@lobehub/chat 1.93.2 → 1.94.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/.i18nrc.js +1 -0
  2. package/CHANGELOG.md +58 -0
  3. package/changelog/v1.json +21 -0
  4. package/docs/self-hosting/advanced/auth/next-auth/google.mdx +82 -0
  5. package/docs/self-hosting/advanced/auth.mdx +3 -0
  6. package/locales/ar/models.json +21 -18
  7. package/locales/ar/setting.json +12 -0
  8. package/locales/bg-BG/models.json +21 -18
  9. package/locales/bg-BG/setting.json +12 -0
  10. package/locales/de-DE/models.json +21 -18
  11. package/locales/de-DE/setting.json +12 -0
  12. package/locales/en-US/models.json +21 -18
  13. package/locales/en-US/setting.json +12 -0
  14. package/locales/es-ES/models.json +21 -18
  15. package/locales/es-ES/setting.json +12 -0
  16. package/locales/fa-IR/models.json +21 -18
  17. package/locales/fa-IR/setting.json +12 -0
  18. package/locales/fr-FR/models.json +21 -18
  19. package/locales/fr-FR/setting.json +12 -0
  20. package/locales/it-IT/models.json +21 -18
  21. package/locales/it-IT/setting.json +12 -0
  22. package/locales/ja-JP/models.json +21 -18
  23. package/locales/ja-JP/setting.json +12 -0
  24. package/locales/ko-KR/models.json +21 -18
  25. package/locales/ko-KR/setting.json +12 -0
  26. package/locales/nl-NL/models.json +21 -18
  27. package/locales/nl-NL/setting.json +12 -0
  28. package/locales/pl-PL/models.json +21 -18
  29. package/locales/pl-PL/setting.json +12 -0
  30. package/locales/pt-BR/models.json +21 -18
  31. package/locales/pt-BR/setting.json +12 -0
  32. package/locales/ru-RU/models.json +21 -18
  33. package/locales/ru-RU/setting.json +12 -0
  34. package/locales/tr-TR/models.json +21 -18
  35. package/locales/tr-TR/setting.json +12 -0
  36. package/locales/vi-VN/models.json +21 -18
  37. package/locales/vi-VN/setting.json +12 -0
  38. package/locales/zh-CN/models.json +21 -18
  39. package/locales/zh-CN/setting.json +12 -0
  40. package/locales/zh-TW/models.json +21 -18
  41. package/locales/zh-TW/setting.json +12 -0
  42. package/package.json +1 -1
  43. package/src/app/[variants]/(main)/changelog/features/Hero.tsx +3 -3
  44. package/src/app/[variants]/(main)/settings/about/index.tsx +8 -20
  45. package/src/components/NextAuth/AuthIcons.tsx +2 -0
  46. package/src/const/branding.ts +13 -0
  47. package/src/const/guide.ts +3 -4
  48. package/src/const/url.ts +0 -5
  49. package/src/features/AgentSetting/AgentModal/index.tsx +27 -1
  50. package/src/features/Follow/index.tsx +5 -4
  51. package/src/features/User/UserPanel/useMenu.tsx +3 -5
  52. package/src/libs/model-runtime/utils/streams/openai/openai.ts +5 -1
  53. package/src/libs/next-auth/sso-providers/google.ts +20 -0
  54. package/src/libs/next-auth/sso-providers/index.ts +2 -0
  55. package/src/locales/default/setting.ts +12 -0
  56. package/src/server/ld.ts +5 -10
@@ -259,6 +259,9 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "Включить ограничение максимального количества токенов"
261
261
  },
262
+ "enableReasoningEffort": {
263
+ "title": "Включить регулировку интенсивности рассуждений"
264
+ },
262
265
  "frequencyPenalty": {
263
266
  "desc": "Чем больше значение, тем разнообразнее и богаче словарный запас; чем меньше значение, тем проще и понятнее слова",
264
267
  "title": "Разнообразие словарного запаса"
@@ -278,6 +281,15 @@
278
281
  "desc": "Чем больше значение, тем больше склонность к различным выражениям, избегая повторения концепций; чем меньше значение, тем больше склонность к использованию повторяющихся концепций или нарративов, выражение становится более последовательным",
279
282
  "title": "Разнообразие выражений"
280
283
  },
284
+ "reasoningEffort": {
285
+ "desc": "Чем выше значение, тем сильнее способность к рассуждению, но это может увеличить время отклика и расход токенов",
286
+ "options": {
287
+ "high": "Высокий",
288
+ "low": "Низкий",
289
+ "medium": "Средний"
290
+ },
291
+ "title": "Интенсивность рассуждений"
292
+ },
281
293
  "submit": "Обновить настройки модели",
282
294
  "temperature": {
283
295
  "desc": "Чем больше значение, тем более креативными и воображаемыми будут ответы; чем меньше значение, тем более строгими будут ответы",
@@ -206,15 +206,9 @@
206
206
  "Phi-3.5-vision-instrust": {
207
207
  "description": "Phi-3-görsel modelinin güncellenmiş versiyonu."
208
208
  },
209
- "Pro/Qwen/Qwen2-1.5B-Instruct": {
210
- "description": "Qwen2-1.5B-Instruct, Qwen2 serisindeki talimat ince ayar büyük dil modelidir ve parametre ölçeği 1.5B'dir. Bu model, Transformer mimarisi temelinde, SwiGLU aktivasyon fonksiyonu, dikkat QKV önyargısı ve grup sorgu dikkati gibi teknikler kullanmaktadır. Dil anlama, üretim, çok dilli yetenek, kodlama, matematik ve akıl yürütme gibi birçok standart testte mükemmel performans sergilemekte ve çoğu açık kaynak modelini geride bırakmaktadır. Qwen1.5-1.8B-Chat ile karşılaştırıldığında, Qwen2-1.5B-Instruct, MMLU, HumanEval, GSM8K, C-Eval ve IFEval gibi testlerde belirgin bir performans artışı göstermektedir, parametre sayısı biraz daha az olmasına rağmen."
211
- },
212
209
  "Pro/Qwen/Qwen2-7B-Instruct": {
213
210
  "description": "Qwen2-7B-Instruct, Qwen2 serisindeki talimat ince ayar büyük dil modelidir ve parametre ölçeği 7B'dir. Bu model, Transformer mimarisi temelinde, SwiGLU aktivasyon fonksiyonu, dikkat QKV önyargısı ve grup sorgu dikkati gibi teknikler kullanmaktadır. Büyük ölçekli girişleri işleyebilme yeteneğine sahiptir. Bu model, dil anlama, üretim, çok dilli yetenek, kodlama, matematik ve akıl yürütme gibi birçok standart testte mükemmel performans sergilemekte ve çoğu açık kaynak modelini geride bırakmakta, bazı görevlerde özel modellere karşı rekabet edebilir. Qwen2-7B-Instruct, birçok değerlendirmede Qwen1.5-7B-Chat'ten daha iyi performans göstermekte ve belirgin bir performans artışı sergilemektedir."
214
211
  },
215
- "Pro/Qwen/Qwen2-VL-7B-Instruct": {
216
- "description": "Qwen2-VL, Qwen-VL modelinin en son yineleme versiyonudur ve görsel anlama kıyaslama testlerinde en gelişmiş performansı sergilemiştir."
217
- },
218
212
  "Pro/Qwen/Qwen2.5-7B-Instruct": {
219
213
  "description": "Qwen2.5-7B-Instruct, Alibaba Cloud tarafından yayınlanan en son büyük dil modeli serilerinden biridir. Bu 7B modeli, kodlama ve matematik gibi alanlarda önemli ölçüde geliştirilmiş yeteneklere sahiptir. Model ayrıca, Çince, İngilizce gibi 29'dan fazla dili kapsayan çok dilli destek sunmaktadır. Model, talimat takibi, yapılandırılmış verileri anlama ve yapılandırılmış çıktı (özellikle JSON) üretme konularında önemli iyileştirmeler göstermektedir."
220
214
  },
@@ -233,9 +227,6 @@
233
227
  "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
228
  "description": "DeepSeek-R1, pekiştirmeli öğrenme (RL) destekli bir akıl yürütme modelidir ve modeldeki tekrar ve okunabilirlik sorunlarını çözer. RL öncesinde soğuk başlangıç verisi kullanarak akıl yürütme performansını daha da optimize etmiştir. Matematik, kodlama ve akıl yürütme görevlerinde OpenAI-o1 ile benzer performans gösterir ve özenle tasarlanmış eğitim yöntemleriyle genel performansı artırır."
235
229
  },
236
- "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
237
- "description": "DeepSeek-R1-Distill-Qwen-1.5B, Qwen2.5-Math-1.5B temel alınarak bilgi damıtma yöntemiyle geliştirilmiş bir modeldir. Bu model, DeepSeek-R1 tarafından oluşturulan 800 bin seçkin örnekle ince ayar yapılmış olup, çeşitli kıyaslama testlerinde etkileyici performans sergilemektedir. Hafif bir model olmasına rağmen, MATH-500'de %83.9 doğruluk, AIME 2024'te %28.9 geçme oranı ve CodeForces'ta 954 puan elde ederek, parametre boyutunun ötesinde bir akıl yürütme yeteneği göstermiştir."
238
- },
239
230
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
240
231
  "description": "DeepSeek-R1-Distill-Qwen-7B, Qwen2.5-Math-7B modelinden bilgi damıtma yöntemiyle elde edilmiş bir modeldir. Bu model, DeepSeek-R1 tarafından oluşturulan 800 bin seçkin örnekle ince ayar yapılarak geliştirilmiş olup, üstün akıl yürütme yeteneği sergilemektedir. Çeşitli kıyaslama testlerinde başarılı performans gösteren model, MATH-500'de %92,8 doğruluk, AIME 2024'te %55,5 geçme oranı ve CodeForces'ta 1189 puan alarak, 7B ölçeğindeki bir model için güçlü matematik ve programlama yeteneklerini ortaya koymuştur."
241
232
  },
@@ -257,9 +248,6 @@
257
248
  "Qwen/QwQ-32B-Preview": {
258
249
  "description": "QwQ-32B-Preview, Qwen'in en son deneysel araştırma modelidir ve AI akıl yürütme yeteneklerini artırmaya odaklanmaktadır. Dil karışımı, özyinelemeli akıl yürütme gibi karmaşık mekanizmaları keşfederek, güçlü akıl yürütme analizi, matematik ve programlama yetenekleri gibi ana avantajlar sunmaktadır. Bununla birlikte, dil geçiş sorunları, akıl yürütme döngüleri, güvenlik endişeleri ve diğer yetenek farklılıkları gibi zorluklar da bulunmaktadır."
259
250
  },
260
- "Qwen/Qwen2-1.5B-Instruct": {
261
- "description": "Qwen2-1.5B-Instruct, Qwen2 serisindeki talimat ince ayar büyük dil modelidir ve parametre ölçeği 1.5B'dir. Bu model, Transformer mimarisi temelinde, SwiGLU aktivasyon fonksiyonu, dikkat QKV önyargısı ve grup sorgu dikkati gibi teknikler kullanmaktadır. Dil anlama, üretim, çok dilli yetenek, kodlama, matematik ve akıl yürütme gibi birçok standart testte mükemmel performans sergilemekte ve çoğu açık kaynak modelini geride bırakmaktadır. Qwen1.5-1.8B-Chat ile karşılaştırıldığında, Qwen2-1.5B-Instruct, MMLU, HumanEval, GSM8K, C-Eval ve IFEval gibi testlerde belirgin bir performans artışı göstermektedir, parametre sayısı biraz daha az olmasına rağmen."
262
- },
263
251
  "Qwen/Qwen2-72B-Instruct": {
264
252
  "description": "Qwen2, çok çeşitli talimat türlerini destekleyen gelişmiş bir genel dil modelidir."
265
253
  },
@@ -419,9 +407,6 @@
419
407
  "THUDM/GLM-Z1-Rumination-32B-0414": {
420
408
  "description": "GLM-Z1-Rumination-32B-0414, derin düşünme yeteneğine sahip bir derin çıkarım modelidir (OpenAI'nin Derin Araştırması ile karşılaştırılabilir). Tipik derin düşünme modellerinin aksine, düşünme modeli daha uzun süreli derin düşünme ile daha açık ve karmaşık sorunları çözmektedir."
421
409
  },
422
- "THUDM/chatglm3-6b": {
423
- "description": "ChatGLM3-6B, Zhipu AI tarafından geliştirilen ChatGLM serisinin açık kaynak modelidir. Bu model, önceki nesil modellerin mükemmel özelliklerini korurken, yeni özellikler de eklenmiştir. Daha çeşitli eğitim verileri, daha fazla eğitim adımı ve daha mantıklı eğitim stratejileri kullanarak, 10B altındaki önceden eğitilmiş modeller arasında mükemmel performans sergilemektedir. ChatGLM3-6B, çoklu diyalog, araç çağrısı, kod yürütme ve ajan görevleri gibi karmaşık senaryoları desteklemektedir. Diyalog modelinin yanı sıra, temel model ChatGLM-6B-Base ve uzun metin diyalog modeli ChatGLM3-6B-32K da açık kaynak olarak sunulmuştur. Bu model, akademik araştırmalara tamamen açıktır ve kayıt olduktan sonra ücretsiz ticari kullanımına da izin verilmektedir."
424
- },
425
410
  "THUDM/glm-4-9b-chat": {
426
411
  "description": "GLM-4 9B açık kaynak versiyonu, diyalog uygulamaları için optimize edilmiş bir diyalog deneyimi sunar."
427
412
  },
@@ -563,6 +548,12 @@
563
548
  "anthropic/claude-3.7-sonnet": {
564
549
  "description": "Claude 3.7 Sonnet, Anthropic'in şimdiye kadarki en akıllı modeli ve piyasadaki ilk karma akıl yürütme modelidir. Claude 3.7 Sonnet, neredeyse anlık yanıtlar veya uzatılmış adım adım düşünme süreçleri üretebilir; kullanıcılar bu süreçleri net bir şekilde görebilir. Sonnet, programlama, veri bilimi, görsel işleme ve temsilci görevlerde özellikle yeteneklidir."
565
550
  },
551
+ "anthropic/claude-opus-4": {
552
+ "description": "Claude Opus 4, Anthropic tarafından yüksek karmaşıklıktaki görevleri işlemek için geliştirilen en güçlü modeldir. Performans, zeka, akıcılık ve anlama yeteneği açısından üstün bir performans sergiler."
553
+ },
554
+ "anthropic/claude-sonnet-4": {
555
+ "description": "Claude Sonnet 4, neredeyse anında yanıtlar veya uzatılmış adım adım düşünme süreçleri üretebilir; kullanıcılar bu süreçleri net bir şekilde görebilir. API kullanıcıları ayrıca modelin düşünme süresini ayrıntılı olarak kontrol edebilir."
556
+ },
566
557
  "aya": {
567
558
  "description": "Aya 23, Cohere tarafından sunulan çok dilli bir modeldir, 23 dili destekler ve çok dilli uygulamalar için kolaylık sağlar."
568
559
  },
@@ -788,6 +779,9 @@
788
779
  "deepseek-r1": {
789
780
  "description": "DeepSeek-R1, tekrarlayan öğrenme (RL) destekli bir çıkarım modelidir ve modeldeki tekrarlama ve okunabilirlik sorunlarını çözmektedir. RL'den önce, DeepSeek-R1 soğuk başlangıç verilerini tanıtarak çıkarım performansını daha da optimize etmiştir. Matematik, kod ve çıkarım görevlerinde OpenAI-o1 ile benzer bir performans sergilemekte ve özenle tasarlanmış eğitim yöntemleri ile genel etkisini artırmaktadır."
790
781
  },
782
+ "deepseek-r1-0528": {
783
+ "description": "685 milyar parametreli tam sürüm model, 28 Mayıs 2025'te yayınlandı. DeepSeek-R1, son eğitim aşamasında pek az etiketli veriyle güçlendirilmiş öğrenme tekniklerini geniş çapta kullanarak modelin çıkarım yeteneğini büyük ölçüde artırdı. Matematik, kodlama, doğal dil çıkarımı gibi görevlerde yüksek performans ve güçlü yetenekler sergiler."
784
+ },
791
785
  "deepseek-r1-70b-fast-online": {
792
786
  "description": "DeepSeek R1 70B hızlı versiyonu, gerçek zamanlı çevrimiçi arama desteği ile, model performansını korurken daha hızlı yanıt süreleri sunar."
793
787
  },
@@ -1067,6 +1061,9 @@
1067
1061
  "gemini-2.5-pro-preview-05-06": {
1068
1062
  "description": "Gemini 2.5 Pro Önizleme, Google'ın en gelişmiş düşünce modelidir ve kod, matematik ve STEM alanlarındaki karmaşık sorunları akıl yürütme yeteneğine sahiptir. Uzun bağlamları analiz ederek büyük veri setleri, kod havuzları ve belgeler üzerinde çalışabilir."
1069
1063
  },
1064
+ "gemini-2.5-pro-preview-06-05": {
1065
+ "description": "Gemini 2.5 Pro Önizlemesi, Google'ın en gelişmiş düşünce modelidir; kodlama, matematik ve STEM alanlarındaki karmaşık problemleri çözebilir ve uzun bağlam kullanarak büyük veri setleri, kod kütüphaneleri ve belgeleri analiz edebilir."
1066
+ },
1070
1067
  "gemma-7b-it": {
1071
1068
  "description": "Gemma 7B, orta ölçekli görev işleme için uygundur ve maliyet etkinliği sunar."
1072
1069
  },
@@ -1355,6 +1352,9 @@
1355
1352
  "hunyuan-t1-20250403": {
1356
1353
  "description": "Proje düzeyinde kod üretme yeteneğini artırır; metin oluşturma ve yazma kalitesini yükseltir; metin anlama, çok turlu konu takibi, toB komut uyumu ve kelime-anlama yeteneklerini geliştirir; karmaşık geleneksel ve basitleştirilmiş Çince ile İngilizce karışık çıktı sorunlarını optimize eder."
1357
1354
  },
1355
+ "hunyuan-t1-20250529": {
1356
+ "description": "Metin oluşturma ve kompozisyon yazımını optimize eder; kod ön yüzü, matematik, mantıksal çıkarım gibi fen bilimleri yeteneklerini geliştirir ve talimatlara uyum yeteneğini artırır."
1357
+ },
1358
1358
  "hunyuan-t1-latest": {
1359
1359
  "description": "Sektördeki ilk ultra büyük ölçekli Hybrid-Transformer-Mamba çıkarım modeli, çıkarım yeteneklerini genişletir, yüksek çözümleme hızı sunar ve insan tercihleri ile daha iyi hizalanır."
1360
1360
  },
@@ -1379,6 +1379,9 @@
1379
1379
  "hunyuan-turbos-20250416": {
1380
1380
  "description": "Ön eğitim tabanı yükseltmesi, tabanın komut anlama ve uyum yeteneklerini güçlendirir; hizalama aşamasında matematik, kodlama, mantık ve bilimsel alanlardaki yetenekleri artırır; yaratıcı yazım kalitesi, metin anlama, çeviri doğruluğu ve bilgi tabanlı soru-cevap gibi beşeri bilimler yeteneklerini geliştirir; çeşitli alanlardaki ajan yeteneklerini güçlendirir, özellikle çok turlu diyalog anlama yeteneğine odaklanır."
1381
1381
  },
1382
+ "hunyuan-turbos-20250604": {
1383
+ "description": "Ön eğitim tabanı yükseltildi; yazma ve okuduğunu anlama yetenekleri geliştirildi; kodlama ve fen bilimleri yeteneklerinde önemli iyileştirmeler sağlandı; karmaşık talimatlara uyum gibi alanlarda sürekli gelişme devam ediyor."
1384
+ },
1382
1385
  "hunyuan-turbos-latest": {
1383
1386
  "description": "hunyuan-TurboS, daha güçlü düşünme yeteneği ve daha iyi deneyim sunan en son sürümüdür."
1384
1387
  },
@@ -1391,9 +1394,6 @@
1391
1394
  "hunyuan-vision": {
1392
1395
  "description": "Hunyuan'ın en son çok modlu modeli, resim + metin girişi ile metin içeriği oluşturmayı destekler."
1393
1396
  },
1394
- "internlm/internlm2_5-20b-chat": {
1395
- "description": "Yenilikçi açık kaynak modeli InternLM2.5, büyük ölçekli parametreler ile diyalog zekasını artırmıştır."
1396
- },
1397
1397
  "internlm/internlm2_5-7b-chat": {
1398
1398
  "description": "InternLM2.5, çoklu senaryolarda akıllı diyalog çözümleri sunar."
1399
1399
  },
@@ -1910,6 +1910,9 @@
1910
1910
  "qvq-max": {
1911
1911
  "description": "Tongyi Qianwen QVQ görsel akıl yürütme modeli, görsel giriş ve düşünce zinciri çıktısını destekler; matematik, programlama, görsel analiz, yaratım ve genel görevlerde daha güçlü performans sergiler."
1912
1912
  },
1913
+ "qvq-plus": {
1914
+ "description": "Görsel çıkarım modeli. Görsel girişleri ve düşünce zinciri çıktısını destekler; qvq-max modelinin ardından gelen plus versiyonudur. qvq-max modeline kıyasla, qvq-plus serisi modeller daha hızlı çıkarım yapar ve performans ile maliyet arasında daha dengeli bir sonuç sunar."
1915
+ },
1913
1916
  "qwen-coder-plus": {
1914
1917
  "description": "Tongyi Qianwen kodlama modeli."
1915
1918
  },
@@ -259,6 +259,9 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "Max Token Sınırlamasını Etkinleştir"
261
261
  },
262
+ "enableReasoningEffort": {
263
+ "title": "Akıl Yürütme Gücü Ayarını Etkinleştir"
264
+ },
262
265
  "frequencyPenalty": {
263
266
  "desc": "Değer ne kadar büyükse, kelime dağarcığı o kadar zengin ve çeşitli olur; değer ne kadar düşükse, kelimeler o kadar sade ve basit olur.",
264
267
  "title": "Kelime Zenginliği"
@@ -278,6 +281,15 @@
278
281
  "desc": "Değer ne kadar büyükse, farklı ifade biçimlerine yönelme eğilimi artar, kavram tekrarından kaçınılır; değer ne kadar küçükse, tekrar eden kavramlar veya anlatımlar kullanma eğilimi artar, ifade daha tutarlı olur.",
279
282
  "title": "İfade Çeşitliliği"
280
283
  },
284
+ "reasoningEffort": {
285
+ "desc": "Değer ne kadar yüksekse, akıl yürütme yeteneği o kadar güçlü olur, ancak yanıt süresi ve Token tüketimi artabilir",
286
+ "options": {
287
+ "high": "Yüksek",
288
+ "low": "Düşük",
289
+ "medium": "Orta"
290
+ },
291
+ "title": "Akıl Yürütme Gücü"
292
+ },
281
293
  "submit": "Model ayarlarını güncelle",
282
294
  "temperature": {
283
295
  "desc": "Değer ne kadar büyükse, cevap o kadar yaratıcı ve hayal gücü dolu olur; değer ne kadar küçükse, cevap o kadar titizdir.",
@@ -206,15 +206,9 @@
206
206
  "Phi-3.5-vision-instrust": {
207
207
  "description": "Phi-3-vision là phiên bản cập nhật của mô hình."
208
208
  },
209
- "Pro/Qwen/Qwen2-1.5B-Instruct": {
210
- "description": "Qwen2-1.5B-Instruct là mô hình ngôn ngữ lớn được tinh chỉnh theo chỉ dẫn trong loạt Qwen2, với quy mô tham số là 1.5B. Mô hình này dựa trên kiến trúc Transformer, sử dụng hàm kích hoạt SwiGLU, độ lệch QKV trong chú ý và chú ý theo nhóm. Nó thể hiện xuất sắc trong nhiều bài kiểm tra chuẩn về hiểu ngôn ngữ, sinh ngôn ngữ, khả năng đa ngôn ngữ, mã hóa, toán học và suy luận, vượt qua hầu hết các mô hình mã nguồn mở. So với Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct cho thấy sự cải thiện đáng kể về hiệu suất trong các bài kiểm tra MMLU, HumanEval, GSM8K, C-Eval và IFEval, mặc dù số lượng tham số hơi ít hơn."
211
- },
212
209
  "Pro/Qwen/Qwen2-7B-Instruct": {
213
210
  "description": "Qwen2-7B-Instruct là mô hình ngôn ngữ lớn được tinh chỉnh theo chỉ dẫn trong loạt Qwen2, với quy mô tham số là 7B. Mô hình này dựa trên kiến trúc Transformer, sử dụng hàm kích hoạt SwiGLU, độ lệch QKV trong chú ý và chú ý theo nhóm. Nó có khả năng xử lý đầu vào quy mô lớn. Mô hình thể hiện xuất sắc trong nhiều bài kiểm tra chuẩn về hiểu ngôn ngữ, sinh ngôn ngữ, khả năng đa ngôn ngữ, mã hóa, toán học và suy luận, vượt qua hầu hết các mô hình mã nguồn mở và thể hiện sức cạnh tranh tương đương với các mô hình độc quyền trong một số nhiệm vụ. Qwen2-7B-Instruct đã thể hiện sự cải thiện đáng kể về hiệu suất trong nhiều bài kiểm tra so với Qwen1.5-7B-Chat."
214
211
  },
215
- "Pro/Qwen/Qwen2-VL-7B-Instruct": {
216
- "description": "Qwen2-VL là phiên bản mới nhất của mô hình Qwen-VL, đạt được hiệu suất hàng đầu trong các thử nghiệm chuẩn hiểu biết hình ảnh."
217
- },
218
212
  "Pro/Qwen/Qwen2.5-7B-Instruct": {
219
213
  "description": "Qwen2.5-7B-Instruct là một trong những mô hình ngôn ngữ lớn mới nhất do Alibaba Cloud phát hành. Mô hình 7B này có khả năng cải thiện đáng kể trong các lĩnh vực mã hóa và toán học. Mô hình cũng cung cấp hỗ trợ đa ngôn ngữ, bao gồm hơn 29 ngôn ngữ, bao gồm tiếng Trung, tiếng Anh, v.v. Mô hình đã có sự cải thiện đáng kể trong việc tuân theo chỉ dẫn, hiểu dữ liệu có cấu trúc và tạo ra đầu ra có cấu trúc (đặc biệt là JSON)."
220
214
  },
@@ -233,9 +227,6 @@
233
227
  "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
228
  "description": "DeepSeek-R1 là mô hình suy luận được điều khiển bằng học tăng cường (RL), giải quyết các vấn đề về tính lặp lại và khả năng đọc hiểu của mô hình. Trước khi áp dụng RL, DeepSeek-R1 đã giới thiệu dữ liệu khởi động lạnh để tối ưu hóa hiệu suất suy luận. Mô hình đạt hiệu quả tương đương OpenAI-o1 trong các nhiệm vụ toán học, mã hóa và suy luận, đồng thời nâng cao tổng thể nhờ phương pháp huấn luyện tinh tế."
235
229
  },
236
- "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
237
- "description": "DeepSeek-R1-Distill-Qwen-1.5B là mô hình được tạo ra từ Qwen2.5-Math-1.5B thông qua quá trình chưng cất kiến thức. Mô hình này được tinh chỉnh bằng 800.000 mẫu được chọn lọc từ DeepSeek-R1, thể hiện hiệu suất tốt trong nhiều bài kiểm tra chuẩn. Là một mô hình nhẹ, nó đạt được độ chính xác 83,9% trên MATH-500, tỷ lệ vượt qua 28,9% trên AIME 2024, và đạt điểm 954 trên CodeForces, cho thấy khả năng suy luận vượt quá quy mô tham số của nó."
238
- },
239
230
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
240
231
  "description": "DeepSeek-R1-Distill-Qwen-7B là mô hình được tạo ra từ Qwen2.5-Math-7B thông qua quá trình chưng cất kiến thức. Mô hình này được tinh chỉnh bằng 800.000 mẫu được chọn lọc từ DeepSeek-R1, thể hiện khả năng suy luận xuất sắc. Nó đã đạt được hiệu suất tốt trong nhiều bài kiểm tra chuẩn, trong đó có độ chính xác 92,8% trên MATH-500, tỷ lệ vượt qua 55,5% trên AIME 2024, và điểm số 1189 trên CodeForces, thể hiện khả năng toán học và lập trình mạnh mẽ cho một mô hình có quy mô 7B."
241
232
  },
@@ -257,9 +248,6 @@
257
248
  "Qwen/QwQ-32B-Preview": {
258
249
  "description": "QwQ-32B-Preview là mô hình nghiên cứu thử nghiệm mới nhất của Qwen, tập trung vào việc nâng cao khả năng suy luận của AI. Thông qua việc khám phá các cơ chế phức tạp như trộn ngôn ngữ và suy luận đệ quy, những lợi thế chính bao gồm khả năng phân tích suy luận mạnh mẽ, khả năng toán học và lập trình. Tuy nhiên, cũng có những vấn đề về chuyển đổi ngôn ngữ, vòng lặp suy luận, các vấn đề an toàn và sự khác biệt về các khả năng khác."
259
250
  },
260
- "Qwen/Qwen2-1.5B-Instruct": {
261
- "description": "Qwen2-1.5B-Instruct là mô hình ngôn ngữ lớn được tinh chỉnh theo chỉ dẫn trong loạt Qwen2, với quy mô tham số là 1.5B. Mô hình này dựa trên kiến trúc Transformer, sử dụng hàm kích hoạt SwiGLU, độ lệch QKV trong chú ý và chú ý theo nhóm. Nó thể hiện xuất sắc trong nhiều bài kiểm tra chuẩn về hiểu ngôn ngữ, sinh ngôn ngữ, khả năng đa ngôn ngữ, mã hóa, toán học và suy luận, vượt qua hầu hết các mô hình mã nguồn mở. So với Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct cho thấy sự cải thiện đáng kể về hiệu suất trong các bài kiểm tra MMLU, HumanEval, GSM8K, C-Eval và IFEval, mặc dù số lượng tham số hơi ít hơn."
262
- },
263
251
  "Qwen/Qwen2-72B-Instruct": {
264
252
  "description": "Qwen2 là mô hình ngôn ngữ tổng quát tiên tiến, hỗ trợ nhiều loại chỉ dẫn."
265
253
  },
@@ -419,9 +407,6 @@
419
407
  "THUDM/GLM-Z1-Rumination-32B-0414": {
420
408
  "description": "GLM-Z1-Rumination-32B-0414 là một mô hình suy luận sâu có khả năng suy tư (đối thủ của Deep Research của OpenAI). Khác với các mô hình suy tư sâu điển hình, mô hình suy tư này sử dụng thời gian suy tư sâu hơn để giải quyết các vấn đề mở và phức tạp hơn."
421
409
  },
422
- "THUDM/chatglm3-6b": {
423
- "description": "ChatGLM3-6B là mô hình mã nguồn mở trong loạt ChatGLM, được phát triển bởi Zhizhu AI. Mô hình này giữ lại những đặc điểm xuất sắc của thế hệ trước, như khả năng đối thoại mượt mà và ngưỡng triển khai thấp, đồng thời giới thiệu các tính năng mới. Nó sử dụng dữ liệu đào tạo đa dạng hơn, số bước đào tạo đầy đủ hơn và chiến lược đào tạo hợp lý hơn, thể hiện xuất sắc trong các mô hình tiền huấn luyện dưới 10B. ChatGLM3-6B hỗ trợ đối thoại nhiều vòng, gọi công cụ, thực thi mã và các nhiệm vụ Agent trong các tình huống phức tạp. Ngoài mô hình đối thoại, còn có mô hình cơ bản ChatGLM-6B-Base và mô hình đối thoại văn bản dài ChatGLM3-6B-32K. Mô hình hoàn toàn mở cho nghiên cứu học thuật và cho phép sử dụng thương mại miễn phí sau khi đăng ký."
424
- },
425
410
  "THUDM/glm-4-9b-chat": {
426
411
  "description": "GLM-4 9B là phiên bản mã nguồn mở, cung cấp trải nghiệm đối thoại tối ưu cho các ứng dụng hội thoại."
427
412
  },
@@ -563,6 +548,12 @@
563
548
  "anthropic/claude-3.7-sonnet": {
564
549
  "description": "Claude 3.7 Sonnet là mô hình thông minh nhất của Anthropic cho đến nay, và cũng là mô hình suy luận hỗn hợp đầu tiên trên thị trường. Claude 3.7 Sonnet có khả năng tạo ra phản hồi gần như ngay lập tức hoặc suy nghĩ từng bước kéo dài, cho phép người dùng thấy rõ những quá trình này. Sonnet đặc biệt xuất sắc trong lập trình, khoa học dữ liệu, xử lý hình ảnh và các nhiệm vụ đại diện."
565
550
  },
551
+ "anthropic/claude-opus-4": {
552
+ "description": "Claude Opus 4 là mô hình mạnh mẽ nhất của Anthropic dùng để xử lý các nhiệm vụ phức tạp cao. Nó thể hiện xuất sắc về hiệu suất, trí tuệ, sự mượt mà và khả năng hiểu biết."
553
+ },
554
+ "anthropic/claude-sonnet-4": {
555
+ "description": "Claude Sonnet 4 có thể tạo ra phản hồi gần như tức thì hoặc suy nghĩ từng bước kéo dài, người dùng có thể rõ ràng quan sát quá trình này. Người dùng API cũng có thể kiểm soát chi tiết thời gian suy nghĩ của mô hình."
556
+ },
566
557
  "aya": {
567
558
  "description": "Aya 23 là mô hình đa ngôn ngữ do Cohere phát hành, hỗ trợ 23 ngôn ngữ, tạo điều kiện thuận lợi cho các ứng dụng ngôn ngữ đa dạng."
568
559
  },
@@ -788,6 +779,9 @@
788
779
  "deepseek-r1": {
789
780
  "description": "DeepSeek-R1 là một mô hình suy diễn được điều khiển bởi học tăng cường (RL), giải quyết các vấn đề về tính lặp lại và khả năng đọc hiểu trong mô hình. Trước khi áp dụng RL, DeepSeek-R1 đã giới thiệu dữ liệu khởi động lạnh, tối ưu hóa thêm hiệu suất suy diễn. Nó thể hiện hiệu suất tương đương với OpenAI-o1 trong các nhiệm vụ toán học, mã và suy diễn, và thông qua phương pháp đào tạo được thiết kế cẩn thận, nâng cao hiệu quả tổng thể."
790
781
  },
782
+ "deepseek-r1-0528": {
783
+ "description": "Mô hình phiên bản đầy đủ 685 tỷ tham số, phát hành ngày 28 tháng 5 năm 2025. DeepSeek-R1 sử dụng rộng rãi kỹ thuật học tăng cường trong giai đoạn huấn luyện sau, nâng cao đáng kể khả năng suy luận của mô hình dù có rất ít dữ liệu gán nhãn. Hiệu suất cao và năng lực mạnh mẽ trong các nhiệm vụ toán học, lập trình, suy luận ngôn ngữ tự nhiên."
784
+ },
791
785
  "deepseek-r1-70b-fast-online": {
792
786
  "description": "DeepSeek R1 70B phiên bản nhanh, hỗ trợ tìm kiếm trực tuyến theo thời gian thực, cung cấp tốc độ phản hồi nhanh hơn trong khi vẫn giữ hiệu suất của mô hình."
793
787
  },
@@ -1067,6 +1061,9 @@
1067
1061
  "gemini-2.5-pro-preview-05-06": {
1068
1062
  "description": "Gemini 2.5 Pro Preview là mô hình tư duy tiên tiến nhất của Google, có khả năng suy luận về mã, toán học và các vấn đề phức tạp trong lĩnh vực STEM, cũng như phân tích các tập dữ liệu lớn, kho mã và tài liệu bằng cách sử dụng ngữ cảnh dài."
1069
1063
  },
1064
+ "gemini-2.5-pro-preview-06-05": {
1065
+ "description": "Gemini 2.5 Pro Preview là mô hình tư duy tiên tiến nhất của Google, có khả năng suy luận các vấn đề phức tạp trong lĩnh vực mã nguồn, toán học và STEM, cũng như phân tích dữ liệu lớn, kho mã và tài liệu với ngữ cảnh dài."
1066
+ },
1070
1067
  "gemma-7b-it": {
1071
1068
  "description": "Gemma 7B phù hợp cho việc xử lý các nhiệm vụ quy mô vừa và nhỏ, đồng thời mang lại hiệu quả chi phí."
1072
1069
  },
@@ -1355,6 +1352,9 @@
1355
1352
  "hunyuan-t1-20250403": {
1356
1353
  "description": "Nâng cao khả năng tạo mã cấp dự án; cải thiện chất lượng viết văn bản; nâng cao khả năng hiểu chủ đề văn bản đa vòng, tuân thủ chỉ thị toB và hiểu từ ngữ; tối ưu hóa vấn đề đầu ra hỗn hợp phồn thể và giản thể, cũng như hỗn hợp tiếng Trung và tiếng Anh."
1357
1354
  },
1355
+ "hunyuan-t1-20250529": {
1356
+ "description": "Tối ưu hóa sáng tạo văn bản, viết luận, cải thiện khả năng lập trình frontend, toán học, suy luận logic và các kỹ năng khoa học tự nhiên, nâng cao khả năng tuân thủ chỉ dẫn."
1357
+ },
1358
1358
  "hunyuan-t1-latest": {
1359
1359
  "description": "Mô hình suy luận Hybrid-Transformer-Mamba quy mô siêu lớn đầu tiên trong ngành, mở rộng khả năng suy luận, tốc độ giải mã cực nhanh, và tiếp tục điều chỉnh theo sở thích của con người."
1360
1360
  },
@@ -1379,6 +1379,9 @@
1379
1379
  "hunyuan-turbos-20250416": {
1380
1380
  "description": "Nâng cấp nền tảng tiền huấn luyện, tăng cường khả năng hiểu và tuân thủ chỉ thị của nền tảng; tăng cường năng lực các môn khoa học tự nhiên như toán học, lập trình, logic, khoa học trong giai đoạn căn chỉnh; cải thiện chất lượng sáng tạo văn học, hiểu văn bản, độ chính xác dịch thuật, hỏi đáp kiến thức và các năng lực khoa học xã hội; tăng cường năng lực Agent trong các lĩnh vực, đặc biệt là khả năng hiểu đối thoại đa vòng."
1381
1381
  },
1382
+ "hunyuan-turbos-20250604": {
1383
+ "description": "Nâng cấp nền tảng tiền huấn luyện, cải thiện khả năng viết và đọc hiểu, tăng cường đáng kể năng lực lập trình và khoa học tự nhiên, tiếp tục nâng cao khả năng tuân thủ các chỉ dẫn phức tạp."
1384
+ },
1382
1385
  "hunyuan-turbos-latest": {
1383
1386
  "description": "hunyuan-TurboS là phiên bản mới nhất của mô hình lớn hỗn hợp Hunyuan, có khả năng tư duy mạnh mẽ hơn và trải nghiệm tốt hơn."
1384
1387
  },
@@ -1391,9 +1394,6 @@
1391
1394
  "hunyuan-vision": {
1392
1395
  "description": "Mô hình đa phương thức mới nhất của Hunyuan, hỗ trợ đầu vào hình ảnh + văn bản để tạo ra nội dung văn bản."
1393
1396
  },
1394
- "internlm/internlm2_5-20b-chat": {
1395
- "description": "Mô hình mã nguồn mở sáng tạo InternLM2.5, thông qua số lượng tham số lớn, nâng cao trí thông minh trong đối thoại."
1396
- },
1397
1397
  "internlm/internlm2_5-7b-chat": {
1398
1398
  "description": "InternLM2.5 cung cấp giải pháp đối thoại thông minh cho nhiều tình huống."
1399
1399
  },
@@ -1910,6 +1910,9 @@
1910
1910
  "qvq-max": {
1911
1911
  "description": "Mô hình suy luận thị giác QVQ của Tongyi Qianwen, hỗ trợ đầu vào thị giác và xuất ra chuỗi suy nghĩ, thể hiện năng lực mạnh mẽ trong toán học, lập trình, phân tích thị giác, sáng tạo và các nhiệm vụ chung."
1912
1912
  },
1913
+ "qvq-plus": {
1914
+ "description": "Mô hình suy luận thị giác. Hỗ trợ đầu vào hình ảnh và đầu ra chuỗi suy nghĩ, phiên bản plus ra mắt sau mô hình qvq-max, với tốc độ suy luận nhanh hơn, hiệu quả và chi phí cân bằng hơn so với qvq-max."
1915
+ },
1913
1916
  "qwen-coder-plus": {
1914
1917
  "description": "Mô hình mã hóa Tongyi Qianwen."
1915
1918
  },
@@ -259,6 +259,9 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "Bật giới hạn phản hồi một lần"
261
261
  },
262
+ "enableReasoningEffort": {
263
+ "title": "Bật điều chỉnh cường độ suy luận"
264
+ },
262
265
  "frequencyPenalty": {
263
266
  "desc": "Giá trị càng lớn, từ ngữ càng phong phú đa dạng; giá trị càng thấp, từ ngữ càng đơn giản mộc mạc",
264
267
  "title": "Độ phong phú từ vựng"
@@ -278,6 +281,15 @@
278
281
  "desc": "Giá trị càng lớn, càng có xu hướng sử dụng các cách diễn đạt khác nhau, tránh lặp lại khái niệm; giá trị càng nhỏ, càng có xu hướng sử dụng các khái niệm hoặc mô tả lặp lại, thể hiện tính nhất quán cao hơn",
279
282
  "title": "Độ phân tán trong diễn đạt"
280
283
  },
284
+ "reasoningEffort": {
285
+ "desc": "Giá trị càng cao, khả năng suy luận càng mạnh, nhưng có thể làm tăng thời gian phản hồi và tiêu thụ Token",
286
+ "options": {
287
+ "high": "Cao",
288
+ "low": "Thấp",
289
+ "medium": "Trung bình"
290
+ },
291
+ "title": "Cường độ suy luận"
292
+ },
281
293
  "submit": "Cập nhật cài đặt mô hình",
282
294
  "temperature": {
283
295
  "desc": "Giá trị càng lớn, câu trả lời càng sáng tạo và giàu trí tưởng tượng; giá trị càng nhỏ, câu trả lời càng nghiêm ngặt",
@@ -206,15 +206,9 @@
206
206
  "Phi-3.5-vision-instrust": {
207
207
  "description": "Phi-3-vision模型的更新版。"
208
208
  },
209
- "Pro/Qwen/Qwen2-1.5B-Instruct": {
210
- "description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少"
211
- },
212
209
  "Pro/Qwen/Qwen2-7B-Instruct": {
213
210
  "description": "Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升"
214
211
  },
215
- "Pro/Qwen/Qwen2-VL-7B-Instruct": {
216
- "description": "Qwen2-VL-7B-Instruct 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够用于高质量的基于视频的问答、对话和内容创作,还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等"
217
- },
218
212
  "Pro/Qwen/Qwen2.5-7B-Instruct": {
219
213
  "description": "Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升"
220
214
  },
@@ -233,9 +227,6 @@
233
227
  "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
228
  "description": "DeepSeek-R1 是一款强化学习(RL)驱动的推理模型,解决了模型中的重复性和可读性问题。在 RL 之前,DeepSeek-R1 引入了冷启动数据,进一步优化了推理性能。它在数学、代码和推理任务中与 OpenAI-o1 表现相当,并且通过精心设计的训练方法,提升了整体效果。"
235
229
  },
236
- "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
237
- "description": "DeepSeek-R1-Distill-Qwen-1.5B 是基于 Qwen2.5-Math-1.5B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在多个基准测试中展现出不错的性能。作为一个轻量级模型,在 MATH-500 上达到了 83.9% 的准确率,在 AIME 2024 上达到了 28.9% 的通过率,在 CodeForces 上获得了 954 的评分,显示出超出其参数规模的推理能力。"
238
- },
239
230
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
240
231
  "description": "DeepSeek-R1-Distill-Qwen-7B 是基于 Qwen2.5-Math-7B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 92.8% 的准确率,在 AIME 2024 上达到了 55.5% 的通过率,在 CodeForces 上获得了 1189 的评分,作为 7B 规模的模型展示了较强的数学和编程能力。"
241
232
  },
@@ -257,9 +248,6 @@
257
248
  "Qwen/QwQ-32B-Preview": {
258
249
  "description": "Qwen QwQ 是由 Qwen 团队开发的实验研究模型,专注于提升AI推理能力。"
259
250
  },
260
- "Qwen/Qwen2-1.5B-Instruct": {
261
- "description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少"
262
- },
263
251
  "Qwen/Qwen2-72B-Instruct": {
264
252
  "description": "Qwen 2 Instruct (72B) 为企业级应用提供精准的指令理解和响应。"
265
253
  },
@@ -419,9 +407,6 @@
419
407
  "THUDM/GLM-Z1-Rumination-32B-0414": {
420
408
  "description": "GLM-Z1-Rumination-32B-0414 是一个具有沉思能力的深度推理模型(与 OpenAI 的 Deep Research 对标)。与典型的深度思考模型不同,沉思模型采用更长时间的深度思考来解决更开放和复杂的问题。"
421
409
  },
422
- "THUDM/chatglm3-6b": {
423
- "description": "ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用"
424
- },
425
410
  "THUDM/glm-4-9b-chat": {
426
411
  "description": "GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用"
427
412
  },
@@ -563,6 +548,12 @@
563
548
  "anthropic/claude-3.7-sonnet": {
564
549
  "description": "Claude 3.7 Sonnet 是 Anthropic 迄今为止最智能的模型,也是市场上首个混合推理模型。Claude 3.7 Sonnet 可以产生近乎即时的响应或延长的逐步思考,用户可以清晰地看到这些过程。Sonnet 特别擅长编程、数据科学、视觉处理、代理任务。"
565
550
  },
551
+ "anthropic/claude-opus-4": {
552
+ "description": "Claude Opus 4 是 Anthropic 用于处理高度复杂任务的最强大模型。它在性能、智能、流畅性和理解力方面表现卓越。"
553
+ },
554
+ "anthropic/claude-sonnet-4": {
555
+ "description": "Claude Sonnet 4 可以产生近乎即时的响应或延长的逐步思考,用户可以清晰地看到这些过程。API 用户还可以对模型思考的时间进行细致的控制"
556
+ },
566
557
  "aya": {
567
558
  "description": "Aya 23 是 Cohere 推出的多语言模型,支持 23 种语言,为多元化语言应用提供便利。"
568
559
  },
@@ -788,6 +779,9 @@
788
779
  "deepseek-r1": {
789
780
  "description": "DeepSeek-R1 在强化学习(RL)之前引入了冷启动数据,在数学、代码和推理任务上表现可与 OpenAI-o1 相媲美。"
790
781
  },
782
+ "deepseek-r1-0528": {
783
+ "description": "685B 满血版模型,2025年5月28日发布。DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能较高,能力较强。"
784
+ },
791
785
  "deepseek-r1-70b-fast-online": {
792
786
  "description": "DeepSeek R1 70B 快速版,支持实时联网搜索,在保持模型性能的同时提供更快的响应速度。"
793
787
  },
@@ -1067,6 +1061,9 @@
1067
1061
  "gemini-2.5-pro-preview-05-06": {
1068
1062
  "description": "Gemini 2.5 Pro Preview 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。"
1069
1063
  },
1064
+ "gemini-2.5-pro-preview-06-05": {
1065
+ "description": "Gemini 2.5 Pro Preview 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。"
1066
+ },
1070
1067
  "gemma-7b-it": {
1071
1068
  "description": "Gemma 7B 适合中小规模任务处理,兼具成本效益。"
1072
1069
  },
@@ -1355,6 +1352,9 @@
1355
1352
  "hunyuan-t1-20250403": {
1356
1353
  "description": "提升项目级别代码生成能力;提升文本生成写作质量;提升文本理解 topic 的多轮、tob 指令遵循和字词理解能力;优化繁简混杂和中英混杂输出问题。"
1357
1354
  },
1355
+ "hunyuan-t1-20250529": {
1356
+ "description": "优化文本创作、作文写作,优化代码前端、数学、逻辑推理等理科能力,提升指令遵循能力。"
1357
+ },
1358
1358
  "hunyuan-t1-latest": {
1359
1359
  "description": "业内首个超大规模 Hybrid-Transformer-Mamba 推理模型,扩展推理能力,超强解码速度,进一步对齐人类偏好。"
1360
1360
  },
@@ -1379,6 +1379,9 @@
1379
1379
  "hunyuan-turbos-20250416": {
1380
1380
  "description": "预训练底座升级,增强底座的指令理解及遵循能力;对齐阶段增强数学、代码、逻辑、科学等理科能力;提升文创写作质量、文本理解、翻译准确率、知识问答等文科能力;增强各领域 Agent 能力,重点加强多轮对话理解能力等。"
1381
1381
  },
1382
+ "hunyuan-turbos-20250604": {
1383
+ "description": "预训练底座升级,写作、阅读理解能力提升,较大幅度提升代码和理科能力,复杂指令遵循等持续提升。"
1384
+ },
1382
1385
  "hunyuan-turbos-latest": {
1383
1386
  "description": "hunyuan-TurboS 混元旗舰大模型最新版本,具备更强的思考能力,更优的体验效果。"
1384
1387
  },
@@ -1391,9 +1394,6 @@
1391
1394
  "hunyuan-vision": {
1392
1395
  "description": "混元最新多模态模型,支持图片+文本输入生成文本内容。"
1393
1396
  },
1394
- "internlm/internlm2_5-20b-chat": {
1395
- "description": "InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务"
1396
- },
1397
1397
  "internlm/internlm2_5-7b-chat": {
1398
1398
  "description": "InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域"
1399
1399
  },
@@ -1910,6 +1910,9 @@
1910
1910
  "qvq-max": {
1911
1911
  "description": "通义千问QVQ视觉推理模型,支持视觉输入及思维链输出,在数学、编程、视觉分析、创作以及通用任务上都表现了更强的能力。"
1912
1912
  },
1913
+ "qvq-plus": {
1914
+ "description": "视觉推理模型。支持视觉输入及思维链输出,继qvq-max模型后推出的plus版本,相较于qvq-max模型,qvq-plus系列模型推理速度更快,效果和成本更均衡。"
1915
+ },
1913
1916
  "qwen-coder-plus": {
1914
1917
  "description": "通义千问代码模型。"
1915
1918
  },
@@ -259,6 +259,9 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "开启单次回复限制"
261
261
  },
262
+ "enableReasoningEffort": {
263
+ "title": "开启推理强度调整"
264
+ },
262
265
  "frequencyPenalty": {
263
266
  "desc": "值越大,用词越丰富多样;值越低,用词更朴实简单",
264
267
  "title": "词汇丰富度"
@@ -278,6 +281,15 @@
278
281
  "desc": "值越大,越倾向不同的表达方式,避免概念重复;值越小,越倾向使用重复的概念或叙述,表达更具一致性",
279
282
  "title": "表述发散度"
280
283
  },
284
+ "reasoningEffort": {
285
+ "desc": "值越大,推理能力越强,但可能会增加响应时间和 Token 消耗",
286
+ "options": {
287
+ "high": "高",
288
+ "low": "低",
289
+ "medium": "中"
290
+ },
291
+ "title": "推理强度"
292
+ },
281
293
  "submit": "更新模型设置",
282
294
  "temperature": {
283
295
  "desc": "数值越大,回答越有创意和想象力;数值越小,回答越严谨",
@@ -206,15 +206,9 @@
206
206
  "Phi-3.5-vision-instrust": {
207
207
  "description": "Phi-3-vision模型的更新版。"
208
208
  },
209
- "Pro/Qwen/Qwen2-1.5B-Instruct": {
210
- "description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 1.5B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型。與 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等測試中均顯示出顯著的性能提升,儘管參數量略少"
211
- },
212
209
  "Pro/Qwen/Qwen2-7B-Instruct": {
213
210
  "description": "Qwen2-7B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 7B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它能夠處理大規模輸入。該模型在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型,並在某些任務上展現出與專有模型相當的競爭力。Qwen2-7B-Instruct 在多項評測中均優於 Qwen1.5-7B-Chat,顯示出顯著的性能提升"
214
211
  },
215
- "Pro/Qwen/Qwen2-VL-7B-Instruct": {
216
- "description": "Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在視覺理解基準測試中達到了最先進的性能。"
217
- },
218
212
  "Pro/Qwen/Qwen2.5-7B-Instruct": {
219
213
  "description": "Qwen2.5-7B-Instruct 是阿里雲發布的最新大語言模型系列之一。該 7B 模型在編碼和數學等領域具有顯著改進的能力。該模型還提供了多語言支持,覆蓋超過 29 種語言,包括中文、英文等。模型在指令跟隨、理解結構化數據以及生成結構化輸出(尤其是 JSON)方面都有顯著提升"
220
214
  },
@@ -233,9 +227,6 @@
233
227
  "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
228
  "description": "DeepSeek-R1 是一款強化學習(RL)驅動的推理模型,解決了模型中的重複性和可讀性問題。在 RL 之前,DeepSeek-R1 引入了冷啟動資料,進一步優化了推理性能。它在數學、程式碼和推理任務中與 OpenAI-o1 表現相當,並且透過精心設計的訓練方法,提升了整體效果。"
235
229
  },
236
- "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
237
- "description": "DeepSeek-R1-Distill-Qwen-1.5B 是基於 Qwen2.5-Math-1.5B 透過知識蒸餾技術所獲得的模型。該模型使用 DeepSeek-R1 產生的 80 萬個精選樣本進行微調,在多項基準測試中展現出優異的表現。作為一個輕量級模型,在 MATH-500 上達到了 83.9% 的準確率,在 AIME 2024 上獲得了 28.9% 的通過率,在 CodeForces 上取得了 954 的評分,顯示出超越其參數規模的推理能力。"
238
- },
239
230
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
240
231
  "description": "DeepSeek-R1-Distill-Qwen-7B 是基於 Qwen2.5-Math-7B 透過知識蒸餾技術所獲得的模型。該模型使用 DeepSeek-R1 生成的 80 萬個精選樣本進行微調,展現出優異的推理能力。在多個基準測試中表現出色,其中在 MATH-500 上達到了 92.8% 的準確率,在 AIME 2024 上達到了 55.5% 的通過率,在 CodeForces 上獲得了 1189 的評分,作為 7B 規模的模型展示了較強的數學和程式設計能力。"
241
232
  },
@@ -257,9 +248,6 @@
257
248
  "Qwen/QwQ-32B-Preview": {
258
249
  "description": "QwQ-32B-Preview是Qwen 最新的實驗性研究模型,專注於提升AI推理能力。通過探索語言混合、遞歸推理等複雜機制,主要優勢包括強大的推理分析能力、數學和編程能力。與此同時,也存在語言切換問題、推理循環、安全性考量、其他能力方面的差異。"
259
250
  },
260
- "Qwen/Qwen2-1.5B-Instruct": {
261
- "description": "Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微調大語言模型,參數規模為 1.5B。該模型基於 Transformer 架構,採用了 SwiGLU 激活函數、注意力 QKV 偏置和組查詢注意力等技術。它在語言理解、生成、多語言能力、編碼、數學和推理等多個基準測試中表現出色,超越了大多數開源模型。與 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等測試中均顯示出顯著的性能提升,儘管參數量略少"
262
- },
263
251
  "Qwen/Qwen2-72B-Instruct": {
264
252
  "description": "Qwen2 是先進的通用語言模型,支持多種指令類型。"
265
253
  },
@@ -419,9 +407,6 @@
419
407
  "THUDM/GLM-Z1-Rumination-32B-0414": {
420
408
  "description": "GLM-Z1-Rumination-32B-0414 是一個具有沉思能力的深度推理模型(與 OpenAI 的 Deep Research 對標)。與典型的深度思考模型不同,沉思模型採用更長時間的深度思考來解決更開放和複雜的問題。"
421
409
  },
422
- "THUDM/chatglm3-6b": {
423
- "description": "ChatGLM3-6B 是 ChatGLM 系列的開源模型,由智譜 AI 開發。該模型保留了前代模型的優秀特性,如對話流暢和部署門檻低,同時引入了新的特性。它採用了更多樣的訓練數據、更充分的訓練步數和更合理的訓練策略,在 10B 以下的預訓練模型中表現出色。ChatGLM3-6B 支持多輪對話、工具調用、代碼執行和 Agent 任務等複雜場景。除對話模型外,還開源了基礎模型 ChatGLM-6B-Base 和長文本對話模型 ChatGLM3-6B-32K。該模型對學術研究完全開放,在登記後也允許免費商業使用"
424
- },
425
410
  "THUDM/glm-4-9b-chat": {
426
411
  "description": "GLM-4 9B 開放源碼版本,為會話應用提供優化後的對話體驗。"
427
412
  },
@@ -563,6 +548,12 @@
563
548
  "anthropic/claude-3.7-sonnet": {
564
549
  "description": "Claude 3.7 Sonnet 是 Anthropic 迄今為止最智能的模型,也是市場上首個混合推理模型。Claude 3.7 Sonnet 可以產生近乎即時的回應或延長的逐步思考,使用者可以清晰地看到這些過程。Sonnet 特別擅長程式設計、數據科學、視覺處理、代理任務。"
565
550
  },
551
+ "anthropic/claude-opus-4": {
552
+ "description": "Claude Opus 4 是 Anthropic 用於處理高度複雜任務的最強大模型。它在性能、智慧、流暢性和理解力方面表現卓越。"
553
+ },
554
+ "anthropic/claude-sonnet-4": {
555
+ "description": "Claude Sonnet 4 可以產生近乎即時的回應或延長的逐步思考,使用者可以清楚地看到這些過程。API 使用者還可以對模型思考的時間進行細緻的控制。"
556
+ },
566
557
  "aya": {
567
558
  "description": "Aya 23 是 Cohere 推出的多語言模型,支持 23 種語言,為多元化語言應用提供便利。"
568
559
  },
@@ -788,6 +779,9 @@
788
779
  "deepseek-r1": {
789
780
  "description": "DeepSeek-R1 是一款強化學習(RL)驅動的推理模型,解決了模型中的重複性和可讀性問題。在 RL 之前,DeepSeek-R1 引入了冷啟動數據,進一步優化了推理性能。它在數學、程式碼和推理任務中與 OpenAI-o1 表現相當,並且通過精心設計的訓練方法,提升了整體效果。"
790
781
  },
782
+ "deepseek-r1-0528": {
783
+ "description": "685B 滿血版模型,2025年5月28日發布。DeepSeek-R1 在後訓練階段大規模使用了強化學習技術,在僅有極少標註資料的情況下,大幅提升了模型推理能力。在數學、程式碼、自然語言推理等任務上,性能較高,能力較強。"
784
+ },
791
785
  "deepseek-r1-70b-fast-online": {
792
786
  "description": "DeepSeek R1 70B 快速版,支持即時聯網搜索,在保持模型性能的同時提供更快的響應速度。"
793
787
  },
@@ -1067,6 +1061,9 @@
1067
1061
  "gemini-2.5-pro-preview-05-06": {
1068
1062
  "description": "Gemini 2.5 Pro Preview 是 Google 最先進的思維模型,能夠對程式碼、數學和 STEM 領域的複雜問題進行推理,以及使用長上下文分析大型數據集、程式庫和文檔。"
1069
1063
  },
1064
+ "gemini-2.5-pro-preview-06-05": {
1065
+ "description": "Gemini 2.5 Pro Preview 是 Google 最先進的思維模型,能夠對程式碼、數學和STEM領域的複雜問題進行推理,以及使用長上下文分析大型資料集、程式碼庫和文件。"
1066
+ },
1070
1067
  "gemma-7b-it": {
1071
1068
  "description": "Gemma 7B 適合中小規模任務處理,兼具成本效益。"
1072
1069
  },
@@ -1355,6 +1352,9 @@
1355
1352
  "hunyuan-t1-20250403": {
1356
1353
  "description": "提升專案級別程式碼生成能力;提升文本生成寫作品質;提升文本理解 topic 的多輪、tob 指令遵循和字詞理解能力;優化繁簡混雜和中英混雜輸出問題。"
1357
1354
  },
1355
+ "hunyuan-t1-20250529": {
1356
+ "description": "優化文本創作、作文寫作,優化程式碼前端、數學、邏輯推理等理科能力,提升指令遵循能力。"
1357
+ },
1358
1358
  "hunyuan-t1-latest": {
1359
1359
  "description": "業界首個超大規模 Hybrid-Transformer-Mamba 推理模型,擴展推理能力,超強解碼速度,進一步對齊人類偏好。"
1360
1360
  },
@@ -1379,6 +1379,9 @@
1379
1379
  "hunyuan-turbos-20250416": {
1380
1380
  "description": "預訓練底座升級,增強底座的指令理解及遵循能力;對齊階段增強數學、程式碼、邏輯、科學等理科能力;提升文創寫作品質、文本理解、翻譯準確率、知識問答等文科能力;增強各領域 Agent 能力,重點加強多輪對話理解能力等。"
1381
1381
  },
1382
+ "hunyuan-turbos-20250604": {
1383
+ "description": "預訓練底座升級,寫作、閱讀理解能力提升,較大幅度提升程式碼和理科能力,複雜指令遵循等持續提升。"
1384
+ },
1382
1385
  "hunyuan-turbos-latest": {
1383
1386
  "description": "hunyuan-TurboS 混元旗艦大模型最新版本,具備更強的思考能力,更優的體驗效果。"
1384
1387
  },
@@ -1391,9 +1394,6 @@
1391
1394
  "hunyuan-vision": {
1392
1395
  "description": "混元最新多模態模型,支持圖片 + 文本輸入生成文本內容。"
1393
1396
  },
1394
- "internlm/internlm2_5-20b-chat": {
1395
- "description": "創新的開源模型InternLM2.5,通過大規模的參數提高了對話智能。"
1396
- },
1397
1397
  "internlm/internlm2_5-7b-chat": {
1398
1398
  "description": "InternLM2.5 提供多場景下的智能對話解決方案。"
1399
1399
  },
@@ -1910,6 +1910,9 @@
1910
1910
  "qvq-max": {
1911
1911
  "description": "通義千問 QVQ 視覺推理模型,支援視覺輸入及思維鏈輸出,在數學、程式設計、視覺分析、創作以及通用任務上都展現了更強的能力。"
1912
1912
  },
1913
+ "qvq-plus": {
1914
+ "description": "視覺推理模型。支援視覺輸入及思維鏈輸出,繼qvq-max模型後推出的plus版本,相較於qvq-max模型,qvq-plus系列模型推理速度更快,效果和成本更均衡。"
1915
+ },
1913
1916
  "qwen-coder-plus": {
1914
1917
  "description": "通義千問程式碼模型。"
1915
1918
  },