -0
- package/locales/en-US/models.json +21 -18
- package/locales/en-US/setting.json +12 -0
- package/locales/es-ES/models.json +21 -18
- package/locales/es-ES/setting.json +12 -0
- package/locales/fa-IR/models.json +21 -18
- package/locales/fa-IR/setting.json +12 -0
- package/locales/fr-FR/models.json +21 -18
- package/locales/fr-FR/setting.json +12 -0
- package/locales/it-IT/models.json +21 -18
- package/locales/it-IT/setting.json +12 -0
- package/locales/ja-JP/models.json +21 -18
- package/locales/ja-JP/setting.json +12 -0
- package/locales/ko-KR/models.json +21 -18
- package/locales/ko-KR/setting.json +12 -0
- package/locales/nl-NL/models.json +21 -18
- package/locales/nl-NL/setting.json +12 -0
- package/locales/pl-PL/models.json +21 -18
- package/locales/pl-PL/setting.json +12 -0
- package/locales/pt-BR/models.json +21 -18
- package/locales/pt-BR/setting.json +12 -0
- package/locales/ru-RU/models.json +21 -18
- package/locales/ru-RU/setting.json +12 -0
- package/locales/tr-TR/models.json +21 -18
- package/locales/tr-TR/setting.json +12 -0
- package/locales/vi-VN/models.json +21 -18
- package/locales/vi-VN/setting.json +12 -0
- package/locales/zh-CN/models.json +21 -18
- package/locales/zh-CN/setting.json +12 -0
- package/locales/zh-TW/models.json +21 -18
- package/locales/zh-TW/setting.json +12 -0
- package/package.json +1 -1
- package/src/components/ModelSelect/index.tsx +15 -3
- package/src/components/NextAuth/AuthIcons.tsx +2 -0
- package/src/config/aiModels/perplexity.ts +6 -1
- package/src/features/AgentSetting/AgentModal/index.tsx +27 -1
- package/src/libs/next-auth/sso-providers/google.ts +20 -0
- package/src/libs/next-auth/sso-providers/index.ts +2 -0
- package/src/locales/default/setting.ts +12 -0
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Een geüpdatete versie van het Phi-3-vision model."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 1.5B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen. In vergelijking met Qwen1.5-1.8B-Chat toont Qwen2-1.5B-Instruct aanzienlijke prestatieverbeteringen in tests zoals MMLU, HumanEval, GSM8K, C-Eval en IFEval, ondanks een iets lager aantal parameters."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 7B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het kan grote invoer verwerken. Dit model presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen, en toont in sommige taken een concurrentievermogen vergelijkbaar met dat van propriëtaire modellen. Qwen2-7B-Instruct presteert beter dan Qwen1.5-7B-Chat in verschillende evaluaties, wat aanzienlijke prestatieverbeteringen aantoont."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL is de nieuwste iteratie van het Qwen-VL-model, dat de toonaangevende prestaties behaalde in benchmarktests voor visueel begrip."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 7B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 is een door versterkend leren (RL) aangedreven redeneermodel dat problemen met herhaling en leesbaarheid in modellen aanpakt. Voor RL introduceert DeepSeek-R1 cold-start data om de redeneerprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en redeneertaken en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B is een model dat is afgeleid van Qwen2.5-Math-1.5B door middel van kennisdistillatie. Dit model is fijn afgesteld met 800.000 zorgvuldig geselecteerde voorbeelden die zijn gegenereerd door DeepSeek-R1, en toont goede prestaties op meerdere benchmarks. Als een lichtgewicht model behaalde het een nauwkeurigheid van 83,9% op MATH-500, een doorlooptarief van 28,9% op AIME 2024 en een score van 954 op CodeForces, wat aantoont dat het inferentiecapaciteiten heeft die verder gaan dan zijn parameterschaal."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B is een model dat is afgeleid van Qwen2.5-Math-7B door middel van kennisdistillatie. Dit model is fijn afgesteld met 800.000 zorgvuldig geselecteerde voorbeelden die zijn gegenereerd door DeepSeek-R1, waardoor het uitstekende inferentiecapaciteiten vertoont. Het presteert goed op verschillende benchmarks, met een nauwkeurigheid van 92,8% op MATH-500, een doorlooptarief van 55,5% op AIME 2024 en een score van 1189 op CodeForces. Als een model van 7B schaal toont het sterke wiskundige en programmeringvaardigheden."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview is het nieuwste experimentele onderzoeksmodel van Qwen, gericht op het verbeteren van AI-redeneringscapaciteiten. Door het verkennen van complexe mechanismen zoals taalmixing en recursieve redenering, zijn de belangrijkste voordelen onder andere krachtige redeneringsanalyses, wiskundige en programmeervaardigheden. Tegelijkertijd zijn er ook problemen met taalwisseling, redeneringscycli, veiligheidskwesties en verschillen in andere capaciteiten."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 1.5B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen. In vergelijking met Qwen1.5-1.8B-Chat toont Qwen2-1.5B-Instruct aanzienlijke prestatieverbeteringen in tests zoals MMLU, HumanEval, GSM8K, C-Eval en IFEval, ondanks een iets lager aantal parameters."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 is een geavanceerd algemeen taalmodel dat verschillende soorten instructies ondersteunt."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 is een diep redeneringsmodel met reflectievermogen (vergelijkbaar met OpenAI's Deep Research). In tegenstelling tot typische diep denkmodellen, gebruikt het reflectiemodel langere periodes van diep nadenken om meer open en complexe problemen op te lossen."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B is het open-source model van de ChatGLM-serie, ontwikkeld door Zhipu AI. Dit model behoudt de uitstekende kenmerken van de vorige generatie, zoals vloeiende gesprekken en lage implementatiedrempels, terwijl het nieuwe functies introduceert. Het maakt gebruik van meer diverse trainingsdata, een groter aantal trainingsstappen en een meer redelijke trainingsstrategie, en presteert uitstekend onder de voorgetrainde modellen van minder dan 10B. ChatGLM3-6B ondersteunt complexe scenario's zoals meerdaagse gesprekken, tool-aanroepen, code-uitvoering en agenttaken. Naast het gespreksmodel zijn ook het basismodel ChatGLM-6B-Base en het lange tekstgespreksmodel ChatGLM3-6B-32K open-source gemaakt. Dit model is volledig open voor academisch onderzoek en staat ook gratis commercieel gebruik toe na registratie."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B is de open-source versie die een geoptimaliseerde gesprekservaring biedt voor gespreksapplicaties."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet is het meest geavanceerde model van Anthropic tot nu toe en het eerste hybride redeneermodel op de markt. Claude 3.7 Sonnet kan bijna onmiddellijke reacties of uitgebreide stapsgewijze overpeinzingen genereren, waarbij gebruikers deze processen duidelijk kunnen volgen. Sonnet is bijzonder goed in programmeren, datawetenschap, visuele verwerking en agenttaken."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 is het krachtigste model van Anthropic voor het verwerken van zeer complexe taken. Het blinkt uit in prestaties, intelligentie, vloeiendheid en begrip."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 kan bijna onmiddellijke reacties genereren of uitgebreide stapsgewijze overwegingen, waarbij gebruikers deze processen duidelijk kunnen volgen. API-gebruikers kunnen ook de denktijd van het model nauwkeurig regelen."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 is een meertalig model van Cohere, ondersteunt 23 talen en biedt gemak voor diverse taaltoepassingen."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "685 miljard parameter full-power model, uitgebracht op 28 mei 2025. DeepSeek-R1 maakt uitgebreid gebruik van versterkend leren in de post-trainingsfase, wat de reden is voor de aanzienlijke verbetering van het redeneervermogen van het model ondanks zeer beperkte gelabelde data. Het presteert uitstekend op taken zoals wiskunde, coderen en natuurlijke taalredenering."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B snelle versie, ondersteunt realtime online zoeken en biedt snellere reactietijden zonder in te boeten op modelprestaties."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkmodel, in staat om te redeneren over complexe problemen in code, wiskunde en STEM-gebieden, en om grote datasets, codebases en documenten te analyseren met lange context."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkwijze-model, in staat om complexe problemen op het gebied van code, wiskunde en STEM te redeneren, en grote datasets, codebases en documenten te analyseren met lange context."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B is geschikt voor het verwerken van middelgrote taken, met een goede kosteneffectiviteit."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Verbeter de codegeneratie op projectniveau; verhoog de kwaliteit van tekstgeneratie en schrijfvaardigheid; verbeter het begrip van tekstonderwerpen, multi-turn en to-the-point instructies en woordbegrip; optimaliseer problemen met gemengde traditionele en vereenvoudigde karakters en gemengde Chinese en Engelse output."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Geoptimaliseerd voor tekstcreatie en essay schrijven, verbeterde vaardigheden in frontend codering, wiskunde en logisch redeneren, en verbeterde instructievolging."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "De eerste ultra-grote Hybrid-Transformer-Mamba inferentiemodel in de industrie, dat de inferentiemogelijkheden uitbreidt, met een superieure decodesnelheid en verder afgestemd op menselijke voorkeuren."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Upgrade van het pre-trainingsfundament, versterkt het begrip en de naleving van instructies; verbetert wiskundige, codeer-, logische en wetenschappelijke vaardigheden tijdens de afstemmingsfase; verhoogt de kwaliteit van creatieve teksten, tekstbegrip, vertaalnauwkeurigheid en kennisvragen; versterkt de capaciteiten van agenten in diverse domeinen, met speciale aandacht voor het begrip van multi-turn dialogen."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Upgrade van de pre-trainingsbasis, verbeterde schrijf- en leesbegripvaardigheden, aanzienlijke verbetering van codeer- en wetenschappelijke vaardigheden, en voortdurende verbetering in het volgen van complexe instructies."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS is de nieuwste versie van het Hunyuan vlaggenschipmodel, met verbeterde denkcapaciteiten en een betere gebruikerservaring."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "Het nieuwste multimodale model van Hunyuan, ondersteunt het genereren van tekstinhoud op basis van afbeelding + tekstinvoer."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "Het innovatieve open-source model InternLM2.5 verhoogt de gespreksintelligentie door een groot aantal parameters."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 biedt intelligente gespreksoplossingen voor meerdere scenario's."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Tongyi Qianwen QVQ visueel redeneermodel, ondersteunt visuele input en keten van gedachten output, toont sterkere capaciteiten in wiskunde, programmeren, visuele analyse, creatie en algemene taken."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Visueel redeneermodel. Ondersteunt visuele input en keten van gedachten output. De plus-versie, uitgebracht na het qvq-max model, biedt snellere redeneersnelheid en een betere balans tussen effectiviteit en kosten in vergelijking met het qvq-max model."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Tongyi Qianwen codeermodel."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Limiet voor enkele reacties inschakelen"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Schakel redeneerkracht aanpassing in"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "Hoe hoger de waarde, hoe rijker en gevarieerder de woordkeuze; hoe lager de waarde, hoe eenvoudiger en directer de woordkeuze",
|
264
267
|
"title": "Woordenschat diversiteit"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "Hoe hoger de waarde, hoe meer de neiging om verschillende uitdrukkingen te gebruiken en herhaling van concepten te vermijden; hoe lager de waarde, hoe meer de neiging om herhalende concepten of verhalen te gebruiken, wat zorgt voor meer consistentie in de uitdrukking",
|
279
282
|
"title": "Uitdrukkingsdiversiteit"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Hoe hoger de waarde, hoe sterker het redeneervermogen, maar dit kan de reactietijd en het tokenverbruik verhogen",
|
286
|
+
"options": {
|
287
|
+
"high": "Hoog",
|
288
|
+
"low": "Laag",
|
289
|
+
"medium": "Gemiddeld"
|
290
|
+
},
|
291
|
+
"title": "Redeneerkracht"
|
292
|
+
},
|
281
293
|
"submit": "Modelinstellingen bijwerken",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "Hoe hoger de waarde, hoe creatiever en fantasierijker het antwoord; hoe lager de waarde, hoe strikter het antwoord.",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Zaktualizowana wersja modelu Phi-3-vision."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 1.5B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source. W porównaniu do Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct wykazuje znaczną poprawę wydajności w testach MMLU, HumanEval, GSM8K, C-Eval i IFEval, mimo że ma nieco mniejszą liczbę parametrów."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 7B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Może obsługiwać duże wejścia. Model ten wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source i wykazując konkurencyjność z modelami własnościowymi w niektórych zadaniach. Qwen2-7B-Instruct wykazuje znaczną poprawę wydajności w wielu ocenach w porównaniu do Qwen1.5-7B-Chat."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL to najnowsza iteracja modelu Qwen-VL, osiągająca najnowocześniejsze wyniki w benchmarkach zrozumienia wizualnego."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 7B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem ze wzmocnieniem (RL), rozwiązujący problemy powtarzalności i czytelności w modelach. Przed zastosowaniem RL wprowadzono dane cold start, co dodatkowo zoptymalizowało wydajność wnioskowania. Model osiąga wyniki porównywalne z OpenAI-o1 w zadaniach matematycznych, kodowania i wnioskowania, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólną efektywność."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B to model stworzony na podstawie Qwen2.5-Math-1.5B poprzez proces wiedzy distylacji. Model ten został dostrajony za pomocą 800 000 wybrukowanych próbek wygenerowanych przez DeepSeek-R1, co pozwoliło osiągnąć dobre wyniki na wielu testach benchmarkowych. Jako lekki model, osiągnął 83,9% dokładności na MATH-500, 28,9% sukcesów na AIME 2024 oraz 954 punkty na CodeForces, co świadczy o zdolnościach wnioskowania przekraczających jego rozmiar parametrów."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B to model stworzony na podstawie Qwen2.5-Math-7B poprzez proces wiedzy distylacji. Model ten został wytrenowany na 800 000 wybrukowanych próbkach wygenerowanych przez DeepSeek-R1, co pozwoliło mu wykazać się doskonałymi zdolnościami wnioskowania. W wielu testach referencyjnych osiągnął znakomite wyniki, w tym 92,8% dokładności na MATH-500, 55,5% sukcesów na AIME 2024 oraz 1189 punktów na CodeForces, co potwierdza jego silne umiejętności matematyczne i programistyczne jako modelu o rozmiarze 7B."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview to najnowszy eksperymentalny model badawczy Qwen, skoncentrowany na zwiększeniu zdolności wnioskowania AI. Poprzez eksplorację złożonych mechanizmów, takich jak mieszanie języków i wnioskowanie rekurencyjne, główne zalety obejmują silne zdolności analizy wnioskowania, matematyki i programowania. Jednocześnie występują problemy z przełączaniem języków, cyklami wnioskowania, kwestiami bezpieczeństwa oraz różnicami w innych zdolnościach."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 1.5B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source. W porównaniu do Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct wykazuje znaczną poprawę wydajności w testach MMLU, HumanEval, GSM8K, C-Eval i IFEval, mimo że ma nieco mniejszą liczbę parametrów."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 to zaawansowany uniwersalny model językowy, wspierający różne typy poleceń."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 to model głębokiego wnioskowania z zdolnością do refleksji (konkurujący z Deep Research OpenAI). W przeciwieństwie do typowych modeli głębokiego myślenia, model refleksyjny stosuje dłuższy czas głębokiego myślenia do rozwiązywania bardziej otwartych i złożonych problemów."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B to otwarty model z serii ChatGLM, opracowany przez Zhipu AI. Model ten zachowuje doskonałe cechy poprzednich modeli, takie jak płynność rozmowy i niski próg wdrożenia, jednocześnie wprowadzając nowe funkcje. Wykorzystuje bardziej zróżnicowane dane treningowe, większą liczbę kroków treningowych i bardziej rozsądne strategie treningowe, osiągając doskonałe wyniki w modelach pretrenowanych poniżej 10B. ChatGLM3-6B obsługuje złożone scenariusze, takie jak wieloetapowe rozmowy, wywoływanie narzędzi, wykonywanie kodu i zadania agenta. Oprócz modelu konwersacyjnego, udostępniono również podstawowy model ChatGLM-6B-Base oraz model do rozmów długotematycznych ChatGLM3-6B-32K. Model jest całkowicie otwarty dla badań akademickich i pozwala na bezpłatne wykorzystanie komercyjne po rejestracji."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B to otwarta wersja, oferująca zoptymalizowane doświadczenie dialogowe dla aplikacji konwersacyjnych."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet to najinteligentniejszy model stworzony przez Anthropic, a także pierwszy na rynku model mieszanej dedukcji. Claude 3.7 Sonnet potrafi generować niemal natychmiastowe odpowiedzi lub wydłużone, krok po kroku myślenie, które użytkownicy mogą wyraźnie obserwować. Sonnet szczególnie dobrze radzi sobie z programowaniem, nauką o danych, przetwarzaniem wizualnym oraz zadaniami agenta."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 to najpotężniejszy model Anthropic do obsługi wysoce złożonych zadań. Wyróżnia się doskonałą wydajnością, inteligencją, płynnością i zdolnością rozumienia."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 potrafi generować niemal natychmiastowe odpowiedzi lub wydłużone, stopniowe rozumowanie, które użytkownicy mogą wyraźnie obserwować. Użytkownicy API mają również precyzyjną kontrolę nad czasem rozmyślania modelu."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 to model wielojęzyczny wydany przez Cohere, wspierający 23 języki, ułatwiający różnorodne zastosowania językowe."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "Model w pełnej wersji 685B, wydany 28 maja 2025 roku. DeepSeek-R1 wykorzystuje techniki uczenia ze wzmocnieniem na dużą skalę w fazie post-treningowej, co znacznie poprawia zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Wysoka wydajność i zdolności w zadaniach matematycznych, kodowaniu oraz rozumowaniu języka naturalnego."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B szybka wersja, wspierająca wyszukiwanie w czasie rzeczywistym, oferująca szybszy czas reakcji przy zachowaniu wydajności modelu."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview to najnowocześniejszy model myślenia Google, zdolny do wnioskowania w złożonych problemach związanych z kodem, matematyką i dziedzinami STEM, a także do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów przy użyciu długiego kontekstu."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview to najnowocześniejszy model myślowy Google, zdolny do rozumowania nad złożonymi problemami w dziedzinach kodowania, matematyki i STEM oraz do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów z wykorzystaniem długich kontekstów."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B nadaje się do przetwarzania zadań średniej i małej skali, łącząc efektywność kosztową."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Zwiększenie zdolności generowania kodu na poziomie projektu; poprawa jakości pisania generowanego tekstu; ulepszenie wieloetapowego rozumienia tematów, przestrzegania instrukcji typu tob oraz rozumienia słów; optymalizacja problemów z mieszanym użyciem uproszczonych i tradycyjnych znaków oraz mieszanym językiem chińsko-angielskim."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Optymalizacja tworzenia tekstów, pisania esejów, ulepszenie umiejętności w kodowaniu frontendowym, matematyce, rozumowaniu logicznym oraz zwiększenie zdolności do przestrzegania instrukcji."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "Pierwszy na świecie ultra-duży model wnioskowania Hybrid-Transformer-Mamba, rozszerzający zdolności wnioskowania, z niezwykle szybkim dekodowaniem, lepiej dostosowany do ludzkich preferencji."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Aktualizacja bazy pretrenowania, wzmacniająca zdolność rozumienia i przestrzegania instrukcji; w fazie dostrajania poprawa umiejętności matematycznych, programistycznych, logicznych i nauk ścisłych; podniesienie jakości twórczości literackiej, rozumienia tekstu, dokładności tłumaczeń oraz wiedzy ogólnej; wzmocnienie zdolności agentów w różnych dziedzinach, ze szczególnym naciskiem na rozumienie wieloetapowych dialogów."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Ulepszona baza pretrenowania, poprawa umiejętności pisania i rozumienia tekstu, znaczne zwiększenie zdolności w kodowaniu i naukach ścisłych, ciągłe doskonalenie w realizacji złożonych poleceń."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS to najnowsza wersja flagowego modelu Hunyuan, oferująca silniejsze zdolności myślenia i lepsze efekty doświadczenia."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "Najnowocześniejszy model multimodalny Hunyuan, wspierający generowanie treści tekstowych na podstawie obrazów i tekstu."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "Innowacyjny model open source InternLM2.5, dzięki dużej liczbie parametrów, zwiększa inteligencję dialogową."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 oferuje inteligentne rozwiązania dialogowe w różnych scenariuszach."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Model wizualnego wnioskowania Tongyi Qianwen QVQ, obsługujący wejścia wizualne i generujący łańcuchy myślowe, wykazujący silne zdolności w matematyce, programowaniu, analizie wizualnej, twórczości oraz zadaniach ogólnych."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Model wnioskowania wizualnego. Obsługuje wejścia wizualne oraz generowanie łańcuchów myślowych. Wersja plus po modelu qvq-max, charakteryzuje się szybszym wnioskowaniem oraz lepszą równowagą między efektywnością a kosztami w porównaniu do qvq-max."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Model kodowania Tongyi Qianwen."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Włącz limit jednorazowej odpowiedzi"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Włącz regulację intensywności wnioskowania"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "Im większa wartość, tym bardziej zróżnicowane i bogate słownictwo; im mniejsza wartość, tym prostsze i bardziej bezpośrednie słownictwo",
|
264
267
|
"title": "Różnorodność słownictwa"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "Im większa wartość, tym większa tendencja do różnorodnych wyrażeń, unikanie powtórzeń; im mniejsza wartość, tym większa tendencja do używania powtarzających się koncepcji lub narracji, co prowadzi do większej spójności",
|
279
282
|
"title": "Różnorodność wyrażeń"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Im wyższa wartość, tym silniejsza zdolność wnioskowania, ale może to zwiększyć czas odpowiedzi i zużycie tokenów",
|
286
|
+
"options": {
|
287
|
+
"high": "Wysoka",
|
288
|
+
"low": "Niska",
|
289
|
+
"medium": "Średnia"
|
290
|
+
},
|
291
|
+
"title": "Intensywność wnioskowania"
|
292
|
+
},
|
281
293
|
"submit": "Zaktualizuj ustawienia modelu",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "Im większa wartość, tym bardziej kreatywne i wyobrażeniowe będą odpowiedzi; im mniejsza wartość, tym bardziej rygorystyczne odpowiedzi",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Versão atualizada do modelo Phi-3-vision."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct é um modelo de linguagem de grande escala com ajuste fino para instruções na série Qwen2, com um tamanho de parâmetro de 1.5B. Este modelo é baseado na arquitetura Transformer, utilizando funções de ativação SwiGLU, viés de atenção QKV e atenção de consulta em grupo. Ele se destaca em compreensão de linguagem, geração, capacidade multilíngue, codificação, matemática e raciocínio em vários benchmarks, superando a maioria dos modelos de código aberto. Em comparação com o Qwen1.5-1.8B-Chat, o Qwen2-1.5B-Instruct mostrou melhorias significativas de desempenho em testes como MMLU, HumanEval, GSM8K, C-Eval e IFEval, apesar de ter um número de parâmetros ligeiramente menor."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct é um modelo de linguagem de grande escala com ajuste fino para instruções na série Qwen2, com um tamanho de parâmetro de 7B. Este modelo é baseado na arquitetura Transformer, utilizando funções de ativação SwiGLU, viés de atenção QKV e atenção de consulta em grupo. Ele é capaz de lidar com entradas em larga escala. O modelo se destaca em compreensão de linguagem, geração, capacidade multilíngue, codificação, matemática e raciocínio em vários benchmarks, superando a maioria dos modelos de código aberto e demonstrando competitividade comparável a modelos proprietários em algumas tarefas. O Qwen2-7B-Instruct superou o Qwen1.5-7B-Chat em várias avaliações, mostrando melhorias significativas de desempenho."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL é a versão mais recente do modelo Qwen-VL, alcançando desempenho de ponta em testes de compreensão visual."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct é um dos mais recentes modelos de linguagem de grande escala lançados pela Alibaba Cloud. Este modelo de 7B apresenta melhorias significativas em áreas como codificação e matemática. O modelo também oferece suporte multilíngue, abrangendo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 é um modelo de raciocínio impulsionado por aprendizado por reforço (RL), que resolve problemas de repetição e legibilidade no modelo. Antes do RL, DeepSeek-R1 introduziu dados de cold start para otimizar ainda mais o desempenho do raciocínio. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas de matemática, código e raciocínio, e melhora o desempenho geral por meio de métodos de treinamento cuidadosamente projetados."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B é um modelo obtido por destilação de conhecimento baseado no Qwen2.5-Math-1.5B. Este modelo foi refinado usando 800 mil amostras selecionadas geradas pelo DeepSeek-R1, demonstrando desempenho notável em diversos benchmarks. Como um modelo leve, alcançou 83,9% de precisão no MATH-500, 28,9% de taxa de aprovação no AIME 2024 e uma pontuação de 954 no CodeForces, exibindo capacidades de raciocínio que superam seu tamanho de parâmetros."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B é um modelo obtido por destilação de conhecimento baseado no Qwen2.5-Math-7B. Este modelo foi refinado usando 800 mil amostras selecionadas geradas pelo DeepSeek-R1, demonstrando excelente capacidade de raciocínio. Apresenta desempenho destacado em diversos benchmarks, alcançando 92,8% de precisão no MATH-500, 55,5% de taxa de aprovação no AIME 2024 e uma pontuação de 1189 no CodeForces, mostrando forte competência em matemática e programação para um modelo de escala 7B."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview é o mais recente modelo de pesquisa experimental da Qwen, focado em melhorar a capacidade de raciocínio da IA. Ao explorar mecanismos complexos como mistura de linguagem e raciocínio recursivo, suas principais vantagens incluem forte capacidade de análise de raciocínio, habilidades matemáticas e de programação. Ao mesmo tempo, existem questões de troca de linguagem, ciclos de raciocínio, considerações de segurança e diferenças em outras capacidades."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct é um modelo de linguagem de grande escala com ajuste fino para instruções na série Qwen2, com um tamanho de parâmetro de 1.5B. Este modelo é baseado na arquitetura Transformer, utilizando funções de ativação SwiGLU, viés de atenção QKV e atenção de consulta em grupo. Ele se destaca em compreensão de linguagem, geração, capacidade multilíngue, codificação, matemática e raciocínio em vários benchmarks, superando a maioria dos modelos de código aberto. Em comparação com o Qwen1.5-1.8B-Chat, o Qwen2-1.5B-Instruct mostrou melhorias significativas de desempenho em testes como MMLU, HumanEval, GSM8K, C-Eval e IFEval, apesar de ter um número de parâmetros ligeiramente menor."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 é um modelo de linguagem universal avançado, suportando diversos tipos de instruções."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 é um modelo de inferência profunda com capacidade de reflexão (comparável ao Deep Research da OpenAI). Diferente dos modelos típicos de pensamento profundo, o modelo de reflexão utiliza um tempo mais longo de pensamento profundo para resolver problemas mais abertos e complexos."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B é um modelo de código aberto da série ChatGLM, desenvolvido pela Zhipu AI. Este modelo mantém as excelentes características da geração anterior, como fluência no diálogo e baixo custo de implantação, enquanto introduz novos recursos. Ele utiliza dados de treinamento mais variados, um número de passos de treinamento mais robusto e uma estratégia de treinamento mais razoável, destacando-se entre modelos pré-treinados abaixo de 10B. O ChatGLM3-6B suporta diálogos de múltiplas rodadas, chamadas de ferramentas, execução de código e tarefas de agente em cenários complexos. Além do modelo de diálogo, também foram lançados o modelo base ChatGLM-6B-Base e o modelo de diálogo de longo texto ChatGLM3-6B-32K. Este modelo está completamente aberto para pesquisa acadêmica e permite uso comercial gratuito após registro."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B é uma versão de código aberto, oferecendo uma experiência de diálogo otimizada para aplicações de conversa."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet é o modelo mais inteligente da Anthropic até agora e é o primeiro modelo de raciocínio misto do mercado. Claude 3.7 Sonnet pode gerar respostas quase instantâneas ou um pensamento gradual prolongado, permitindo que os usuários vejam claramente esses processos. Sonnet é especialmente habilidoso em programação, ciência de dados, processamento visual e tarefas de agente."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 é o modelo mais poderoso da Anthropic para lidar com tarefas altamente complexas. Ele se destaca em desempenho, inteligência, fluidez e capacidade de compreensão."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 pode gerar respostas quase instantâneas ou um pensamento gradual prolongado, permitindo que os usuários vejam claramente esses processos. Usuários da API também podem controlar detalhadamente o tempo de raciocínio do modelo."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 é um modelo multilíngue lançado pela Cohere, suportando 23 idiomas, facilitando aplicações linguísticas diversificadas."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho da inferência. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o resultado geral por meio de métodos de treinamento cuidadosamente projetados."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "Modelo completo de 685B, lançado em 28 de maio de 2025. O DeepSeek-R1 utilizou amplamente técnicas de aprendizado por reforço na fase pós-treinamento, aumentando significativamente a capacidade de raciocínio do modelo mesmo com poucos dados anotados. Apresenta alto desempenho e forte capacidade em tarefas de matemática, código e raciocínio em linguagem natural."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B versão rápida, suporta busca em tempo real, oferecendo maior velocidade de resposta enquanto mantém o desempenho do modelo."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "O Gemini 2.5 Pro Preview é o modelo de pensamento mais avançado do Google, capaz de raciocinar sobre problemas complexos em código, matemática e áreas STEM, além de analisar grandes conjuntos de dados, bibliotecas de código e documentos usando longos contextos."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview é o modelo de pensamento mais avançado do Google, capaz de raciocinar sobre problemas complexos em código, matemática e áreas STEM, além de analisar grandes conjuntos de dados, bibliotecas de código e documentos usando contexto extenso."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B é adequado para o processamento de tarefas de pequeno a médio porte, combinando custo e eficiência."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Melhore a capacidade de geração de código em nível de projeto; aumente a qualidade da escrita gerada em texto; aprimore a compreensão de tópicos em múltiplas rodadas, a conformidade com instruções do tipo tob e a compreensão de palavras; otimize problemas de saída com mistura de caracteres tradicionais e simplificados, bem como misturas de chinês e inglês."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Otimizado para criação de textos, redação de ensaios, aprimoramento em front-end de código, matemática, raciocínio lógico e outras habilidades científicas, além de melhorar a capacidade de seguir instruções."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "O primeiro modelo de inferência Hybrid-Transformer-Mamba em larga escala da indústria, que expande a capacidade de inferência, possui uma velocidade de decodificação excepcional e alinha-se ainda mais às preferências humanas."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Atualização da base pré-treinada para fortalecer a compreensão e conformidade com instruções; aprimoramento das habilidades em matemática, código, lógica e ciências exatas na fase de alinhamento; melhoria da qualidade da escrita criativa, compreensão textual, precisão na tradução e respostas a perguntas em ciências humanas; fortalecimento das capacidades de agentes em diversas áreas, com foco especial na compreensão de diálogos em múltiplas rodadas."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Atualização da base pré-treinada, com melhorias em escrita e compreensão de leitura, aumento significativo nas habilidades de código e ciências, e aprimoramento contínuo no seguimento de instruções complexas."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "A versão mais recente do hunyuan-TurboS, o modelo de grande porte da Hunyuan, possui uma capacidade de raciocínio mais forte e uma experiência aprimorada."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "O mais recente modelo multimodal Hunyuan, que suporta a entrada de imagens e texto para gerar conteúdo textual."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "O modelo de código aberto inovador InternLM2.5, com um grande número de parâmetros, melhora a inteligência do diálogo."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 oferece soluções de diálogo inteligente em múltiplos cenários."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Modelo de raciocínio visual QVQ Tongyi Qianwen, que suporta entrada visual e saída de cadeia de pensamento, demonstrando capacidades superiores em matemática, programação, análise visual, criação e tarefas gerais."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Modelo de raciocínio visual. Suporta entrada visual e saída em cadeia de pensamento. Versão plus lançada após o modelo qvq-max, com velocidade de raciocínio mais rápida e melhor equilíbrio entre desempenho e custo em comparação ao qvq-max."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Modelo de código Tongyi Qianwen."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Ativar limite de resposta única"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Ativar ajuste de intensidade de raciocínio"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "Quanto maior o valor, mais rica e variada será a escolha de palavras; quanto menor o valor, mais simples e direta será a escolha de palavras.",
|
264
267
|
"title": "Riqueza do Vocabulário"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "Quanto maior o valor, mais inclinado a diferentes formas de expressão, evitando repetições de conceitos; quanto menor o valor, mais inclinado a usar conceitos ou narrativas repetidas, resultando em uma expressão mais consistente.",
|
279
282
|
"title": "Diversidade de Expressão"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Quanto maior o valor, mais forte é a capacidade de raciocínio, mas pode aumentar o tempo de resposta e o consumo de tokens",
|
286
|
+
"options": {
|
287
|
+
"high": "Alto",
|
288
|
+
"low": "Baixo",
|
289
|
+
"medium": "Médio"
|
290
|
+
},
|
291
|
+
"title": "Intensidade do raciocínio"
|
292
|
+
},
|
281
293
|
"submit": "Atualizar configurações do modelo",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "Quanto maior o valor, mais criativas e imaginativas serão as respostas; quanto menor o valor, mais rigorosas serão as respostas",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Обновленная версия модели Phi-3-vision."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct — это языковая модель с дообучением на инструкциях в серии Qwen2, с параметрами 1.5B. Эта модель основана на архитектуре Transformer и использует такие технологии, как активационная функция SwiGLU, смещение внимания QKV и групповой запрос внимания. Она показывает отличные результаты в понимании языка, генерации, многоязычных способностях, кодировании, математике и выводах в различных бенчмарках, превосходя большинство открытых моделей. По сравнению с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct демонстрирует значительное улучшение производительности в тестах MMLU, HumanEval, GSM8K, C-Eval и IFEval, несмотря на немного меньшее количество параметров."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct — это языковая модель с дообучением на инструкциях в серии Qwen2, с параметрами 7B. Эта модель основана на архитектуре Transformer и использует такие технологии, как активационная функция SwiGLU, смещение внимания QKV и групповой запрос внимания. Она может обрабатывать большие объемы входных данных. Эта модель показывает отличные результаты в понимании языка, генерации, многоязычных способностях, кодировании, математике и выводах в различных бенчмарках, превосходя большинство открытых моделей и демонстрируя конкурентоспособность с проприетарными моделями в некоторых задачах. Qwen2-7B-Instruct показывает значительное улучшение производительности в нескольких оценках по сравнению с Qwen1.5-7B-Chat."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL - это последняя версия модели Qwen-VL, которая достигла передовых результатов в тестировании визуального понимания."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct — это одна из последних языковых моделей, выпущенных Alibaba Cloud. Эта 7B модель значительно улучшила способности в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 — модель рассуждений, управляемая обучением с подкреплением (RL), решающая проблемы повторяемости и читаемости в моделях. Перед RL DeepSeek-R1 использовал данные холодного старта для дальнейшей оптимизации производительности рассуждений. Модель показывает сопоставимые с OpenAI-o1 результаты в математике, программировании и задачах рассуждения, а также улучшает общую эффективность благодаря тщательно разработанным методам обучения."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B — это модель, полученная методом дистилляции знаний на основе Qwen2.5-Math-1.5B. Модель была дообучена на 800 тысячах тщательно отобранных образцов, сгенерированных DeepSeek-R1, и демонстрирует хорошую производительность в различных тестах. Будучи компактной моделью, она достигает точности 83,9% на MATH-500, уровня прохождения 28,9% на AIME 2024 и оценки 954 на CodeForces, что свидетельствует о её способностях к логическому выводу, превосходящих ожидания для её размера."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B — это модель, полученная методом дистилляции знаний на основе Qwen2.5-Math-7B. Модель была доработана с использованием 800 тысяч отобранных образцов, сгенерированных DeepSeek-R1, и демонстрирует выдающиеся способности к логическому рассуждению. Показывает отличные результаты в различных тестах: точность 92,8% на MATH-500, проходной балл 55,5% на AIME 2024 и оценку 1189 на CodeForces, что подтверждает её высокие математические и программистские возможности для модели масштаба 7B."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview — это последняя экспериментальная исследовательская модель Qwen, сосредоточенная на повышении возможностей вывода ИИ. Исследуя сложные механизмы, такие как смешение языков и рекурсивные выводы, основные преимущества включают мощные аналитические способности, математические и программные навыки. В то же время существуют проблемы с переключением языков, циклом вывода, соображениями безопасности и различиями в других способностях."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct — это языковая модель с дообучением на инструкциях в серии Qwen2, с параметрами 1.5B. Эта модель основана на архитектуре Transformer и использует такие технологии, как активационная функция SwiGLU, смещение внимания QKV и групповой запрос внимания. Она показывает отличные результаты в понимании языка, генерации, многоязычных способностях, кодировании, математике и выводах в различных бенчмарках, превосходя большинство открытых моделей. По сравнению с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct демонстрирует значительное улучшение производительности в тестах MMLU, HumanEval, GSM8K, C-Eval и IFEval, несмотря на немного меньшее количество параметров."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 — это передовая универсальная языковая модель, поддерживающая множество типов команд."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 — это модель глубокого вывода с размышлениями (сравнимая с Deep Research от OpenAI). В отличие от типичных моделей глубокого мышления, модель размышлений использует более длительное время глубокого мышления для решения более открытых и сложных задач."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B — это открытая модель из серии ChatGLM, разработанная Zhizhu AI. Эта модель сохраняет отличные характеристики предыдущих моделей, такие как плавность диалога и низкий порог развертывания, одновременно вводя новые функции. Она использует более разнообразные обучающие данные, большее количество шагов обучения и более разумную стратегию обучения, показывая отличные результаты среди предобученных моделей объемом менее 10B. ChatGLM3-6B поддерживает многократные диалоги, вызовы инструментов, выполнение кода и задачи агента в сложных сценариях. Кроме диалоговой модели, также открыты базовая модель ChatGLM-6B-Base и модель для длинных текстовых диалогов ChatGLM3-6B-32K. Эта модель полностью открыта для академических исследований и также допускает бесплатное коммерческое использование после регистрации."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B — это открытая версия, обеспечивающая оптимизированный диалоговый опыт для приложений."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet — это самая умная модель от Anthropic на сегодняшний день и первая в мире смешанная модель вывода. Claude 3.7 Sonnet может генерировать почти мгновенные ответы или длительные пошаговые размышления, позволяя пользователям четко видеть эти процессы. Sonnet особенно хорошо справляется с программированием, научными данными, визуальной обработкой и агентскими задачами."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 — самый мощный модель Anthropic для решения высоко сложных задач. Она демонстрирует выдающиеся показатели в производительности, интеллекте, плавности и понимании."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 способен генерировать практически мгновенные ответы или длительные поэтапные размышления, которые пользователи могут ясно отслеживать. API-пользователи также могут точно контролировать время размышлений модели."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 — это многоязычная модель, выпущенная Cohere, поддерживающая 23 языка, обеспечивая удобство для многоязычных приложений."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 — это модель вывода, управляемая методом обучения с подкреплением (RL), которая решает проблемы повторяемости и читаемости модели. Перед применением RL DeepSeek-R1 вводит данные холодного старта, что дополнительно оптимизирует производительность вывода. Она показывает сопоставимые результаты с OpenAI-o1 в математических, кодовых и задачах вывода, а также улучшает общую эффективность благодаря тщательно разработанным методам обучения."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "Модель полной мощности с 685 миллиардами параметров, выпущенная 28 мая 2025 года. DeepSeek-R1 широко использует методы обучения с подкреплением на этапе дообучения, что значительно улучшает способности модели к рассуждению при минимальном количестве размеченных данных. Высокая производительность и сильные возможности в задачах математики, программирования и естественно-языкового вывода."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B быстрая версия, поддерживающая онлайн-поиск в реальном времени, обеспечивающая более быструю скорость отклика при сохранении производительности модели."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview — это самая современная модель мышления от Google, способная рассуждать о сложных задачах в области кода, математики и STEM, а также анализировать большие наборы данных, кодовые базы и документы с помощью длинного контекста."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview — передовая модель мышления от Google, способная рассуждать над сложными задачами в области кода, математики и STEM, а также анализировать большие наборы данных, кодовые базы и документы с использованием длинного контекста."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B подходит для обработки задач среднего и малого масштаба, обеспечивая экономическую эффективность."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Повышение возможностей генерации кода на уровне проекта; улучшение качества текстового творчества; улучшение многоходового понимания тем, соблюдения инструкций toB и понимания слов; оптимизация проблем с выводом смешанных упрощённых и традиционных иероглифов, а также смешанных китайско-английских текстов."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Оптимизация создания текстов и написания сочинений, улучшение навыков программирования, математики и логического мышления, повышение способности следовать инструкциям."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "Первый в отрасли сверхмасштабный гибридный трансформер-Mamba для вывода, расширяющий возможности вывода, обладающий высокой скоростью декодирования и лучше соответствующий человеческим предпочтениям."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Обновление предобученной базы, усиление способности базы к пониманию и соблюдению инструкций; улучшение математических, программных, логических и научных навыков на этапе согласования; повышение качества творческого письма, понимания текста, точности перевода и знаний в гуманитарных областях; усиление возможностей агентов в различных сферах, с особым акцентом на понимание многоходовых диалогов."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Обновленная база предобучения, улучшенные навыки письма и понимания прочитанного, значительное повышение возможностей в программировании и точных науках, постоянное улучшение следования сложным инструкциям."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS — это последняя версия флагманской модели Hunyuan, обладающая более сильными аналитическими способностями и улучшенным качеством работы."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "Последняя многомодальная модель Hunyuan, поддерживающая ввод изображений и текста для генерации текстового контента."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "Инновационная открытая модель InternLM2.5, благодаря большому количеству параметров, повышает интеллектуальность диалогов."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 предлагает интеллектуальные решения для диалогов в различных сценариях."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Модель визуального рассуждения Tongyi Qianwen QVQ, поддерживающая визуальный ввод и вывод цепочек рассуждений, демонстрирует усиленные возможности в математике, программировании, визуальном анализе, творчестве и общих задачах."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Модель визуального рассуждения. Поддерживает визуальный ввод и вывод цепочек рассуждений, версия plus, выпущенная после модели qvq-max. По сравнению с qvq-max, серия qvq-plus обеспечивает более высокую скорость рассуждений и более сбалансированное соотношение эффективности и затрат."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Модель кода Tongyi Qianwen."
|
1915
1918
|
},
|