@lobehub/chat 1.92.3 → 1.93.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/README.md +8 -8
  3. package/README.zh-CN.md +8 -8
  4. package/changelog/v1.json +18 -0
  5. package/docs/development/database-schema.dbml +51 -1
  6. package/locales/ar/modelProvider.json +4 -0
  7. package/locales/ar/models.json +64 -34
  8. package/locales/ar/providers.json +3 -0
  9. package/locales/bg-BG/modelProvider.json +4 -0
  10. package/locales/bg-BG/models.json +64 -34
  11. package/locales/bg-BG/providers.json +3 -0
  12. package/locales/de-DE/modelProvider.json +4 -0
  13. package/locales/de-DE/models.json +64 -34
  14. package/locales/de-DE/providers.json +3 -0
  15. package/locales/en-US/modelProvider.json +4 -0
  16. package/locales/en-US/models.json +64 -34
  17. package/locales/en-US/providers.json +3 -0
  18. package/locales/es-ES/modelProvider.json +4 -0
  19. package/locales/es-ES/models.json +64 -34
  20. package/locales/es-ES/providers.json +3 -0
  21. package/locales/fa-IR/modelProvider.json +4 -0
  22. package/locales/fa-IR/models.json +64 -34
  23. package/locales/fa-IR/providers.json +3 -0
  24. package/locales/fr-FR/modelProvider.json +4 -0
  25. package/locales/fr-FR/models.json +64 -34
  26. package/locales/fr-FR/providers.json +3 -0
  27. package/locales/it-IT/modelProvider.json +4 -0
  28. package/locales/it-IT/models.json +64 -34
  29. package/locales/it-IT/providers.json +3 -0
  30. package/locales/ja-JP/modelProvider.json +4 -0
  31. package/locales/ja-JP/models.json +64 -34
  32. package/locales/ja-JP/providers.json +3 -0
  33. package/locales/ko-KR/modelProvider.json +4 -0
  34. package/locales/ko-KR/models.json +64 -34
  35. package/locales/ko-KR/providers.json +3 -0
  36. package/locales/nl-NL/modelProvider.json +4 -0
  37. package/locales/nl-NL/models.json +64 -34
  38. package/locales/nl-NL/providers.json +3 -0
  39. package/locales/pl-PL/modelProvider.json +4 -0
  40. package/locales/pl-PL/models.json +64 -34
  41. package/locales/pl-PL/providers.json +3 -0
  42. package/locales/pt-BR/modelProvider.json +4 -0
  43. package/locales/pt-BR/models.json +64 -34
  44. package/locales/pt-BR/providers.json +3 -0
  45. package/locales/ru-RU/modelProvider.json +4 -0
  46. package/locales/ru-RU/models.json +63 -33
  47. package/locales/ru-RU/providers.json +3 -0
  48. package/locales/tr-TR/modelProvider.json +4 -0
  49. package/locales/tr-TR/models.json +64 -34
  50. package/locales/tr-TR/providers.json +3 -0
  51. package/locales/vi-VN/modelProvider.json +4 -0
  52. package/locales/vi-VN/models.json +64 -34
  53. package/locales/vi-VN/providers.json +3 -0
  54. package/locales/zh-CN/modelProvider.json +4 -0
  55. package/locales/zh-CN/models.json +59 -29
  56. package/locales/zh-CN/providers.json +3 -0
  57. package/locales/zh-TW/modelProvider.json +4 -0
  58. package/locales/zh-TW/models.json +64 -34
  59. package/locales/zh-TW/providers.json +3 -0
  60. package/package.json +1 -1
  61. package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +16 -0
  62. package/src/config/modelProviders/openai.ts +3 -1
  63. package/src/database/client/migrations.json +25 -0
  64. package/src/database/migrations/0025_add_provider_config.sql +1 -0
  65. package/src/database/migrations/meta/0025_snapshot.json +5703 -0
  66. package/src/database/migrations/meta/_journal.json +7 -0
  67. package/src/database/models/__tests__/aiProvider.test.ts +2 -0
  68. package/src/database/models/aiProvider.ts +5 -2
  69. package/src/database/repositories/tableViewer/index.test.ts +1 -1
  70. package/src/database/schemas/_helpers.ts +5 -1
  71. package/src/database/schemas/aiInfra.ts +5 -1
  72. package/src/libs/model-runtime/openai/index.ts +21 -2
  73. package/src/libs/model-runtime/types/chat.ts +6 -9
  74. package/src/libs/model-runtime/utils/openaiCompatibleFactory/index.ts +79 -5
  75. package/src/libs/model-runtime/utils/openaiHelpers.test.ts +145 -1
  76. package/src/libs/model-runtime/utils/openaiHelpers.ts +59 -0
  77. package/src/libs/model-runtime/utils/streams/openai/__snapshots__/responsesStream.test.ts.snap +193 -0
  78. package/src/libs/model-runtime/utils/streams/openai/index.ts +2 -0
  79. package/src/libs/model-runtime/utils/streams/{openai.test.ts → openai/openai.test.ts} +1 -1
  80. package/src/libs/model-runtime/utils/streams/{openai.ts → openai/openai.ts} +5 -5
  81. package/src/libs/model-runtime/utils/streams/openai/responsesStream.test.ts +826 -0
  82. package/src/libs/model-runtime/utils/streams/openai/responsesStream.ts +166 -0
  83. package/src/libs/model-runtime/utils/streams/protocol.ts +4 -1
  84. package/src/libs/model-runtime/utils/streams/utils.ts +20 -0
  85. package/src/libs/model-runtime/utils/usageConverter.ts +59 -0
  86. package/src/locales/default/modelProvider.ts +4 -0
  87. package/src/services/__tests__/chat.test.ts +25 -0
  88. package/src/services/chat.ts +8 -2
  89. package/src/store/aiInfra/slices/aiProvider/selectors.ts +11 -0
  90. package/src/types/aiProvider.ts +13 -1
@@ -230,6 +230,9 @@
230
230
  "Pro/deepseek-ai/DeepSeek-R1": {
231
231
  "description": "DeepSeek-R1 е модел за инференция, управляван от обучение с подсилване (RL), който решава проблемите с повторяемостта и четимостта в моделите. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на инференцията. Той показва сравними резултати с OpenAI-o1 в математически, кодови и инференционни задачи и подобрява общата ефективност чрез внимателно проектирани методи на обучение."
232
232
  },
233
+ "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
+ "description": "DeepSeek-R1 е модел за разсъждение, задвижван от усилено обучение (RL), който решава проблеми с повторяемост и четимост в модела. Преди RL, DeepSeek-R1 въвежда студено стартиране на данни за допълнително оптимизиране на разсъжденията. Моделът постига резултати, сравними с OpenAI-o1 в задачи по математика, кодиране и разсъждение, и подобрява общата ефективност чрез внимателно проектирани методи за обучение."
235
+ },
233
236
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
234
237
  "description": "DeepSeek-R1-Distill-Qwen-1.5B е модел, получен чрез дистилация на знания от Qwen2.5-Math-1.5B. Моделът е фино настроен с 800 000 избрани проби, генерирани от DeepSeek-R1, и демонстрира добро представяне в множество тестове. Като лек модел, той постига 83,9% точност в MATH-500, 28,9% успеваемост в AIME 2024 и рейтинг от 954 в CodeForces, показвайки способности за разсъждение, които надхвърлят неговия мащаб на параметри."
235
238
  },
@@ -422,8 +425,8 @@
422
425
  "THUDM/glm-4-9b-chat": {
423
426
  "description": "GLM-4 9B е отворен код версия, предоставяща оптимизирано изживяване в разговорните приложения."
424
427
  },
425
- "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
426
- "description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
428
+ "Tongyi-Zhiwen/QwenLong-L1-32B": {
429
+ "description": "QwenLong-L1-32B е първият голям модел за разсъждение с дълъг контекст, обучен чрез усилено обучение (LRM), специално оптимизиран за задачи с дълги текстове. Моделът използва прогресивна рамка за разширяване на контекста чрез усилено обучение, осигурявайки стабилен преход от кратък към дълъг контекст. В седем базови теста за въпроси и отговори с дълъг контекст QwenLong-L1-32B превъзхожда водещи модели като OpenAI-o3-mini и Qwen3-235B-A22B, с производителност, сравнима с Claude-3.7-Sonnet-Thinking. Моделът е особено силен в математическо, логическо и многократно разсъждение."
427
430
  },
428
431
  "Yi-34B-Chat": {
429
432
  "description": "Yi-1.5-34B значително подобрява математическата логика и способностите в кодирането, като запазва отличните общи езикови способности на оригиналната серия модели, чрез инкрементално обучение с 500 милиарда висококачествени токени."
@@ -734,6 +737,12 @@
734
737
  "deepseek-ai/DeepSeek-R1": {
735
738
  "description": "DeepSeek-R1 е модел за извеждане, управляван от подсилено обучение (RL), който решава проблемите с повторяемостта и четимостта в модела. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на извеждане. Той показва сравнима производителност с OpenAI-o1 в математически, кодови и извеждащи задачи и подобрява общите резултати чрез внимателно проектирани методи на обучение."
736
739
  },
740
+ "deepseek-ai/DeepSeek-R1-0528": {
741
+ "description": "DeepSeek R1 значително подобрява дълбочината на разсъждения и изводи чрез използване на увеличени изчислителни ресурси и въвеждане на алгоритмични оптимизации по време на последващото обучение. Моделът постига отлични резултати в различни базови оценки, включително математика, програмиране и обща логика. Общата му производителност вече е близка до водещи модели като O3 и Gemini 2.5 Pro."
742
+ },
743
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
744
+ "description": "DeepSeek-R1-0528-Qwen3-8B е модел, получен чрез дистилация на мисловни вериги от DeepSeek-R1-0528 към Qwen3 8B Base. Този модел постига най-съвременна (SOTA) производителност сред отворените модели, превъзхождайки Qwen3 8B с 10% в теста AIME 2024 и достига нивото на Qwen3-235B-thinking. Моделът показва отлични резултати в математическо разсъждение, програмиране и обща логика, с архитектура, идентична на Qwen3-8B, но споделяща конфигурацията на токенизатора на DeepSeek-R1-0528."
745
+ },
737
746
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
738
747
  "description": "DeepSeek-R1 дестилиран модел, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
739
748
  },
@@ -836,9 +845,6 @@
836
845
  "deepseek-v3-0324": {
837
846
  "description": "DeepSeek-V3-0324 е MoE модел с 671B параметри, който се отличава с предимства в програмирането и техническите способности, разбирането на контекста и обработката на дълги текстове."
838
847
  },
839
- "deepseek/deepseek-chat": {
840
- "description": "Новооткритият отворен модел, който съчетава общи и кодови способности, не само запазва общата диалогова способност на оригиналния Chat модел и мощната способност за обработка на код на Coder модела, но също така по-добре се съобразява с човешките предпочитания. Освен това, DeepSeek-V2.5 постигна значителни подобрения в задачи по писане, следване на инструкции и много други."
841
- },
842
848
  "deepseek/deepseek-chat-v3-0324": {
843
849
  "description": "DeepSeek V3 е експертен смесен модел с 685B параметри, последната итерация на флагманската серия чат модели на екипа DeepSeek.\n\nТой наследява модела [DeepSeek V3](/deepseek/deepseek-chat-v3) и показва отлични резултати в различни задачи."
844
850
  },
@@ -848,6 +854,12 @@
848
854
  "deepseek/deepseek-r1": {
849
855
  "description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
850
856
  },
857
+ "deepseek/deepseek-r1-0528": {
858
+ "description": "DeepSeek-R1 значително подобрява способността за разсъждение на модела дори с много малко анотирани данни. Преди да изведе окончателния отговор, моделът първо генерира мисловна верига, за да повиши точността на крайния отговор."
859
+ },
860
+ "deepseek/deepseek-r1-0528:free": {
861
+ "description": "DeepSeek-R1 значително подобрява способността за разсъждение на модела дори с много малко анотирани данни. Преди да изведе окончателния отговор, моделът първо генерира мисловна верига, за да повиши точността на крайния отговор."
862
+ },
851
863
  "deepseek/deepseek-r1-distill-llama-70b": {
852
864
  "description": "DeepSeek R1 Distill Llama 70B е голям езиков модел, базиран на Llama3.3 70B, който използва фина настройка на изхода на DeepSeek R1, за да постигне конкурентна производителност, сравнима с големите водещи модели."
853
865
  },
@@ -1262,6 +1274,9 @@
1262
1274
  "gpt-4o-mini-realtime-preview": {
1263
1275
  "description": "Реален вариант на GPT-4o-mini, поддържащ вход и изход на аудио и текст в реално време."
1264
1276
  },
1277
+ "gpt-4o-mini-search-preview": {
1278
+ "description": "GPT-4o mini предварителна версия за търсене е модел, специално обучен за разбиране и изпълнение на заявки за уеб търсене, използващ Chat Completions API. Освен таксите за токени, заявките за уеб търсене се таксуват и на всяко извикване на инструмента."
1279
+ },
1265
1280
  "gpt-4o-mini-tts": {
1266
1281
  "description": "GPT-4o mini TTS е модел за преобразуване на текст в реч, базиран на GPT-4o mini, предлагащ висококачествено генериране на реч при по-ниска цена."
1267
1282
  },
@@ -1274,6 +1289,9 @@
1274
1289
  "gpt-4o-realtime-preview-2024-12-17": {
1275
1290
  "description": "Реален вариант на GPT-4o, поддържащ вход и изход на аудио и текст в реално време."
1276
1291
  },
1292
+ "gpt-4o-search-preview": {
1293
+ "description": "GPT-4o предварителна версия за търсене е модел, специално обучен за разбиране и изпълнение на заявки за уеб търсене, използващ Chat Completions API. Освен таксите за токени, заявките за уеб търсене се таксуват и на всяко извикване на инструмента."
1294
+ },
1277
1295
  "grok-2-1212": {
1278
1296
  "description": "Този модел е подобрен по отношение на точност, спазване на инструкции и многоезични способности."
1279
1297
  },
@@ -1307,6 +1325,9 @@
1307
1325
  "hunyuan-large-longcontext": {
1308
1326
  "description": "Специализира в обработката на дълги текстови задачи, като резюмета на документи и отговори на въпроси, и също така притежава способността да обработва общи текстови генериращи задачи. Показва отлични резултати в анализа и генерирането на дълги текстове, ефективно справяйки се с комплексни и подробни изисквания за обработка на дълги текстове."
1309
1327
  },
1328
+ "hunyuan-large-vision": {
1329
+ "description": "Този модел е подходящ за сцени с разбиране на изображения и текст, базиран на Hunyuan Large, голям визуално-езиков модел, който поддържа вход с множество изображения с произволна резолюция и текст, генерира текстово съдържание, фокусиран върху задачи, свързани с разбиране на изображения и текст, с значително подобрени мултиезикови способности за разбиране на изображения и текст."
1330
+ },
1310
1331
  "hunyuan-lite": {
1311
1332
  "description": "Актуализиран до MOE структура, контекстният прозорец е 256k, водещ в множество оценъчни набори в NLP, код, математика и индустрия, пред много от отворените модели."
1312
1333
  },
@@ -1331,18 +1352,15 @@
1331
1352
  "hunyuan-t1-20250321": {
1332
1353
  "description": "Цялостно изграждане на моделни способности в хуманитарни и точни науки, с висока способност за улавяне на дълги текстови информации. Поддържа разсъждения и отговори на научни въпроси от всякаква трудност, включително математика, логика, наука и код."
1333
1354
  },
1355
+ "hunyuan-t1-20250403": {
1356
+ "description": "Подобряване на възможностите за генериране на код на проектно ниво; повишаване качеството на текстовото писане; подобряване на разбирането на теми, многократното следване на инструкции и разбирането на думи и изрази; оптимизиране на проблемите с изход, смесващ опростен и традиционен китайски, както и китайски и английски."
1357
+ },
1334
1358
  "hunyuan-t1-latest": {
1335
1359
  "description": "Първият в индустрията свръхголям хибриден трансформаторен модел за инференция, който разширява инференционните способности, предлага изключителна скорост на декодиране и допълнително съгласува човешките предпочитания."
1336
1360
  },
1337
1361
  "hunyuan-t1-vision": {
1338
1362
  "description": "Модел за дълбоко мултимодално разбиране Hunyuan, поддържащ естествени мултимодални вериги на мислене, експертен в различни сценарии за разсъждение върху изображения, с цялостно подобрение спрямо бързите мисловни модели при научни задачи."
1339
1363
  },
1340
- "hunyuan-translation": {
1341
- "description": "Поддържа автоматичен превод между 15 езика, включително китайски, английски, японски, френски, португалски, испански, турски, руски, арабски, корейски, италиански, немски, виетнамски, малайски и индонезийски, базиран на автоматизирана оценка COMET, с цялостна преводна способност, която е по-добра от моделите на пазара с подобен мащаб."
1342
- },
1343
- "hunyuan-translation-lite": {
1344
- "description": "Моделът за превод HunYuan поддържа естествено езиково диалогово превеждане; поддържа автоматичен превод между 15 езика, включително китайски, английски, японски, френски, португалски, испански, турски, руски, арабски, корейски, италиански, немски, виетнамски, малайски и индонезийски."
1345
- },
1346
1364
  "hunyuan-turbo": {
1347
1365
  "description": "Предварителна версия на новото поколение голям езиков модел на HunYuan, използваща нова структура на смесен експертен модел (MoE), с по-бърза скорост на извеждане и по-силни резултати в сравнение с hunyuan-pro."
1348
1366
  },
@@ -1355,8 +1373,11 @@
1355
1373
  "hunyuan-turbo-vision": {
1356
1374
  "description": "Новото поколение визуално езиково флагманско голямо модел на Hunyuan, използващо нова структура на смесен експертен модел (MoE), с цялостно подобрение на способностите за основно разпознаване, създаване на съдържание, отговори на въпроси и анализ и разсъждение в сравнение с предишното поколение модели."
1357
1375
  },
1358
- "hunyuan-turbos-20250226": {
1359
- "description": "hunyuan-TurboS pv2.1.2 фиксирана версия, предтренировъчна база с увеличен брой токени; подобрени способности за разсъждение в математика/логика/код и др.; подобрено изживяване на китайски и английски, включително текстово творчество, разбиране на текст, въпроси и отговори, разговори и др."
1376
+ "hunyuan-turbos-20250313": {
1377
+ "description": "Уеднаквяване на стила на стъпките за решаване на математически задачи, засилване на многократните въпроси и отговори по математика. Оптимизация на стила на отговорите при текстово творчество, премахване на изкуствения интелектуален оттенък и добавяне на литературна изразителност."
1378
+ },
1379
+ "hunyuan-turbos-20250416": {
1380
+ "description": "Актуализация на предварително обучената основа, засилване на разбирането и следването на инструкции; подобряване на научните способности в математика, кодиране, логика и наука по време на фазата на съгласуване; повишаване качеството на творческото писане, разбирането на текстове, точността на преводите и знанията в хуманитарните науки; засилване на възможностите на агенти в различни области, с особен акцент върху разбирането на многократни диалози."
1360
1381
  },
1361
1382
  "hunyuan-turbos-latest": {
1362
1383
  "description": "hunyuan-TurboS е последната версия на флагманския модел Hunyuan, с по-силни способности за разсъждение и по-добро потребителско изживяване."
@@ -1364,8 +1385,8 @@
1364
1385
  "hunyuan-turbos-longtext-128k-20250325": {
1365
1386
  "description": "Специализирана в обработката на дълги текстови задачи като резюмета на документи и въпроси и отговори, също така притежава способността да се справя с общи задачи по генериране на текст. Показва отлични резултати в анализа и генерирането на дълги текстове, ефективно справяйки се с комплексни и детайлни изисквания за обработка на дълги текстове."
1366
1387
  },
1367
- "hunyuan-turbos-vision": {
1368
- "description": "Този модел е подходящ за сцени на разбиране на текст и изображения, базиран на новото поколение визуален езиков модел Turbos, фокусирайки се върху задачи, свързани с разбиране на текст и изображения, включително разпознаване на обекти на базата на изображения, въпроси и отговори, създаване на текст и решаване на проблеми чрез снимки, с цялостно подобрение в сравнение с предишното поколение."
1388
+ "hunyuan-turbos-role-plus": {
1389
+ "description": "Най-новият модел за ролеви игри на Hunyuan, официално фино настроен и обучен от Hunyuan, базиран на Hunyuan модел с допълнително обучение върху набор от данни за ролеви игри, осигуряващ по-добри основни резултати в ролеви игрови сцени."
1369
1390
  },
1370
1391
  "hunyuan-vision": {
1371
1392
  "description": "Най-новият мултимодален модел на HunYuan, поддържащ генериране на текстово съдържание от изображения и текстови входове."
@@ -1886,11 +1907,14 @@
1886
1907
  "qvq-72b-preview": {
1887
1908
  "description": "QVQ моделът е експериментален изследователски модел, разработен от екипа на Qwen, фокусиран върху повишаване на визуалните способности за разсъждение, особено в областта на математическото разсъждение."
1888
1909
  },
1889
- "qvq-max-latest": {
1890
- "description": "Моделът за визуално разсъждение QVQ на Tongyi Qianwen поддържа визуален вход и изход на вериги от мисли, демонстрирайки по-силни способности в математика, програмиране, визуален анализ, творчество и общи задачи."
1910
+ "qvq-max": {
1911
+ "description": "Tongyi Qianwen QVQ визуален разсъждаващ модел, поддържащ визуален вход и изход на мисловни вериги, показващ по-силни способности в математика, програмиране, визуален анализ, творчество и общи задачи."
1912
+ },
1913
+ "qwen-coder-plus": {
1914
+ "description": "Tongyi Qianwen модел за кодиране."
1891
1915
  },
1892
- "qwen-coder-plus-latest": {
1893
- "description": "Модел за кодиране Qwen с общо предназначение."
1916
+ "qwen-coder-turbo": {
1917
+ "description": "Tongyi Qianwen модел за кодиране."
1894
1918
  },
1895
1919
  "qwen-coder-turbo-latest": {
1896
1920
  "description": "Моделът на кода Qwen."
@@ -1898,41 +1922,44 @@
1898
1922
  "qwen-long": {
1899
1923
  "description": "Qwen е мащабен езиков модел, който поддържа дълги текстови контексти и диалогови функции, базирани на дълги документи и множество документи."
1900
1924
  },
1925
+ "qwen-math-plus": {
1926
+ "description": "Tongyi Qianwen математически модел, специално предназначен за решаване на математически задачи."
1927
+ },
1901
1928
  "qwen-math-plus-latest": {
1902
1929
  "description": "Математическият модел Qwen е специално проектиран за решаване на математически задачи."
1903
1930
  },
1931
+ "qwen-math-turbo": {
1932
+ "description": "Tongyi Qianwen математически модел, специално предназначен за решаване на математически задачи."
1933
+ },
1904
1934
  "qwen-math-turbo-latest": {
1905
1935
  "description": "Математическият модел Qwen е специално проектиран за решаване на математически задачи."
1906
1936
  },
1907
1937
  "qwen-max": {
1908
1938
  "description": "通义千问(Qwen) е моделиран на база багатограмния езиков модел с хипотетично ниво на милярд, поддържащ различни езици, включително китайски и английски, и в момента служи като API на продукта версия 2.5 на 通义千问."
1909
1939
  },
1910
- "qwen-max-latest": {
1911
- "description": "Qwen Max е езиков модел с мащаб от стотици милиарди параметри, който поддържа вход на различни езици, включително китайски и английски. В момента е основният API модел зад версията на продукта Qwen 2.5."
1912
- },
1913
- "qwen-omni-turbo-latest": {
1914
- "description": "Моделите от серията Qwen-Omni поддържат входни данни от множество модалности, включително видео, аудио, изображения и текст, и генерират аудио и текст."
1940
+ "qwen-omni-turbo": {
1941
+ "description": "Серията модели Qwen-Omni поддържа входни данни от различни модалности, включително видео, аудио, изображения и текст, и изходи аудио и текст."
1915
1942
  },
1916
1943
  "qwen-plus": {
1917
1944
  "description": "通义千问(Qwen) е подобрена версия на мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
1918
1945
  },
1919
- "qwen-plus-latest": {
1920
- "description": "Разширената версия на Qwen Turbo е мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
1921
- },
1922
1946
  "qwen-turbo": {
1923
1947
  "description": "通义千问(Qwen) е мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
1924
1948
  },
1925
- "qwen-turbo-latest": {
1926
- "description": "Моделът на езика Qwen Turbo е мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
1927
- },
1928
1949
  "qwen-vl-chat-v1": {
1929
1950
  "description": "Qwen VL поддържа гъвкави интерактивни методи, включително множество изображения, многократни въпроси и отговори, творчество и др."
1930
1951
  },
1952
+ "qwen-vl-max": {
1953
+ "description": "Супер голям визуално-езиков модел Tongyi Qianwen. В сравнение с подсилената версия, допълнително подобрява визуалното разсъждение и следване на инструкции, предоставяйки по-високо ниво на визуално възприятие и познание."
1954
+ },
1931
1955
  "qwen-vl-max-latest": {
1932
1956
  "description": "Qwen-VL Max е модел за визуален език с изключително голям мащаб. В сравнение с подобрената версия, той отново подобрява способността за визуално разсъждение и следване на инструкции, предоставяйки по-високо ниво на визуално възприятие и познание."
1933
1957
  },
1934
- "qwen-vl-ocr-latest": {
1935
- "description": "Qwen OCR е специализиран модел за извличане на текст, фокусиран върху способността за извличане на текст от изображения на документи, таблици, тестови въпроси, ръкописен текст и др. Той може да разпознава множество езици, включително: китайски, английски, френски, японски, корейски, немски, руски, италиански, виетнамски и арабски."
1958
+ "qwen-vl-ocr": {
1959
+ "description": "Tongyi Qianwen OCR е специализиран модел за извличане на текст, фокусиран върху документи, таблици, тестови задачи, ръкописен текст и други видове изображения. Моделът може да разпознава множество езици, включително китайски, английски, френски, японски, корейски, немски, руски, италиански, виетнамски и арабски."
1960
+ },
1961
+ "qwen-vl-plus": {
1962
+ "description": "Подсилена версия на големия визуално-езиков модел Tongyi Qianwen. Значително подобрена способност за разпознаване на детайли и текст, поддържа изображения с резолюция над милион пиксела и произволни пропорции."
1936
1963
  },
1937
1964
  "qwen-vl-plus-latest": {
1938
1965
  "description": "Моделят за визуален език Qwen-VL Plus е подобрена версия с голям мащаб. Значително подобрява способността за разпознаване на детайли и текст, поддържа резолюция над милион пиксела и изображения с произволно съотношение на страните."
@@ -2021,6 +2048,9 @@
2021
2048
  "qwen2.5-coder-1.5b-instruct": {
2022
2049
  "description": "通义千问(Qwen) е отворен код модел за програмиране."
2023
2050
  },
2051
+ "qwen2.5-coder-14b-instruct": {
2052
+ "description": "Отворена версия на Tongyi Qianwen модел за кодиране."
2053
+ },
2024
2054
  "qwen2.5-coder-32b-instruct": {
2025
2055
  "description": "Отворена версия на модела за кодиране Qwen с общо предназначение."
2026
2056
  },
@@ -2111,8 +2141,8 @@
2111
2141
  "qwq-32b-preview": {
2112
2142
  "description": "QwQ моделът е експериментален изследователски модел, разработен от екипа на Qwen, който се фокусира върху подобряване на AI разсъдъчните способности."
2113
2143
  },
2114
- "qwq-plus-latest": {
2115
- "description": "QwQ моделът за изводи, обучен на базата на модела Qwen2.5, значително подобрява способностите си за изводи чрез усилено обучение. Основните показатели на модела, като математически код и други ключови индикатори (AIME 24/25, LiveCodeBench), както и някои общи индикатори (IFEval, LiveBench и др.), достигат нивото на DeepSeek-R1 в пълна версия."
2144
+ "qwq-plus": {
2145
+ "description": "QwQ е модел за разсъждение, обучен на базата на Qwen2.5, който значително подобрява способностите за разсъждение чрез усилено обучение. Основните показатели на модела в математика и кодиране (AIME 24/25, LiveCodeBench), както и някои общи показатели (IFEval, LiveBench и др.) достигат нивото на пълната версия на DeepSeek-R1."
2116
2146
  },
2117
2147
  "qwq_32b": {
2118
2148
  "description": "Модел за разсъждение със среден размер от серията Qwen. В сравнение с традиционните модели за настройка на инструкции, QwQ, който притежава способности за разсъждение и разсъждение, може значително да подобри производителността в задачи с по-висока сложност."
@@ -71,6 +71,9 @@
71
71
  "mistral": {
72
72
  "description": "Mistral предлага напреднали универсални, професионални и изследователски модели, широко използвани в сложни разсъждения, многоезични задачи, генериране на код и др. Чрез интерфейси за извикване на функции, потребителите могат да интегрират персонализирани функции за специфични приложения."
73
73
  },
74
+ "modelscope": {
75
+ "description": "ModelScope е платформа за модели като услуга, пусната от Alibaba Cloud, която предлага богато разнообразие от AI модели и услуги за извод."
76
+ },
74
77
  "moonshot": {
75
78
  "description": "Moonshot е отворена платформа, представена от Beijing Dark Side Technology Co., Ltd., предлагаща множество модели за обработка на естествен език, с широко приложение, включително, но не само, създаване на съдържание, академични изследвания, интелигентни препоръки, медицинска диагностика и др., поддържаща обработка на дълги текстове и сложни генериращи задачи."
76
79
  },
@@ -208,6 +208,10 @@
208
208
  "title": "Client-Anforderungsmodus verwenden"
209
209
  },
210
210
  "helpDoc": "Konfigurationsanleitung",
211
+ "responsesApi": {
212
+ "desc": "Verwendet das neue Anforderungsformat von OpenAI, um fortgeschrittene Funktionen wie Chain-of-Thought freizuschalten",
213
+ "title": "Verwendung des Responses API-Standards"
214
+ },
211
215
  "waitingForMore": "Weitere Modelle werden <1>geplant</1>, bitte warten Sie"
212
216
  },
213
217
  "createNew": {
@@ -230,6 +230,9 @@
230
230
  "Pro/deepseek-ai/DeepSeek-R1": {
231
231
  "description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das Probleme mit Wiederholungen und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert die Gesamtleistung durch sorgfältig gestaltete Trainingsmethoden."
232
232
  },
233
+ "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
+ "description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das Probleme der Wiederholungen und Lesbarkeit im Modell löst. Vor RL wurde ein Cold-Start-Datensatz eingeführt, um die Inferenzleistung weiter zu optimieren. Es zeigt vergleichbare Leistungen zu OpenAI-o1 in Mathematik, Programmierung und Inferenzaufgaben und verbessert die Gesamtleistung durch sorgfältig gestaltete Trainingsmethoden."
235
+ },
233
236
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
234
237
  "description": "DeepSeek-R1-Distill-Qwen-1.5B ist ein Modell, das durch Wissensdistillierung auf Basis von Qwen2.5-Math-1.5B erstellt wurde. Dieses Modell wurde mit 800.000 sorgfältig ausgewählten Beispielen, die von DeepSeek-R1 generiert wurden, feinjustiert und zeigt in mehreren Benchmarks gute Leistungen. Als leichtgewichtiges Modell erreicht es eine Genauigkeit von 83,9 % auf MATH-500, einen Durchgangsrate von 28,9 % auf AIME 2024 und eine Bewertung von 954 auf CodeForces, was seine inferenziellen Fähigkeiten über seine Parametergröße hinaus zeigt."
235
238
  },
@@ -422,8 +425,8 @@
422
425
  "THUDM/glm-4-9b-chat": {
423
426
  "description": "GLM-4 9B ist die Open-Source-Version, die ein optimiertes Dialogerlebnis für Konversationsanwendungen bietet."
424
427
  },
425
- "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
426
- "description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
428
+ "Tongyi-Zhiwen/QwenLong-L1-32B": {
429
+ "description": "QwenLong-L1-32B ist das erste große Langkontext-Inferenzmodell (LRM), das mit verstärkendem Lernen trainiert wurde und speziell für Langtext-Inferenzaufgaben optimiert ist. Das Modell erreicht durch ein progressives Kontext-Erweiterungs-Framework eine stabile Übertragung von kurzen zu langen Kontexten. In sieben Langkontext-Dokumenten-Q&A-Benchmarks übertrifft QwenLong-L1-32B Flaggschiffmodelle wie OpenAI-o3-mini und Qwen3-235B-A22B und erreicht eine Leistung vergleichbar mit Claude-3.7-Sonnet-Thinking. Es ist besonders stark in komplexen Aufgaben wie mathematischer, logischer und mehrstufiger Inferenz."
427
430
  },
428
431
  "Yi-34B-Chat": {
429
432
  "description": "Yi-1.5-34B hat die hervorragenden allgemeinen Sprachfähigkeiten des ursprünglichen Modells beibehalten und durch inkrementelles Training von 500 Milliarden hochwertigen Tokens die mathematische Logik und Codierungsfähigkeiten erheblich verbessert."
@@ -734,6 +737,12 @@
734
737
  "deepseek-ai/DeepSeek-R1": {
735
738
  "description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das die Probleme der Wiederholbarkeit und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert durch sorgfältig gestaltete Trainingsmethoden die Gesamteffizienz."
736
739
  },
740
+ "deepseek-ai/DeepSeek-R1-0528": {
741
+ "description": "DeepSeek R1 verbessert durch den Einsatz erhöhter Rechenressourcen und die Einführung algorithmischer Optimierungsmechanismen im Nachtraining signifikant die Tiefe seiner Schlussfolgerungs- und Deduktionsfähigkeiten. Das Modell zeigt hervorragende Leistungen in verschiedenen Benchmark-Tests, einschließlich Mathematik, Programmierung und allgemeiner Logik. Die Gesamtleistung nähert sich führenden Modellen wie O3 und Gemini 2.5 Pro an."
742
+ },
743
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
744
+ "description": "DeepSeek-R1-0528-Qwen3-8B ist ein Modell, das durch Destillation der Denkprozesskette vom DeepSeek-R1-0528-Modell auf das Qwen3 8B Base Modell gewonnen wurde. Es erreicht in Open-Source-Modellen den Stand der Technik (SOTA), übertrifft im AIME 2024 Test Qwen3 8B um 10 % und erreicht die Leistungsstufe von Qwen3-235B-thinking. Das Modell zeigt hervorragende Leistungen in Mathematik, Programmierung und allgemeiner Logik in mehreren Benchmarks. Die Architektur entspricht Qwen3-8B, teilt jedoch die Tokenizer-Konfiguration von DeepSeek-R1-0528."
745
+ },
737
746
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
738
747
  "description": "Das DeepSeek-R1-Distill-Modell optimiert die Inferenzleistung durch verstärkendes Lernen und Kaltstartdaten. Das Open-Source-Modell setzt neue Maßstäbe für Multitasking."
739
748
  },
@@ -836,9 +845,6 @@
836
845
  "deepseek-v3-0324": {
837
846
  "description": "DeepSeek-V3-0324 ist ein MoE-Modell mit 671 Milliarden Parametern, das in den Bereichen Programmierung und technische Fähigkeiten, Kontextverständnis und Verarbeitung langer Texte herausragende Vorteile bietet."
838
847
  },
839
- "deepseek/deepseek-chat": {
840
- "description": "Ein neues Open-Source-Modell, das allgemeine und Codefähigkeiten vereint. Es behält nicht nur die allgemeinen Dialogfähigkeiten des ursprünglichen Chat-Modells und die leistungsstarken Codeverarbeitungsfähigkeiten des Coder-Modells bei, sondern stimmt auch besser mit menschlichen Vorlieben überein. Darüber hinaus hat DeepSeek-V2.5 in vielen Bereichen wie Schreibaufgaben und Befehlsbefolgung erhebliche Verbesserungen erzielt."
841
- },
842
848
  "deepseek/deepseek-chat-v3-0324": {
843
849
  "description": "DeepSeek V3 ist ein Experten-Mischmodell mit 685B Parametern und die neueste Iteration der Flaggschiff-Chatmodellreihe des DeepSeek-Teams.\n\nEs erbt das [DeepSeek V3](/deepseek/deepseek-chat-v3) Modell und zeigt hervorragende Leistungen in verschiedenen Aufgaben."
844
850
  },
@@ -848,6 +854,12 @@
848
854
  "deepseek/deepseek-r1": {
849
855
  "description": "DeepSeek-R1 hat die Schlussfolgerungsfähigkeiten des Modells erheblich verbessert, selbst bei nur wenigen gekennzeichneten Daten. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
850
856
  },
857
+ "deepseek/deepseek-r1-0528": {
858
+ "description": "DeepSeek-R1 verbessert die Modellschlussfolgerungsfähigkeit erheblich, selbst bei sehr begrenzten annotierten Daten. Vor der Ausgabe der endgültigen Antwort generiert das Modell eine Denkprozesskette, um die Genauigkeit der Antwort zu erhöhen."
859
+ },
860
+ "deepseek/deepseek-r1-0528:free": {
861
+ "description": "DeepSeek-R1 verbessert die Modellschlussfolgerungsfähigkeit erheblich, selbst bei sehr begrenzten annotierten Daten. Vor der Ausgabe der endgültigen Antwort generiert das Modell eine Denkprozesskette, um die Genauigkeit der Antwort zu erhöhen."
862
+ },
851
863
  "deepseek/deepseek-r1-distill-llama-70b": {
852
864
  "description": "DeepSeek R1 Distill Llama 70B ist ein großes Sprachmodell, das auf Llama3.3 70B basiert und durch Feinabstimmung mit den Ausgaben von DeepSeek R1 eine wettbewerbsfähige Leistung erreicht, die mit großen, fortschrittlichen Modellen vergleichbar ist."
853
865
  },
@@ -1262,6 +1274,9 @@
1262
1274
  "gpt-4o-mini-realtime-preview": {
1263
1275
  "description": "Echtzeitversion von GPT-4o-mini, unterstützt Audio- und Texteingabe sowie -ausgabe in Echtzeit."
1264
1276
  },
1277
+ "gpt-4o-mini-search-preview": {
1278
+ "description": "Die GPT-4o mini Suchvorschau ist ein speziell trainiertes Modell zur Interpretation und Ausführung von Websuchanfragen, das die Chat Completions API verwendet. Neben den Token-Gebühren fallen für Websuchanfragen zusätzliche Gebühren pro Tool-Aufruf an."
1279
+ },
1265
1280
  "gpt-4o-mini-tts": {
1266
1281
  "description": "GPT-4o mini TTS ist ein Text-to-Speech-Modell, das auf GPT-4o mini basiert und hochwertige Sprachgenerierung bei niedrigeren Kosten bietet."
1267
1282
  },
@@ -1274,6 +1289,9 @@
1274
1289
  "gpt-4o-realtime-preview-2024-12-17": {
1275
1290
  "description": "Echtzeitversion von GPT-4o, unterstützt Audio- und Texteingabe sowie -ausgabe in Echtzeit."
1276
1291
  },
1292
+ "gpt-4o-search-preview": {
1293
+ "description": "Die GPT-4o Suchvorschau ist ein speziell trainiertes Modell zur Interpretation und Ausführung von Websuchanfragen, das die Chat Completions API verwendet. Neben den Token-Gebühren fallen für Websuchanfragen zusätzliche Gebühren pro Tool-Aufruf an."
1294
+ },
1277
1295
  "grok-2-1212": {
1278
1296
  "description": "Dieses Modell hat Verbesserungen in Bezug auf Genauigkeit, Befolgung von Anweisungen und Mehrsprachigkeit erfahren."
1279
1297
  },
@@ -1307,6 +1325,9 @@
1307
1325
  "hunyuan-large-longcontext": {
1308
1326
  "description": "Besonders gut geeignet für lange Textaufgaben wie Dokumentenzusammenfassungen und Dokumentenfragen, verfügt es auch über die Fähigkeit, allgemeine Textgenerierungsaufgaben zu bearbeiten. Es zeigt hervorragende Leistungen bei der Analyse und Generierung von langen Texten und kann effektiv mit komplexen und detaillierten Anforderungen an die Verarbeitung von langen Inhalten umgehen."
1309
1327
  },
1328
+ "hunyuan-large-vision": {
1329
+ "description": "Dieses Modell eignet sich für Szenarien mit Bild- und Textverständnis. Es basiert auf dem Hunyuan Large-Modell und ist ein großes visuelles Sprachmodell, das beliebige Auflösungen und mehrere Bilder plus Texteingaben unterstützt und Textinhalte generiert. Der Fokus liegt auf Aufgaben im Bereich Bild-Text-Verständnis mit deutlichen Verbesserungen in mehrsprachigen Bild-Text-Verständnisfähigkeiten."
1330
+ },
1310
1331
  "hunyuan-lite": {
1311
1332
  "description": "Aufgerüstet auf eine MOE-Struktur mit einem Kontextfenster von 256k, führt es in mehreren Bewertungssets in NLP, Code, Mathematik und Industrie zahlreiche Open-Source-Modelle an."
1312
1333
  },
@@ -1331,18 +1352,15 @@
1331
1352
  "hunyuan-t1-20250321": {
1332
1353
  "description": "Umfassende Entwicklung der Modellfähigkeiten in Geistes- und Naturwissenschaften, starke Fähigkeit zur Erfassung langer Textinformationen. Unterstützt die Lösung von wissenschaftlichen Problemen in verschiedenen Schwierigkeitsgraden, einschließlich Mathematik, logischem Denken, Wissenschaft und Code."
1333
1354
  },
1355
+ "hunyuan-t1-20250403": {
1356
+ "description": "Verbesserung der Codegenerierungsfähigkeiten auf Projektebene; Steigerung der Qualität von Textgenerierung und Schreibstil; Verbesserung des Verständnisses von Themen in mehrstufigen Dialogen, Befehlsbefolgung und Wortverständnis; Optimierung von Ausgaben mit gemischten traditionellen und vereinfachten chinesischen Schriftzeichen sowie gemischten chinesisch-englischen Texten."
1357
+ },
1334
1358
  "hunyuan-t1-latest": {
1335
1359
  "description": "Das erste ultra-skalierbare Hybrid-Transformer-Mamba-Inferenzmodell der Branche, das die Inferenzfähigkeiten erweitert, eine extrem hohe Dekodierungsgeschwindigkeit bietet und weiter auf menschliche Präferenzen abgestimmt ist."
1336
1360
  },
1337
1361
  "hunyuan-t1-vision": {
1338
1362
  "description": "Hunyuan ist ein multimodales Verständnis- und Tiefdenkmodell, das native multimodale lange Denkprozesse unterstützt. Es ist spezialisiert auf verschiedene Bildinferenzszenarien und zeigt im Vergleich zu Schnelldenkmodellen umfassende Verbesserungen bei naturwissenschaftlichen Problemen."
1339
1363
  },
1340
- "hunyuan-translation": {
1341
- "description": "Unterstützt die Übersetzung zwischen Chinesisch und Englisch, Japanisch, Französisch, Portugiesisch, Spanisch, Türkisch, Russisch, Arabisch, Koreanisch, Italienisch, Deutsch, Vietnamesisch, Malaiisch und Indonesisch in 15 Sprachen. Basierend auf einem automatisierten Bewertungs-Framework COMET, das auf mehrsprachigen Übersetzungsbewertungsszenarien basiert, übertrifft es insgesamt die Übersetzungsfähigkeiten anderer Modelle ähnlicher Größe auf dem Markt."
1342
- },
1343
- "hunyuan-translation-lite": {
1344
- "description": "Das Hunyuan-Übersetzungsmodell unterstützt die dialogbasierte Übersetzung in natürlicher Sprache; es unterstützt die Übersetzung zwischen Chinesisch und Englisch, Japanisch, Französisch, Portugiesisch, Spanisch, Türkisch, Russisch, Arabisch, Koreanisch, Italienisch, Deutsch, Vietnamesisch, Malaiisch und Indonesisch in 15 Sprachen."
1345
- },
1346
1364
  "hunyuan-turbo": {
1347
1365
  "description": "Die Vorschauversion des neuen großen Sprachmodells von Hunyuan verwendet eine neuartige hybride Expertenmodellstruktur (MoE) und bietet im Vergleich zu Hunyuan-Pro eine schnellere Inferenz und bessere Leistung."
1348
1366
  },
@@ -1355,8 +1373,11 @@
1355
1373
  "hunyuan-turbo-vision": {
1356
1374
  "description": "Das neue Flaggschiff-Modell der visuellen Sprache von Hunyuan, das eine brandneue Struktur des gemischten Expertenmodells (MoE) verwendet, bietet umfassende Verbesserungen in den Fähigkeiten zur grundlegenden Erkennung, Inhaltserstellung, Wissensfragen und Analyse sowie Schlussfolgerungen im Vergleich zum vorherigen Modell."
1357
1375
  },
1358
- "hunyuan-turbos-20250226": {
1359
- "description": "hunyuan-TurboS pv2.1.2 ist eine feste Version mit aktualisierten Trainings-Tokens; verbesserte Denkfähigkeiten in Mathematik/Logik/Code; verbesserte allgemeine Erfahrung in Chinesisch und Englisch, einschließlich Textgenerierung, Textverständnis, Wissensfragen und Smalltalk."
1376
+ "hunyuan-turbos-20250313": {
1377
+ "description": "Vereinheitlichung des Stils bei mathematischen Lösungswegen und Verstärkung der mehrstufigen mathematischen Frage-Antwort-Interaktion. Optimierung des Antwortstils bei Textkreationen, Entfernung von KI-typischen Merkmalen und Steigerung der literarischen Ausdruckskraft."
1378
+ },
1379
+ "hunyuan-turbos-20250416": {
1380
+ "description": "Upgrade der vortrainierten Basis zur Stärkung des Befehlsverständnisses und der Befehlsbefolgung; Verbesserung der naturwissenschaftlichen Fähigkeiten in Mathematik, Programmierung, Logik und Wissenschaft während der Feinabstimmungsphase; Steigerung der Qualität in literarischer Kreativität, Textverständnis, Übersetzungsgenauigkeit und Wissensfragen; Verstärkung der Agentenfähigkeiten in verschiedenen Bereichen mit Schwerpunkt auf dem Verständnis mehrstufiger Dialoge."
1360
1381
  },
1361
1382
  "hunyuan-turbos-latest": {
1362
1383
  "description": "hunyuan-TurboS ist die neueste Version des Hunyuan-Flaggschiffmodells, das über verbesserte Denkfähigkeiten und ein besseres Nutzungserlebnis verfügt."
@@ -1364,8 +1385,8 @@
1364
1385
  "hunyuan-turbos-longtext-128k-20250325": {
1365
1386
  "description": "Experte für die Verarbeitung von langen Textaufgaben wie Dokumentenzusammenfassungen und Dokumentenfragen, mit der Fähigkeit, allgemeine Textgenerierungsaufgaben zu bewältigen. Es zeigt hervorragende Leistungen bei der Analyse und Generierung von langen Texten und kann komplexe und detaillierte Anforderungen an die Verarbeitung langer Inhalte effektiv bewältigen."
1366
1387
  },
1367
- "hunyuan-turbos-vision": {
1368
- "description": "Dieses Modell eignet sich für Szenarien der Bild-Text-Verständnis und ist das neueste Flaggschiffmodell der turbos von Hunyuan, das sich auf Aufgaben des Bild-Text-Verstehens konzentriert, einschließlich bildbasierter Entitätsidentifikation, Wissensfragen, Texterstellung und Problemlösung durch Fotografieren, mit umfassenden Verbesserungen im Vergleich zur vorherigen Generation."
1388
+ "hunyuan-turbos-role-plus": {
1389
+ "description": "Die neueste Version des Hunyuan-Rollenspielsmodells, feinabgestimmt und trainiert von Hunyuan, basiert auf dem Hunyuan-Modell und wurde mit Datensätzen für Rollenspielszenarien weiter trainiert, um in Rollenspielszenarien bessere Grundleistungen zu erzielen."
1369
1390
  },
1370
1391
  "hunyuan-vision": {
1371
1392
  "description": "Das neueste multimodale Modell von Hunyuan unterstützt die Eingabe von Bildern und Text zur Generierung von Textinhalten."
@@ -1886,11 +1907,14 @@
1886
1907
  "qvq-72b-preview": {
1887
1908
  "description": "Das QVQ-Modell ist ein experimentelles Forschungsmodell, das vom Qwen-Team entwickelt wurde und sich auf die Verbesserung der visuellen Schlussfolgerungsfähigkeiten konzentriert, insbesondere im Bereich der mathematischen Schlussfolgerungen."
1888
1909
  },
1889
- "qvq-max-latest": {
1890
- "description": "Das QVQ-Vision-Reasoning-Modell von Tongyi Qianwen unterstützt visuelle Eingaben und Denkkettenausgaben und zeigt in Mathematik, Programmierung, visueller Analyse, kreativen Aufgaben und allgemeinen Aufgaben eine stärkere Leistungsfähigkeit."
1910
+ "qvq-max": {
1911
+ "description": "Tongyi Qianwen QVQ visuelles Schlussfolgerungsmodell, unterstützt visuelle Eingaben und Denkprozessketten-Ausgaben, zeigt stärkere Fähigkeiten in Mathematik, Programmierung, visueller Analyse, Kreativität und allgemeinen Aufgaben."
1912
+ },
1913
+ "qwen-coder-plus": {
1914
+ "description": "Tongyi Qianwen Codierungsmodell."
1891
1915
  },
1892
- "qwen-coder-plus-latest": {
1893
- "description": "Tongyi Qianwen Code-Modell."
1916
+ "qwen-coder-turbo": {
1917
+ "description": "Tongyi Qianwen Codierungsmodell."
1894
1918
  },
1895
1919
  "qwen-coder-turbo-latest": {
1896
1920
  "description": "Das Tongyi Qianwen Code-Modell."
@@ -1898,41 +1922,44 @@
1898
1922
  "qwen-long": {
1899
1923
  "description": "Qwen ist ein groß angelegtes Sprachmodell, das lange Textkontexte unterstützt und Dialogfunktionen für verschiedene Szenarien wie lange Dokumente und mehrere Dokumente bietet."
1900
1924
  },
1925
+ "qwen-math-plus": {
1926
+ "description": "Tongyi Qianwen Mathematikmodell, speziell für mathematische Problemlösungen entwickelt."
1927
+ },
1901
1928
  "qwen-math-plus-latest": {
1902
1929
  "description": "Das Tongyi Qianwen Mathematikmodell ist speziell für die Lösung von mathematischen Problemen konzipiert."
1903
1930
  },
1931
+ "qwen-math-turbo": {
1932
+ "description": "Tongyi Qianwen Mathematikmodell, speziell für mathematische Problemlösungen entwickelt."
1933
+ },
1904
1934
  "qwen-math-turbo-latest": {
1905
1935
  "description": "Das Tongyi Qianwen Mathematikmodell ist speziell für die Lösung von mathematischen Problemen konzipiert."
1906
1936
  },
1907
1937
  "qwen-max": {
1908
1938
  "description": "Qwen Max ist ein großangelegtes Sprachmodell auf Billionenebene, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt und das API-Modell hinter der aktuellen Produktversion von Qwen 2.5 ist."
1909
1939
  },
1910
- "qwen-max-latest": {
1911
- "description": "Der Tongyi Qianwen ist ein Sprachmodell mit einem Umfang von mehreren Billionen, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt und die API-Modelle hinter der aktuellen Version 2.5 von Tongyi Qianwen darstellt."
1912
- },
1913
- "qwen-omni-turbo-latest": {
1914
- "description": "Die Qwen-Omni-Serie unterstützt die Eingabe von Daten in verschiedenen Modalitäten, einschließlich Video, Audio, Bilder und Text, und gibt Audio und Text aus."
1940
+ "qwen-omni-turbo": {
1941
+ "description": "Die Qwen-Omni-Modellreihe unterstützt die Eingabe verschiedener Modalitäten, einschließlich Video, Audio, Bild und Text, und gibt Audio und Text aus."
1915
1942
  },
1916
1943
  "qwen-plus": {
1917
1944
  "description": "Qwen Plus ist die verbesserte Version des großangelegten Sprachmodells, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
1918
1945
  },
1919
- "qwen-plus-latest": {
1920
- "description": "Der Tongyi Qianwen ist die erweiterte Version eines groß angelegten Sprachmodells, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
1921
- },
1922
1946
  "qwen-turbo": {
1923
1947
  "description": "Qwen Turbo ist ein großangelegtes Sprachmodell, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
1924
1948
  },
1925
- "qwen-turbo-latest": {
1926
- "description": "Der Tongyi Qianwen ist ein groß angelegtes Sprachmodell, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
1927
- },
1928
1949
  "qwen-vl-chat-v1": {
1929
1950
  "description": "Qwen VL unterstützt flexible Interaktionsmethoden, einschließlich Mehrbild-, Mehrfachfragen und kreativen Fähigkeiten."
1930
1951
  },
1952
+ "qwen-vl-max": {
1953
+ "description": "Tongyi Qianwen extrem großskaliges visuelles Sprachmodell. Im Vergleich zur erweiterten Version weitere Steigerung der visuellen Schlussfolgerungs- und Befehlsbefolgungsfähigkeiten, bietet ein höheres Niveau visueller Wahrnehmung und Kognition."
1954
+ },
1931
1955
  "qwen-vl-max-latest": {
1932
1956
  "description": "Das Tongyi Qianwen Ultra-Scale Visuelle Sprachmodell. Im Vergleich zur verbesserten Version wurden die Fähigkeiten zur visuellen Schlussfolgerung und Befolgung von Anweisungen weiter gesteigert, was ein höheres Niveau an visueller Wahrnehmung und Kognition bietet."
1933
1957
  },
1934
- "qwen-vl-ocr-latest": {
1935
- "description": "Tongyi Qianwen OCR ist ein spezialisiertes Modell zur Textextraktion, das sich auf die Textextraktionsfähigkeiten von Dokumenten, Tabellen, Prüfungsfragen und handschriftlichen Texten konzentriert. Es kann verschiedene Schriftarten erkennen und unterstützt derzeit folgende Sprachen: Chinesisch, Englisch, Französisch, Japanisch, Koreanisch, Deutsch, Russisch, Italienisch, Vietnamesisch und Arabisch."
1958
+ "qwen-vl-ocr": {
1959
+ "description": "Tongyi Qianwen OCR ist ein spezialisiertes Modell zur Textextraktion, fokussiert auf Dokumente, Tabellen, Prüfungsaufgaben, Handschrift und andere Bildtypen. Es erkennt verschiedene Sprachen, darunter Chinesisch, Englisch, Französisch, Japanisch, Koreanisch, Deutsch, Russisch, Italienisch, Vietnamesisch und Arabisch."
1960
+ },
1961
+ "qwen-vl-plus": {
1962
+ "description": "Erweiterte Version des Tongyi Qianwen großskaligen visuellen Sprachmodells. Deutliche Verbesserung der Detail- und Texterkennungsfähigkeiten, unterstützt Bildauflösungen von über einer Million Pixeln und beliebige Seitenverhältnisse."
1936
1963
  },
1937
1964
  "qwen-vl-plus-latest": {
1938
1965
  "description": "Die verbesserte Version des Tongyi Qianwen, eines großangelegten visuellen Sprachmodells. Deutlich verbesserte Fähigkeiten zur Detailerkennung und Texterkennung, unterstützt Bildauflösungen von über einer Million Pixel und beliebige Seitenverhältnisse."
@@ -2021,6 +2048,9 @@
2021
2048
  "qwen2.5-coder-1.5b-instruct": {
2022
2049
  "description": "Die Open-Source-Version des Qwen-Codemodells."
2023
2050
  },
2051
+ "qwen2.5-coder-14b-instruct": {
2052
+ "description": "Open-Source-Version des Tongyi Qianwen Codierungsmodells."
2053
+ },
2024
2054
  "qwen2.5-coder-32b-instruct": {
2025
2055
  "description": "Open-Source-Version des Tongyi Qianwen Code-Modells."
2026
2056
  },
@@ -2111,8 +2141,8 @@
2111
2141
  "qwq-32b-preview": {
2112
2142
  "description": "Das QwQ-Modell ist ein experimentelles Forschungsmodell, das vom Qwen-Team entwickelt wurde und sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert."
2113
2143
  },
2114
- "qwq-plus-latest": {
2115
- "description": "Das QwQ-Inferenzmodell, das auf dem Qwen2.5-Modell trainiert wurde, hat durch verstärktes Lernen die Inferenzfähigkeiten des Modells erheblich verbessert. Die Kernmetriken des Modells, wie mathematische Codes (AIME 24/25, LiveCodeBench) sowie einige allgemeine Metriken (IFEval, LiveBench usw.), erreichen das Niveau der DeepSeek-R1 Vollversion."
2144
+ "qwq-plus": {
2145
+ "description": "Das QwQ-Inferenzmodell basiert auf dem Qwen2.5-Modell und verbessert die Modellschlussfolgerungsfähigkeiten durch verstärkendes Lernen erheblich. Die Kernmetriken in Mathematik und Programmierung (AIME 24/25, LiveCodeBench) sowie einige allgemeine Metriken (IFEval, LiveBench usw.) erreichen das volle Leistungsniveau von DeepSeek-R1."
2116
2146
  },
2117
2147
  "qwq_32b": {
2118
2148
  "description": "Ein mittelgroßes Schlussfolgerungsmodell der Qwen-Serie. Im Vergleich zu traditionellen Modellen mit Anweisungsoptimierung zeigt QwQ, das über Denk- und Schlussfolgerungsfähigkeiten verfügt, in nachgelagerten Aufgaben, insbesondere bei der Lösung schwieriger Probleme, eine signifikante Leistungssteigerung."
@@ -71,6 +71,9 @@
71
71
  "mistral": {
72
72
  "description": "Mistral bietet fortschrittliche allgemeine, spezialisierte und forschungsorientierte Modelle an, die in Bereichen wie komplexe Schlussfolgerungen, mehrsprachige Aufgaben und Code-Generierung weit verbreitet sind. Durch Funktionsaufrufschnittstellen können Benutzer benutzerdefinierte Funktionen integrieren und spezifische Anwendungen realisieren."
73
73
  },
74
+ "modelscope": {
75
+ "description": "ModelScope ist eine von Alibaba Cloud eingeführte Plattform für Modelle als Dienstleistung, die eine Vielzahl von KI-Modellen und Inferenzdiensten anbietet."
76
+ },
74
77
  "moonshot": {
75
78
  "description": "Moonshot ist eine Open-Source-Plattform, die von Beijing Dark Side Technology Co., Ltd. eingeführt wurde und eine Vielzahl von Modellen zur Verarbeitung natürlicher Sprache anbietet, die in vielen Bereichen Anwendung finden, darunter, aber nicht beschränkt auf, Inhaltserstellung, akademische Forschung, intelligente Empfehlungen und medizinische Diagnosen, und unterstützt die Verarbeitung langer Texte und komplexer Generierungsaufgaben."
76
79
  },
@@ -208,6 +208,10 @@
208
208
  "title": "Use Client Request Mode"
209
209
  },
210
210
  "helpDoc": "Configuration Guide",
211
+ "responsesApi": {
212
+ "desc": "Utilizes OpenAI's next-generation request format specification to unlock advanced features like chain of thought",
213
+ "title": "Use Responses API Specification"
214
+ },
211
215
  "waitingForMore": "More models are currently <1>planned for integration</1>, please stay tuned"
212
216
  },
213
217
  "createNew": {