@lobehub/chat 1.92.2 → 1.93.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +58 -0
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/changelog/v1.json +21 -0
- package/docs/development/database-schema.dbml +51 -1
- package/locales/ar/modelProvider.json +4 -0
- package/locales/ar/models.json +64 -34
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/modelProvider.json +4 -0
- package/locales/bg-BG/models.json +64 -34
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/modelProvider.json +4 -0
- package/locales/de-DE/models.json +64 -34
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/modelProvider.json +4 -0
- package/locales/en-US/models.json +64 -34
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/modelProvider.json +4 -0
- package/locales/es-ES/models.json +64 -34
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/modelProvider.json +4 -0
- package/locales/fa-IR/models.json +64 -34
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/modelProvider.json +4 -0
- package/locales/fr-FR/models.json +64 -34
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/modelProvider.json +4 -0
- package/locales/it-IT/models.json +64 -34
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/modelProvider.json +4 -0
- package/locales/ja-JP/models.json +64 -34
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/modelProvider.json +4 -0
- package/locales/ko-KR/models.json +64 -34
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/modelProvider.json +4 -0
- package/locales/nl-NL/models.json +64 -34
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/modelProvider.json +4 -0
- package/locales/pl-PL/models.json +64 -34
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/modelProvider.json +4 -0
- package/locales/pt-BR/models.json +64 -34
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/modelProvider.json +4 -0
- package/locales/ru-RU/models.json +63 -33
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/modelProvider.json +4 -0
- package/locales/tr-TR/models.json +64 -34
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/modelProvider.json +4 -0
- package/locales/vi-VN/models.json +64 -34
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/modelProvider.json +4 -0
- package/locales/zh-CN/models.json +59 -29
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/modelProvider.json +4 -0
- package/locales/zh-TW/models.json +64 -34
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +2 -2
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +16 -0
- package/src/config/aiModels/openrouter.ts +44 -0
- package/src/config/modelProviders/openai.ts +3 -1
- package/src/database/client/migrations.json +25 -0
- package/src/database/migrations/0025_add_provider_config.sql +1 -0
- package/src/database/migrations/meta/0025_snapshot.json +5703 -0
- package/src/database/migrations/meta/_journal.json +7 -0
- package/src/database/models/__tests__/aiProvider.test.ts +2 -0
- package/src/database/models/aiProvider.ts +5 -2
- package/src/database/repositories/tableViewer/index.test.ts +1 -1
- package/src/database/schemas/_helpers.ts +5 -1
- package/src/database/schemas/aiInfra.ts +5 -1
- package/src/libs/model-runtime/openai/index.ts +21 -2
- package/src/libs/model-runtime/openrouter/index.ts +55 -43
- package/src/libs/model-runtime/types/chat.ts +6 -9
- package/src/libs/model-runtime/utils/openaiCompatibleFactory/index.ts +79 -5
- package/src/libs/model-runtime/utils/openaiHelpers.test.ts +145 -1
- package/src/libs/model-runtime/utils/openaiHelpers.ts +59 -0
- package/src/libs/model-runtime/utils/streams/openai/__snapshots__/responsesStream.test.ts.snap +193 -0
- package/src/libs/model-runtime/utils/streams/openai/index.ts +2 -0
- package/src/libs/model-runtime/utils/streams/{openai.test.ts → openai/openai.test.ts} +1 -1
- package/src/libs/model-runtime/utils/streams/{openai.ts → openai/openai.ts} +5 -5
- package/src/libs/model-runtime/utils/streams/openai/responsesStream.test.ts +826 -0
- package/src/libs/model-runtime/utils/streams/openai/responsesStream.ts +166 -0
- package/src/libs/model-runtime/utils/streams/protocol.ts +4 -1
- package/src/libs/model-runtime/utils/streams/utils.ts +20 -0
- package/src/libs/model-runtime/utils/usageConverter.ts +59 -0
- package/src/locales/default/modelProvider.ts +4 -0
- package/src/services/__tests__/chat.test.ts +27 -0
- package/src/services/chat.ts +8 -2
- package/src/services/file/ClientS3/index.test.ts +8 -8
- package/src/services/file/ClientS3/index.ts +2 -1
- package/src/store/aiInfra/slices/aiProvider/selectors.ts +11 -0
- package/src/types/aiProvider.ts +13 -1
@@ -230,6 +230,9 @@
|
|
230
230
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
231
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem ze wzmocnieniem (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modeli. Przed RL, DeepSeek-R1 wprowadził dane do zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowych i wnioskowania, osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne wyniki."
|
232
232
|
},
|
233
|
+
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
|
+
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem ze wzmocnieniem (RL), rozwiązujący problemy powtarzalności i czytelności w modelach. Przed zastosowaniem RL wprowadzono dane cold start, co dodatkowo zoptymalizowało wydajność wnioskowania. Model osiąga wyniki porównywalne z OpenAI-o1 w zadaniach matematycznych, kodowania i wnioskowania, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólną efektywność."
|
235
|
+
},
|
233
236
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
234
237
|
"description": "DeepSeek-R1-Distill-Qwen-1.5B to model stworzony na podstawie Qwen2.5-Math-1.5B poprzez proces wiedzy distylacji. Model ten został dostrajony za pomocą 800 000 wybrukowanych próbek wygenerowanych przez DeepSeek-R1, co pozwoliło osiągnąć dobre wyniki na wielu testach benchmarkowych. Jako lekki model, osiągnął 83,9% dokładności na MATH-500, 28,9% sukcesów na AIME 2024 oraz 954 punkty na CodeForces, co świadczy o zdolnościach wnioskowania przekraczających jego rozmiar parametrów."
|
235
238
|
},
|
@@ -422,8 +425,8 @@
|
|
422
425
|
"THUDM/glm-4-9b-chat": {
|
423
426
|
"description": "GLM-4 9B to otwarta wersja, oferująca zoptymalizowane doświadczenie dialogowe dla aplikacji konwersacyjnych."
|
424
427
|
},
|
425
|
-
"
|
426
|
-
"description": "
|
428
|
+
"Tongyi-Zhiwen/QwenLong-L1-32B": {
|
429
|
+
"description": "QwenLong-L1-32B to pierwszy duży model wnioskowania z długim kontekstem (LRM) wytrenowany z użyciem uczenia ze wzmocnieniem, zoptymalizowany pod kątem zadań wnioskowania na długich tekstach. Model osiąga stabilne przejście od krótkiego do długiego kontekstu dzięki progresywnemu rozszerzaniu kontekstu w ramach uczenia ze wzmocnieniem. W siedmiu benchmarkach dotyczących pytań i odpowiedzi na długich dokumentach QwenLong-L1-32B przewyższa flagowe modele takie jak OpenAI-o3-mini i Qwen3-235B-A22B, osiągając wydajność porównywalną z Claude-3.7-Sonnet-Thinking. Model jest szczególnie silny w złożonych zadaniach matematycznego, logicznego i wieloetapowego wnioskowania."
|
427
430
|
},
|
428
431
|
"Yi-34B-Chat": {
|
429
432
|
"description": "Yi-1.5-34B, zachowując doskonałe ogólne zdolności językowe oryginalnej serii modeli, znacznie poprawił zdolności logiczne i kodowania dzięki dodatkowym treningom na 500 miliardach wysokiej jakości tokenów."
|
@@ -734,6 +737,12 @@
|
|
734
737
|
"deepseek-ai/DeepSeek-R1": {
|
735
738
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
736
739
|
},
|
740
|
+
"deepseek-ai/DeepSeek-R1-0528": {
|
741
|
+
"description": "DeepSeek R1 znacząco zwiększa głębokość zdolności wnioskowania i dedukcji dzięki zwiększonym zasobom obliczeniowym oraz wprowadzeniu mechanizmów optymalizacji algorytmów w trakcie dalszego treningu. Model osiąga doskonałe wyniki w różnych benchmarkach, w tym w matematyce, programowaniu i logice ogólnej. Jego ogólna wydajność jest obecnie zbliżona do czołowych modeli, takich jak O3 i Gemini 2.5 Pro."
|
742
|
+
},
|
743
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
|
744
|
+
"description": "DeepSeek-R1-0528-Qwen3-8B to model uzyskany przez destylację łańcuchów myślowych z modelu DeepSeek-R1-0528 do Qwen3 8B Base. Model osiąga najnowocześniejszą (SOTA) wydajność wśród modeli open source, przewyższając Qwen3 8B o 10% w teście AIME 2024 i osiągając poziom wydajności Qwen3-235B-thinking. Wykazuje doskonałe wyniki w matematycznym wnioskowaniu, programowaniu i logice ogólnej, posiadając architekturę identyczną z Qwen3-8B, ale korzystając z tokenizera DeepSeek-R1-0528."
|
745
|
+
},
|
737
746
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
738
747
|
"description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
739
748
|
},
|
@@ -836,9 +845,6 @@
|
|
836
845
|
"deepseek-v3-0324": {
|
837
846
|
"description": "DeepSeek-V3-0324 to model MoE z 671 miliardami parametrów, który wyróżnia się w zakresie programowania i umiejętności technicznych, rozumienia kontekstu oraz przetwarzania długich tekstów."
|
838
847
|
},
|
839
|
-
"deepseek/deepseek-chat": {
|
840
|
-
"description": "Nowy, otwarty model łączący zdolności ogólne i kodowe, który nie tylko zachowuje ogólne zdolności dialogowe oryginalnego modelu Chat, ale także potężne zdolności przetwarzania kodu modelu Coder, lepiej dostosowując się do ludzkich preferencji. Ponadto, DeepSeek-V2.5 osiągnął znaczne poprawy w zadaniach pisarskich, przestrzeganiu instrukcji i wielu innych obszarach."
|
841
|
-
},
|
842
848
|
"deepseek/deepseek-chat-v3-0324": {
|
843
849
|
"description": "DeepSeek V3 to model mieszany z 685B parametrami, będący najnowszą iteracją flagowej serii modeli czatu zespołu DeepSeek.\n\nDziedziczy po modelu [DeepSeek V3](/deepseek/deepseek-chat-v3) i wykazuje doskonałe wyniki w różnych zadaniach."
|
844
850
|
},
|
@@ -848,6 +854,12 @@
|
|
848
854
|
"deepseek/deepseek-r1": {
|
849
855
|
"description": "DeepSeek-R1 znacznie poprawił zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw wygeneruje fragment myślenia, aby zwiększyć dokładność końcowej odpowiedzi."
|
850
856
|
},
|
857
|
+
"deepseek/deepseek-r1-0528": {
|
858
|
+
"description": "DeepSeek-R1 znacząco poprawia zdolność wnioskowania modelu nawet przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi model najpierw generuje łańcuch myślowy, co zwiększa dokładność końcowej odpowiedzi."
|
859
|
+
},
|
860
|
+
"deepseek/deepseek-r1-0528:free": {
|
861
|
+
"description": "DeepSeek-R1 znacząco poprawia zdolność wnioskowania modelu nawet przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi model najpierw generuje łańcuch myślowy, co zwiększa dokładność końcowej odpowiedzi."
|
862
|
+
},
|
851
863
|
"deepseek/deepseek-r1-distill-llama-70b": {
|
852
864
|
"description": "DeepSeek R1 Distill Llama 70B to duży model językowy oparty na Llama3.3 70B, który wykorzystuje dostrojenie na podstawie wyjścia DeepSeek R1, osiągając konkurencyjną wydajność porównywalną z dużymi modelami na czołowej pozycji."
|
853
865
|
},
|
@@ -1262,6 +1274,9 @@
|
|
1262
1274
|
"gpt-4o-mini-realtime-preview": {
|
1263
1275
|
"description": "Wersja na żywo GPT-4o-mini, obsługująca wejście i wyjście audio oraz tekstowe w czasie rzeczywistym."
|
1264
1276
|
},
|
1277
|
+
"gpt-4o-mini-search-preview": {
|
1278
|
+
"description": "GPT-4o mini wersja podglądowa do wyszukiwania to model specjalnie wytrenowany do rozumienia i realizacji zapytań wyszukiwania internetowego, korzystający z API Chat Completions. Poza opłatami za tokeny, zapytania wyszukiwania internetowego są dodatkowo obciążane opłatą za każde wywołanie narzędzia."
|
1279
|
+
},
|
1265
1280
|
"gpt-4o-mini-tts": {
|
1266
1281
|
"description": "GPT-4o mini TTS to model tekstu na mowę oparty na GPT-4o mini, oferujący wysokiej jakości generowanie mowy przy niższych kosztach."
|
1267
1282
|
},
|
@@ -1274,6 +1289,9 @@
|
|
1274
1289
|
"gpt-4o-realtime-preview-2024-12-17": {
|
1275
1290
|
"description": "Wersja na żywo GPT-4o, obsługująca wejście i wyjście audio oraz tekstowe w czasie rzeczywistym."
|
1276
1291
|
},
|
1292
|
+
"gpt-4o-search-preview": {
|
1293
|
+
"description": "GPT-4o wersja podglądowa do wyszukiwania to model specjalnie wytrenowany do rozumienia i realizacji zapytań wyszukiwania internetowego, korzystający z API Chat Completions. Poza opłatami za tokeny, zapytania wyszukiwania internetowego są dodatkowo obciążane opłatą za każde wywołanie narzędzia."
|
1294
|
+
},
|
1277
1295
|
"grok-2-1212": {
|
1278
1296
|
"description": "Model ten poprawił dokładność, przestrzeganie instrukcji oraz zdolności wielojęzyczne."
|
1279
1297
|
},
|
@@ -1307,6 +1325,9 @@
|
|
1307
1325
|
"hunyuan-large-longcontext": {
|
1308
1326
|
"description": "Specjalizuje się w zadaniach związanych z długimi tekstami, takich jak streszczenia dokumentów i pytania i odpowiedzi dotyczące dokumentów, a także ma zdolność do obsługi ogólnych zadań generowania tekstu. Wykazuje doskonałe wyniki w analizie i generowaniu długich tekstów, skutecznie radząc sobie z złożonymi i szczegółowymi wymaganiami dotyczącymi przetwarzania długich treści."
|
1309
1327
|
},
|
1328
|
+
"hunyuan-large-vision": {
|
1329
|
+
"description": "Model przeznaczony do scenariuszy rozumienia obrazów i tekstu, oparty na modelu Hunyuan Large, obsługujący dowolną rozdzielczość i wiele obrazów wraz z tekstem, generujący treści tekstowe, skupiający się na zadaniach związanych z rozumieniem obrazowo-tekstowym, z wyraźną poprawą zdolności wielojęzycznego rozumienia obrazów i tekstu."
|
1330
|
+
},
|
1310
1331
|
"hunyuan-lite": {
|
1311
1332
|
"description": "Zaktualizowana do struktury MOE, z oknem kontekstowym o długości 256k, prowadzi w wielu zestawach testowych w NLP, kodowaniu, matematyce i innych dziedzinach w porównaniu do wielu modeli open source."
|
1312
1333
|
},
|
@@ -1331,18 +1352,15 @@
|
|
1331
1352
|
"hunyuan-t1-20250321": {
|
1332
1353
|
"description": "Kompleksowy model zdolności w naukach ścisłych i humanistycznych, z silną zdolnością do uchwycenia długich informacji tekstowych. Wspiera wnioskowanie w odpowiedzi na różnorodne trudności w matematyce, logice, naukach ścisłych i kodowaniu."
|
1333
1354
|
},
|
1355
|
+
"hunyuan-t1-20250403": {
|
1356
|
+
"description": "Zwiększenie zdolności generowania kodu na poziomie projektu; poprawa jakości pisania generowanego tekstu; ulepszenie wieloetapowego rozumienia tematów, przestrzegania instrukcji typu tob oraz rozumienia słów; optymalizacja problemów z mieszanym użyciem uproszczonych i tradycyjnych znaków oraz mieszanym językiem chińsko-angielskim."
|
1357
|
+
},
|
1334
1358
|
"hunyuan-t1-latest": {
|
1335
1359
|
"description": "Pierwszy na świecie ultra-duży model wnioskowania Hybrid-Transformer-Mamba, rozszerzający zdolności wnioskowania, z niezwykle szybkim dekodowaniem, lepiej dostosowany do ludzkich preferencji."
|
1336
1360
|
},
|
1337
1361
|
"hunyuan-t1-vision": {
|
1338
1362
|
"description": "Model głębokiego myślenia multimodalnego Hunyuan, obsługujący natywne łańcuchy myślowe multimodalne, doskonały w różnych scenariuszach wnioskowania obrazowego, z wyraźną przewagą nad modelami szybkiego myślenia w rozwiązywaniu problemów ścisłych."
|
1339
1363
|
},
|
1340
|
-
"hunyuan-translation": {
|
1341
|
-
"description": "Obsługuje tłumaczenie między 15 językami, w tym chińskim, angielskim, japońskim, francuskim, portugalskim, hiszpańskim, tureckim, rosyjskim, arabskim, koreańskim, włoskim, niemieckim, wietnamskim, malajskim i indonezyjskim, opartym na automatycznej ocenie COMET w oparciu o zestaw testowy do tłumaczenia w różnych scenariuszach, wykazując ogólnie lepsze zdolności tłumaczeniowe w porównaniu do modeli o podobnej skali na rynku."
|
1342
|
-
},
|
1343
|
-
"hunyuan-translation-lite": {
|
1344
|
-
"description": "Model tłumaczenia Hunyuan wspiera naturalne tłumaczenie w formie dialogu; obsługuje tłumaczenie między chińskim, angielskim, japońskim, francuskim, portugalskim, hiszpańskim, tureckim, rosyjskim, arabskim, koreańskim, włoskim, niemieckim, wietnamskim, malajskim i indonezyjskim."
|
1345
|
-
},
|
1346
1364
|
"hunyuan-turbo": {
|
1347
1365
|
"description": "Hunyuan to nowa generacja dużego modelu językowego w wersji próbnej, wykorzystująca nową strukturę modelu mieszanych ekspertów (MoE), która w porównaniu do hunyuan-pro charakteryzuje się szybszą efektywnością wnioskowania i lepszymi wynikami."
|
1348
1366
|
},
|
@@ -1355,8 +1373,11 @@
|
|
1355
1373
|
"hunyuan-turbo-vision": {
|
1356
1374
|
"description": "Nowa generacja flagowego modelu językowo-wizualnego Hunyuan, wykorzystująca nową strukturę modelu mieszanych ekspertów (MoE), z pełnym zwiększeniem zdolności w zakresie podstawowego rozpoznawania, tworzenia treści, pytań i odpowiedzi oraz analizy i rozumowania w porównaniu do poprzedniej generacji modeli."
|
1357
1375
|
},
|
1358
|
-
"hunyuan-turbos-
|
1359
|
-
"description": "
|
1376
|
+
"hunyuan-turbos-20250313": {
|
1377
|
+
"description": "Ujednolicenie stylu kroków rozwiązywania zadań matematycznych, wzmocnienie wieloetapowego zadawania pytań matematycznych. Optymalizacja stylu odpowiedzi w tworzeniu tekstów, eliminacja sztuczności AI, wzbogacenie języka."
|
1378
|
+
},
|
1379
|
+
"hunyuan-turbos-20250416": {
|
1380
|
+
"description": "Aktualizacja bazy pretrenowania, wzmacniająca zdolność rozumienia i przestrzegania instrukcji; w fazie dostrajania poprawa umiejętności matematycznych, programistycznych, logicznych i nauk ścisłych; podniesienie jakości twórczości literackiej, rozumienia tekstu, dokładności tłumaczeń oraz wiedzy ogólnej; wzmocnienie zdolności agentów w różnych dziedzinach, ze szczególnym naciskiem na rozumienie wieloetapowych dialogów."
|
1360
1381
|
},
|
1361
1382
|
"hunyuan-turbos-latest": {
|
1362
1383
|
"description": "hunyuan-TurboS to najnowsza wersja flagowego modelu Hunyuan, oferująca silniejsze zdolności myślenia i lepsze efekty doświadczenia."
|
@@ -1364,8 +1385,8 @@
|
|
1364
1385
|
"hunyuan-turbos-longtext-128k-20250325": {
|
1365
1386
|
"description": "Specjalizuje się w zadaniach związanych z długimi tekstami, takimi jak streszczenia dokumentów i pytania do dokumentów, a także ma zdolność do generowania ogólnych tekstów. W analizie i generowaniu długich tekstów wykazuje doskonałe wyniki, skutecznie radząc sobie z złożonymi i szczegółowymi wymaganiami przetwarzania długich treści."
|
1366
1387
|
},
|
1367
|
-
"hunyuan-turbos-
|
1368
|
-
"description": "
|
1388
|
+
"hunyuan-turbos-role-plus": {
|
1389
|
+
"description": "Najnowsza wersja modelu do odgrywania ról Hunyuan, oficjalnie dostrojona przez Hunyuan, oparta na modelu Hunyuan i wzbogacona o dane scenariuszy odgrywania ról, zapewniająca lepsze podstawowe efekty w tych scenariuszach."
|
1369
1390
|
},
|
1370
1391
|
"hunyuan-vision": {
|
1371
1392
|
"description": "Najnowocześniejszy model multimodalny Hunyuan, wspierający generowanie treści tekstowych na podstawie obrazów i tekstu."
|
@@ -1886,11 +1907,14 @@
|
|
1886
1907
|
"qvq-72b-preview": {
|
1887
1908
|
"description": "Model QVQ jest eksperymentalnym modelem badawczym opracowanym przez zespół Qwen, skoncentrowanym na zwiększeniu zdolności w zakresie rozumowania wizualnego, szczególnie w dziedzinie rozumowania matematycznego."
|
1888
1909
|
},
|
1889
|
-
"qvq-max
|
1890
|
-
"description": "Model wizualnego wnioskowania QVQ,
|
1910
|
+
"qvq-max": {
|
1911
|
+
"description": "Model wizualnego wnioskowania Tongyi Qianwen QVQ, obsługujący wejścia wizualne i generujący łańcuchy myślowe, wykazujący silne zdolności w matematyce, programowaniu, analizie wizualnej, twórczości oraz zadaniach ogólnych."
|
1912
|
+
},
|
1913
|
+
"qwen-coder-plus": {
|
1914
|
+
"description": "Model kodowania Tongyi Qianwen."
|
1891
1915
|
},
|
1892
|
-
"qwen-coder-
|
1893
|
-
"description": "Model kodowania
|
1916
|
+
"qwen-coder-turbo": {
|
1917
|
+
"description": "Model kodowania Tongyi Qianwen."
|
1894
1918
|
},
|
1895
1919
|
"qwen-coder-turbo-latest": {
|
1896
1920
|
"description": "Model kodowania Qwen."
|
@@ -1898,41 +1922,44 @@
|
|
1898
1922
|
"qwen-long": {
|
1899
1923
|
"description": "Qwen to ultra-duży model językowy, który obsługuje długie konteksty tekstowe oraz funkcje dialogowe oparte na długich dokumentach i wielu dokumentach."
|
1900
1924
|
},
|
1925
|
+
"qwen-math-plus": {
|
1926
|
+
"description": "Model matematyczny Tongyi Qianwen, specjalnie zaprojektowany do rozwiązywania zadań matematycznych."
|
1927
|
+
},
|
1901
1928
|
"qwen-math-plus-latest": {
|
1902
1929
|
"description": "Model matematyczny Qwen, stworzony specjalnie do rozwiązywania problemów matematycznych."
|
1903
1930
|
},
|
1931
|
+
"qwen-math-turbo": {
|
1932
|
+
"description": "Model matematyczny Tongyi Qianwen, specjalnie zaprojektowany do rozwiązywania zadań matematycznych."
|
1933
|
+
},
|
1904
1934
|
"qwen-math-turbo-latest": {
|
1905
1935
|
"description": "Model matematyczny Qwen, stworzony specjalnie do rozwiązywania problemów matematycznych."
|
1906
1936
|
},
|
1907
1937
|
"qwen-max": {
|
1908
1938
|
"description": "Qwen Max to model językowy o skali miliardowej, obsługujący chiński, angielski i inne języki. Aktualna wersja API modelu na bazie Qwen 2.5."
|
1909
1939
|
},
|
1910
|
-
"qwen-
|
1911
|
-
"description": "
|
1912
|
-
},
|
1913
|
-
"qwen-omni-turbo-latest": {
|
1914
|
-
"description": "Modele z serii Qwen-Omni obsługują różne rodzaje danych wejściowych, w tym wideo, audio, obrazy i tekst, oraz generują wyjścia w postaci audio i tekstu."
|
1940
|
+
"qwen-omni-turbo": {
|
1941
|
+
"description": "Modele z serii Qwen-Omni obsługują dane wejściowe w różnych modalnościach, w tym wideo, audio, obrazy i tekst, oraz generują wyjścia w postaci audio i tekstu."
|
1915
1942
|
},
|
1916
1943
|
"qwen-plus": {
|
1917
1944
|
"description": "Qwen Plus to ulepszona wersja ogromnego modelu językowego, wspierająca różne języki, w tym chiński i angielski."
|
1918
1945
|
},
|
1919
|
-
"qwen-plus-latest": {
|
1920
|
-
"description": "Wzmocniona wersja modelu językowego Qwen Plus, obsługująca różne języki, w tym chiński i angielski."
|
1921
|
-
},
|
1922
1946
|
"qwen-turbo": {
|
1923
1947
|
"description": "Qwen Turbo to ogromny model językowy, który obsługuje różne języki, w tym chiński i angielski."
|
1924
1948
|
},
|
1925
|
-
"qwen-turbo-latest": {
|
1926
|
-
"description": "Model językowy Qwen Turbo, obsługujący różne języki, w tym chiński i angielski."
|
1927
|
-
},
|
1928
1949
|
"qwen-vl-chat-v1": {
|
1929
1950
|
"description": "Qwen VL obsługuje elastyczne interakcje, w tym wiele obrazów, wielokrotne pytania i odpowiedzi oraz zdolności twórcze."
|
1930
1951
|
},
|
1952
|
+
"qwen-vl-max": {
|
1953
|
+
"description": "Nadzwyczajny, bardzo duży model wizualno-językowy Tongyi Qianwen. W porównaniu z wersją wzmocnioną, ponownie poprawia zdolności wnioskowania wizualnego i przestrzegania instrukcji, oferując wyższy poziom percepcji i poznania wizualnego."
|
1954
|
+
},
|
1931
1955
|
"qwen-vl-max-latest": {
|
1932
1956
|
"description": "Model wizualno-językowy Qwen o ultra dużej skali. W porównaniu do wersji rozszerzonej, ponownie zwiększa zdolności wnioskowania wizualnego i przestrzegania instrukcji, oferując wyższy poziom percepcji wizualnej i poznawczej."
|
1933
1957
|
},
|
1934
|
-
"qwen-vl-ocr
|
1935
|
-
"description": "
|
1958
|
+
"qwen-vl-ocr": {
|
1959
|
+
"description": "Tongyi Qianwen OCR to specjalistyczny model do ekstrakcji tekstu, skoncentrowany na rozpoznawaniu tekstu w dokumentach, tabelach, zadaniach testowych i pismach odręcznych. Potrafi rozpoznawać wiele języków, w tym chiński, angielski, francuski, japoński, koreański, niemiecki, rosyjski, włoski, wietnamski i arabski."
|
1960
|
+
},
|
1961
|
+
"qwen-vl-plus": {
|
1962
|
+
"description": "Wzmocniona wersja dużego modelu wizualno-językowego Tongyi Qianwen. Znacząco poprawia zdolność rozpoznawania detali i tekstu, obsługuje obrazy o rozdzielczości przekraczającej milion pikseli oraz dowolnych proporcjach."
|
1936
1963
|
},
|
1937
1964
|
"qwen-vl-plus-latest": {
|
1938
1965
|
"description": "Wersja rozszerzona modelu wizualno-językowego Qwen. Znacząco poprawia zdolność rozpoznawania szczegółów i tekstu, obsługuje obrazy o rozdzielczości przekraczającej milion pikseli oraz dowolnych proporcjach."
|
@@ -2021,6 +2048,9 @@
|
|
2021
2048
|
"qwen2.5-coder-1.5b-instruct": {
|
2022
2049
|
"description": "Otwarta wersja modelu kodowania Qwen."
|
2023
2050
|
},
|
2051
|
+
"qwen2.5-coder-14b-instruct": {
|
2052
|
+
"description": "Otwarta wersja modelu kodowania Tongyi Qianwen."
|
2053
|
+
},
|
2024
2054
|
"qwen2.5-coder-32b-instruct": {
|
2025
2055
|
"description": "Otwarta wersja modelu kodowania Qwen."
|
2026
2056
|
},
|
@@ -2111,8 +2141,8 @@
|
|
2111
2141
|
"qwq-32b-preview": {
|
2112
2142
|
"description": "Model QwQ to eksperymentalny model badawczy opracowany przez zespół Qwen, skoncentrowany na zwiększeniu zdolności wnioskowania AI."
|
2113
2143
|
},
|
2114
|
-
"qwq-plus
|
2115
|
-
"description": "Model
|
2144
|
+
"qwq-plus": {
|
2145
|
+
"description": "Model wnioskowania QwQ oparty na modelu Qwen2.5, znacznie poprawiony dzięki uczeniu ze wzmocnieniem. Kluczowe wskaźniki modelu w matematyce i kodowaniu (AIME 24/25, LiveCodeBench) oraz niektóre wskaźniki ogólne (IFEval, LiveBench itp.) osiągają poziom pełnej wersji DeepSeek-R1."
|
2116
2146
|
},
|
2117
2147
|
"qwq_32b": {
|
2118
2148
|
"description": "Model wnioskowania średniej wielkości z serii Qwen. W porównaniu do tradycyjnych modeli dostosowanych do instrukcji, QwQ, posiadający zdolności myślenia i wnioskowania, może znacznie poprawić wydajność w zadaniach końcowych, zwłaszcza w rozwiązywaniu trudnych problemów."
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"mistral": {
|
72
72
|
"description": "Mistral oferuje zaawansowane modele ogólne, specjalistyczne i badawcze, szeroko stosowane w złożonym rozumowaniu, zadaniach wielojęzycznych, generowaniu kodu i innych dziedzinach. Dzięki interfejsowi wywołań funkcji użytkownicy mogą integrować dostosowane funkcje, realizując konkretne zastosowania."
|
73
73
|
},
|
74
|
+
"modelscope": {
|
75
|
+
"description": "ModelScope to platforma modelu jako usługi wprowadzona przez Alibaba Cloud, oferująca bogaty wybór modeli AI i usług inferencyjnych."
|
76
|
+
},
|
74
77
|
"moonshot": {
|
75
78
|
"description": "Moonshot to otwarta platforma stworzona przez Beijing Dark Side Technology Co., Ltd., oferująca różnorodne modele przetwarzania języka naturalnego, szeroko stosowane w takich dziedzinach jak tworzenie treści, badania akademickie, inteligentne rekomendacje, diagnoza medyczna i inne, wspierająca przetwarzanie długich tekstów i złożone zadania generacyjne."
|
76
79
|
},
|
@@ -208,6 +208,10 @@
|
|
208
208
|
"title": "Usar Modo de Requisição do Cliente"
|
209
209
|
},
|
210
210
|
"helpDoc": "Tutorial de Configuração",
|
211
|
+
"responsesApi": {
|
212
|
+
"desc": "Adota o novo padrão de formato de requisição da OpenAI, desbloqueando recursos avançados como cadeias de raciocínio",
|
213
|
+
"title": "Usar o padrão Responses API"
|
214
|
+
},
|
211
215
|
"waitingForMore": "Mais modelos estão <1>planejados para integração</1>, fique atento"
|
212
216
|
},
|
213
217
|
"createNew": {
|
@@ -230,6 +230,9 @@
|
|
230
230
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
231
|
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho de inferência. Ele se compara ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o desempenho geral por meio de métodos de treinamento cuidadosamente projetados."
|
232
232
|
},
|
233
|
+
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
|
+
"description": "DeepSeek-R1 é um modelo de raciocínio impulsionado por aprendizado por reforço (RL), que resolve problemas de repetição e legibilidade no modelo. Antes do RL, DeepSeek-R1 introduziu dados de cold start para otimizar ainda mais o desempenho do raciocínio. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas de matemática, código e raciocínio, e melhora o desempenho geral por meio de métodos de treinamento cuidadosamente projetados."
|
235
|
+
},
|
233
236
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
234
237
|
"description": "DeepSeek-R1-Distill-Qwen-1.5B é um modelo obtido por destilação de conhecimento baseado no Qwen2.5-Math-1.5B. Este modelo foi refinado usando 800 mil amostras selecionadas geradas pelo DeepSeek-R1, demonstrando desempenho notável em diversos benchmarks. Como um modelo leve, alcançou 83,9% de precisão no MATH-500, 28,9% de taxa de aprovação no AIME 2024 e uma pontuação de 954 no CodeForces, exibindo capacidades de raciocínio que superam seu tamanho de parâmetros."
|
235
238
|
},
|
@@ -422,8 +425,8 @@
|
|
422
425
|
"THUDM/glm-4-9b-chat": {
|
423
426
|
"description": "GLM-4 9B é uma versão de código aberto, oferecendo uma experiência de diálogo otimizada para aplicações de conversa."
|
424
427
|
},
|
425
|
-
"
|
426
|
-
"description": "
|
428
|
+
"Tongyi-Zhiwen/QwenLong-L1-32B": {
|
429
|
+
"description": "QwenLong-L1-32B é o primeiro modelo de raciocínio de grande escala com contexto longo treinado por aprendizado por reforço (LRM), otimizado para tarefas de raciocínio em textos longos. O modelo utiliza um framework de aprendizado por reforço com expansão progressiva de contexto, permitindo uma transição estável de contextos curtos para longos. Em sete benchmarks de perguntas e respostas com documentos de contexto longo, QwenLong-L1-32B supera modelos líderes como OpenAI-o3-mini e Qwen3-235B-A22B, com desempenho comparável ao Claude-3.7-Sonnet-Thinking. É especialmente eficaz em raciocínio matemático, lógico e raciocínio de múltiplos saltos."
|
427
430
|
},
|
428
431
|
"Yi-34B-Chat": {
|
429
432
|
"description": "Yi-1.5-34B, mantendo as excelentes habilidades linguísticas do modelo original, aumentou significativamente suas capacidades de lógica matemática e codificação através de treinamento incremental com 500 bilhões de tokens de alta qualidade."
|
@@ -734,6 +737,12 @@
|
|
734
737
|
"deepseek-ai/DeepSeek-R1": {
|
735
738
|
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho da inferência. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o resultado geral por meio de métodos de treinamento cuidadosamente projetados."
|
736
739
|
},
|
740
|
+
"deepseek-ai/DeepSeek-R1-0528": {
|
741
|
+
"description": "DeepSeek R1, ao utilizar recursos computacionais ampliados e introduzir mecanismos de otimização algorítmica durante o pós-treinamento, aumentou significativamente a profundidade de suas capacidades de raciocínio e inferência. Este modelo apresenta desempenho excelente em diversos benchmarks, incluindo matemática, programação e lógica geral. Seu desempenho geral está próximo de modelos líderes, como O3 e Gemini 2.5 Pro."
|
742
|
+
},
|
743
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
|
744
|
+
"description": "DeepSeek-R1-0528-Qwen3-8B é um modelo obtido pela destilação da cadeia de pensamento do DeepSeek-R1-0528 para o Qwen3 8B Base. Este modelo alcança desempenho de ponta (SOTA) entre modelos open source, superando o Qwen3 8B em 10% no teste AIME 2024 e atingindo o nível do Qwen3-235B-thinking. Apresenta excelente desempenho em raciocínio matemático, programação e lógica geral, compartilhando a arquitetura do Qwen3-8B, mas utilizando a configuração de tokenização do DeepSeek-R1-0528."
|
745
|
+
},
|
737
746
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
738
747
|
"description": "Modelo de destilação DeepSeek-R1, otimizado para desempenho de inferência através de aprendizado por reforço e dados de inicialização fria, modelo de código aberto que redefine os padrões de múltiplas tarefas."
|
739
748
|
},
|
@@ -836,9 +845,6 @@
|
|
836
845
|
"deepseek-v3-0324": {
|
837
846
|
"description": "DeepSeek-V3-0324 é um modelo MoE com 671 bilhões de parâmetros, destacando-se em habilidades de programação e técnicas, compreensão de contexto e processamento de textos longos."
|
838
847
|
},
|
839
|
-
"deepseek/deepseek-chat": {
|
840
|
-
"description": "Um novo modelo de código aberto que integra capacidades gerais e de codificação, não apenas preservando a capacidade de diálogo geral do modelo Chat original e a poderosa capacidade de processamento de código do modelo Coder, mas também alinhando-se melhor às preferências humanas. Além disso, o DeepSeek-V2.5 também alcançou melhorias significativas em várias áreas, como tarefas de escrita e seguimento de instruções."
|
841
|
-
},
|
842
848
|
"deepseek/deepseek-chat-v3-0324": {
|
843
849
|
"description": "O DeepSeek V3 é um modelo misto especializado com 685B de parâmetros, sendo a mais recente iteração da série de modelos de chat da equipe DeepSeek.\n\nEle herda o modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) e se destaca em várias tarefas."
|
844
850
|
},
|
@@ -848,6 +854,12 @@
|
|
848
854
|
"deepseek/deepseek-r1": {
|
849
855
|
"description": "DeepSeek-R1 melhorou significativamente a capacidade de raciocínio do modelo com muito poucos dados rotulados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
|
850
856
|
},
|
857
|
+
"deepseek/deepseek-r1-0528": {
|
858
|
+
"description": "DeepSeek-R1 melhora significativamente a capacidade de raciocínio do modelo mesmo com poucos dados anotados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta."
|
859
|
+
},
|
860
|
+
"deepseek/deepseek-r1-0528:free": {
|
861
|
+
"description": "DeepSeek-R1 melhora significativamente a capacidade de raciocínio do modelo mesmo com poucos dados anotados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta."
|
862
|
+
},
|
851
863
|
"deepseek/deepseek-r1-distill-llama-70b": {
|
852
864
|
"description": "DeepSeek R1 Distill Llama 70B é um grande modelo de linguagem baseado no Llama3.3 70B, que utiliza o ajuste fino da saída do DeepSeek R1 para alcançar um desempenho competitivo comparável aos grandes modelos de ponta."
|
853
865
|
},
|
@@ -1262,6 +1274,9 @@
|
|
1262
1274
|
"gpt-4o-mini-realtime-preview": {
|
1263
1275
|
"description": "Versão em tempo real do GPT-4o-mini, suporta entrada e saída de áudio e texto em tempo real."
|
1264
1276
|
},
|
1277
|
+
"gpt-4o-mini-search-preview": {
|
1278
|
+
"description": "A versão prévia do GPT-4o mini para busca é um modelo treinado especificamente para compreender e executar consultas de busca na web, utilizando a API Chat Completions. Além dos custos por token, as consultas de busca na web são cobradas por chamada da ferramenta."
|
1279
|
+
},
|
1265
1280
|
"gpt-4o-mini-tts": {
|
1266
1281
|
"description": "GPT-4o mini TTS é um modelo de texto para fala baseado em GPT-4o mini, oferecendo uma geração de voz de alta qualidade a um custo mais baixo."
|
1267
1282
|
},
|
@@ -1274,6 +1289,9 @@
|
|
1274
1289
|
"gpt-4o-realtime-preview-2024-12-17": {
|
1275
1290
|
"description": "Versão em tempo real do GPT-4o, suporta entrada e saída de áudio e texto em tempo real."
|
1276
1291
|
},
|
1292
|
+
"gpt-4o-search-preview": {
|
1293
|
+
"description": "A versão prévia do GPT-4o para busca é um modelo treinado especificamente para compreender e executar consultas de busca na web, utilizando a API Chat Completions. Além dos custos por token, as consultas de busca na web são cobradas por chamada da ferramenta."
|
1294
|
+
},
|
1277
1295
|
"grok-2-1212": {
|
1278
1296
|
"description": "Este modelo apresenta melhorias em precisão, conformidade com instruções e capacidade multilíngue."
|
1279
1297
|
},
|
@@ -1307,6 +1325,9 @@
|
|
1307
1325
|
"hunyuan-large-longcontext": {
|
1308
1326
|
"description": "Especializado em tarefas de texto longo, como resumo de documentos e perguntas e respostas de documentos, também possui a capacidade de lidar com tarefas gerais de geração de texto. Apresenta desempenho excepcional na análise e geração de textos longos, conseguindo atender efetivamente às demandas complexas e detalhadas de processamento de conteúdo longo."
|
1309
1327
|
},
|
1328
|
+
"hunyuan-large-vision": {
|
1329
|
+
"description": "Este modelo é adequado para cenários de compreensão de imagens e texto, baseado no modelo visual-linguístico Hunyuan Large. Suporta entrada de múltiplas imagens em qualquer resolução junto com texto, gerando conteúdo textual, com foco em tarefas relacionadas à compreensão de imagens e texto, apresentando melhorias significativas em capacidades multilíngues."
|
1330
|
+
},
|
1310
1331
|
"hunyuan-lite": {
|
1311
1332
|
"description": "Atualizado para uma estrutura MOE, com uma janela de contexto de 256k, liderando em várias avaliações em NLP, código, matemática e setores diversos em comparação com muitos modelos de código aberto."
|
1312
1333
|
},
|
@@ -1331,18 +1352,15 @@
|
|
1331
1352
|
"hunyuan-t1-20250321": {
|
1332
1353
|
"description": "Modelo abrangente que constrói habilidades em ciências exatas e humanas, com forte capacidade de captura de informações em textos longos. Suporta raciocínio para responder a problemas científicos de diversas dificuldades, incluindo matemática, lógica, ciências e código."
|
1333
1354
|
},
|
1355
|
+
"hunyuan-t1-20250403": {
|
1356
|
+
"description": "Melhore a capacidade de geração de código em nível de projeto; aumente a qualidade da escrita gerada em texto; aprimore a compreensão de tópicos em múltiplas rodadas, a conformidade com instruções do tipo tob e a compreensão de palavras; otimize problemas de saída com mistura de caracteres tradicionais e simplificados, bem como misturas de chinês e inglês."
|
1357
|
+
},
|
1334
1358
|
"hunyuan-t1-latest": {
|
1335
1359
|
"description": "O primeiro modelo de inferência Hybrid-Transformer-Mamba em larga escala da indústria, que expande a capacidade de inferência, possui uma velocidade de decodificação excepcional e alinha-se ainda mais às preferências humanas."
|
1336
1360
|
},
|
1337
1361
|
"hunyuan-t1-vision": {
|
1338
1362
|
"description": "Modelo de pensamento profundo multimodal Hunyuan, suporta cadeias de pensamento nativas multimodais de longo alcance, excelente em diversos cenários de raciocínio com imagens, com melhorias significativas em problemas científicos em comparação com modelos de pensamento rápido."
|
1339
1363
|
},
|
1340
|
-
"hunyuan-translation": {
|
1341
|
-
"description": "Suporta tradução entre 15 idiomas, incluindo chinês, inglês, japonês, francês, português, espanhol, turco, russo, árabe, coreano, italiano, alemão, vietnamita, malaio e indonésio, com avaliação automatizada baseada no conjunto de testes de tradução em múltiplos cenários e pontuação COMET, superando modelos de tamanho semelhante no mercado em termos de capacidade de tradução entre idiomas."
|
1342
|
-
},
|
1343
|
-
"hunyuan-translation-lite": {
|
1344
|
-
"description": "O modelo de tradução Hunyuan suporta tradução em estilo de diálogo em linguagem natural; suporta tradução entre 15 idiomas, incluindo chinês, inglês, japonês, francês, português, espanhol, turco, russo, árabe, coreano, italiano, alemão, vietnamita, malaio e indonésio."
|
1345
|
-
},
|
1346
1364
|
"hunyuan-turbo": {
|
1347
1365
|
"description": "Versão de pré-visualização do novo modelo de linguagem de próxima geração Hunyuan, utilizando uma nova estrutura de modelo de especialistas mistos (MoE), com eficiência de inferência mais rápida e desempenho superior em comparação ao Hunyuan-Pro."
|
1348
1366
|
},
|
@@ -1355,8 +1373,11 @@
|
|
1355
1373
|
"hunyuan-turbo-vision": {
|
1356
1374
|
"description": "Novo modelo de linguagem visual de próxima geração da Hunyuan, adotando uma nova estrutura de modelo de especialistas mistos (MoE), com melhorias abrangentes em relação ao modelo anterior nas capacidades de reconhecimento básico, criação de conteúdo, perguntas e respostas de conhecimento, e análise e raciocínio relacionados à compreensão de texto e imagem."
|
1357
1375
|
},
|
1358
|
-
"hunyuan-turbos-
|
1359
|
-
"description": "
|
1376
|
+
"hunyuan-turbos-20250313": {
|
1377
|
+
"description": "Uniformização do estilo dos passos para resolução de problemas matemáticos, reforçando perguntas e respostas em múltiplas rodadas na matemática. Otimização do estilo de resposta na criação de textos, eliminando traços de IA e aumentando a expressividade literária."
|
1378
|
+
},
|
1379
|
+
"hunyuan-turbos-20250416": {
|
1380
|
+
"description": "Atualização da base pré-treinada para fortalecer a compreensão e conformidade com instruções; aprimoramento das habilidades em matemática, código, lógica e ciências exatas na fase de alinhamento; melhoria da qualidade da escrita criativa, compreensão textual, precisão na tradução e respostas a perguntas em ciências humanas; fortalecimento das capacidades de agentes em diversas áreas, com foco especial na compreensão de diálogos em múltiplas rodadas."
|
1360
1381
|
},
|
1361
1382
|
"hunyuan-turbos-latest": {
|
1362
1383
|
"description": "A versão mais recente do hunyuan-TurboS, o modelo de grande porte da Hunyuan, possui uma capacidade de raciocínio mais forte e uma experiência aprimorada."
|
@@ -1364,8 +1385,8 @@
|
|
1364
1385
|
"hunyuan-turbos-longtext-128k-20250325": {
|
1365
1386
|
"description": "Especializado em tarefas de texto longo, como resumos de documentos e perguntas sobre documentos, também possui a capacidade de lidar com tarefas gerais de geração de texto. Destaca-se na análise e geração de textos longos, atendendo efetivamente a demandas complexas e detalhadas."
|
1366
1387
|
},
|
1367
|
-
"hunyuan-turbos-
|
1368
|
-
"description": "
|
1388
|
+
"hunyuan-turbos-role-plus": {
|
1389
|
+
"description": "Modelo de interpretação de papéis da versão mais recente do Hunyuan, ajustado finamente pela equipe oficial Hunyuan. Baseado no modelo Hunyuan e treinado adicionalmente com conjuntos de dados de cenários de interpretação de papéis, oferecendo melhores resultados básicos nesses contextos."
|
1369
1390
|
},
|
1370
1391
|
"hunyuan-vision": {
|
1371
1392
|
"description": "O mais recente modelo multimodal Hunyuan, que suporta a entrada de imagens e texto para gerar conteúdo textual."
|
@@ -1886,11 +1907,14 @@
|
|
1886
1907
|
"qvq-72b-preview": {
|
1887
1908
|
"description": "O modelo QVQ é um modelo de pesquisa experimental desenvolvido pela equipe Qwen, focado em melhorar a capacidade de raciocínio visual, especialmente na área de raciocínio matemático."
|
1888
1909
|
},
|
1889
|
-
"qvq-max
|
1890
|
-
"description": "
|
1910
|
+
"qvq-max": {
|
1911
|
+
"description": "Modelo de raciocínio visual QVQ Tongyi Qianwen, que suporta entrada visual e saída de cadeia de pensamento, demonstrando capacidades superiores em matemática, programação, análise visual, criação e tarefas gerais."
|
1891
1912
|
},
|
1892
|
-
"qwen-coder-plus
|
1893
|
-
"description": "Modelo de código
|
1913
|
+
"qwen-coder-plus": {
|
1914
|
+
"description": "Modelo de código Tongyi Qianwen."
|
1915
|
+
},
|
1916
|
+
"qwen-coder-turbo": {
|
1917
|
+
"description": "Modelo de código Tongyi Qianwen."
|
1894
1918
|
},
|
1895
1919
|
"qwen-coder-turbo-latest": {
|
1896
1920
|
"description": "Modelo de código Qwen."
|
@@ -1898,41 +1922,44 @@
|
|
1898
1922
|
"qwen-long": {
|
1899
1923
|
"description": "O Qwen é um modelo de linguagem em larga escala que suporta contextos de texto longos e funcionalidades de diálogo baseadas em documentos longos e múltiplos cenários."
|
1900
1924
|
},
|
1925
|
+
"qwen-math-plus": {
|
1926
|
+
"description": "Modelo matemático Tongyi Qianwen especializado em resolução de problemas matemáticos."
|
1927
|
+
},
|
1901
1928
|
"qwen-math-plus-latest": {
|
1902
1929
|
"description": "O modelo de matemática Qwen é especificamente projetado para resolver problemas matemáticos."
|
1903
1930
|
},
|
1931
|
+
"qwen-math-turbo": {
|
1932
|
+
"description": "Modelo matemático Tongyi Qianwen especializado em resolução de problemas matemáticos."
|
1933
|
+
},
|
1904
1934
|
"qwen-math-turbo-latest": {
|
1905
1935
|
"description": "O modelo de matemática Qwen é especificamente projetado para resolver problemas matemáticos."
|
1906
1936
|
},
|
1907
1937
|
"qwen-max": {
|
1908
1938
|
"description": "Modelo de linguagem em larga escala com trilhões de parâmetros do Qwen, suportando entradas em diferentes idiomas, como português e inglês, atualmente a versão API por trás do produto Qwen 2.5."
|
1909
1939
|
},
|
1910
|
-
"qwen-
|
1911
|
-
"description": "
|
1912
|
-
},
|
1913
|
-
"qwen-omni-turbo-latest": {
|
1914
|
-
"description": "A série de modelos Qwen-Omni suporta a entrada de dados em várias modalidades, incluindo vídeo, áudio, imagens e texto, e produz saídas em áudio e texto."
|
1940
|
+
"qwen-omni-turbo": {
|
1941
|
+
"description": "A série de modelos Qwen-Omni suporta entrada de múltiplas modalidades, incluindo vídeo, áudio, imagem e texto, e gera saída em áudio e texto."
|
1915
1942
|
},
|
1916
1943
|
"qwen-plus": {
|
1917
1944
|
"description": "Versão aprimorada do modelo de linguagem em larga escala Qwen, que suporta entradas em diferentes idiomas, como português e inglês."
|
1918
1945
|
},
|
1919
|
-
"qwen-plus-latest": {
|
1920
|
-
"description": "A versão aprimorada do modelo de linguagem em larga escala Qwen Plus, que suporta entradas em diferentes idiomas, incluindo chinês e inglês."
|
1921
|
-
},
|
1922
1946
|
"qwen-turbo": {
|
1923
1947
|
"description": "O modelo de linguagem em larga escala Qwen suporta entradas em diferentes idiomas, como português e inglês."
|
1924
1948
|
},
|
1925
|
-
"qwen-turbo-latest": {
|
1926
|
-
"description": "O modelo de linguagem em larga escala Qwen Turbo, que suporta entradas em diferentes idiomas, incluindo chinês e inglês."
|
1927
|
-
},
|
1928
1949
|
"qwen-vl-chat-v1": {
|
1929
1950
|
"description": "O Qwen VL suporta uma maneira de interação flexível, incluindo múltiplas imagens, perguntas e respostas em várias rodadas, e capacidades criativas."
|
1930
1951
|
},
|
1952
|
+
"qwen-vl-max": {
|
1953
|
+
"description": "Modelo visual-linguístico de escala ultra grande Tongyi Qianwen. Em comparação com a versão aprimorada, ele eleva ainda mais a capacidade de raciocínio visual e conformidade com instruções, oferecendo níveis superiores de percepção e cognição visual."
|
1954
|
+
},
|
1931
1955
|
"qwen-vl-max-latest": {
|
1932
1956
|
"description": "Modelo de linguagem visual em escala ultra grande Qwen. Em comparação com a versão aprimorada, melhora ainda mais a capacidade de raciocínio visual e de seguir instruções, oferecendo um nível mais alto de percepção e cognição visual."
|
1933
1957
|
},
|
1934
|
-
"qwen-vl-ocr
|
1935
|
-
"description": "
|
1958
|
+
"qwen-vl-ocr": {
|
1959
|
+
"description": "Tongyi Qianwen OCR é um modelo proprietário para extração de texto, focado em imagens de documentos, tabelas, questões e escrita manual. Ele pode reconhecer múltiplos idiomas, incluindo chinês, inglês, francês, japonês, coreano, alemão, russo, italiano, vietnamita e árabe."
|
1960
|
+
},
|
1961
|
+
"qwen-vl-plus": {
|
1962
|
+
"description": "Versão aprimorada do modelo visual-linguístico em larga escala Tongyi Qianwen. Melhora significativamente a capacidade de reconhecimento de detalhes e texto, suportando imagens com resolução superior a um milhão de pixels e proporções de qualquer tamanho."
|
1936
1963
|
},
|
1937
1964
|
"qwen-vl-plus-latest": {
|
1938
1965
|
"description": "Versão aprimorada do modelo de linguagem visual em larga escala Qwen. Aumenta significativamente a capacidade de reconhecimento de detalhes e de texto, suportando resolução de mais de um milhão de pixels e imagens de qualquer proporção."
|
@@ -2021,6 +2048,9 @@
|
|
2021
2048
|
"qwen2.5-coder-1.5b-instruct": {
|
2022
2049
|
"description": "Versão open source do modelo de código do Qwen."
|
2023
2050
|
},
|
2051
|
+
"qwen2.5-coder-14b-instruct": {
|
2052
|
+
"description": "Versão open source do modelo de código Tongyi Qianwen."
|
2053
|
+
},
|
2024
2054
|
"qwen2.5-coder-32b-instruct": {
|
2025
2055
|
"description": "Versão open source do modelo de código Qwen."
|
2026
2056
|
},
|
@@ -2111,8 +2141,8 @@
|
|
2111
2141
|
"qwq-32b-preview": {
|
2112
2142
|
"description": "O modelo QwQ é um modelo de pesquisa experimental desenvolvido pela equipe Qwen, focado em aprimorar a capacidade de raciocínio da IA."
|
2113
2143
|
},
|
2114
|
-
"qwq-plus
|
2115
|
-
"description": "Modelo de
|
2144
|
+
"qwq-plus": {
|
2145
|
+
"description": "Modelo de raciocínio QwQ treinado com base no modelo Qwen2.5, que aprimora significativamente a capacidade de raciocínio por meio de aprendizado por reforço. Os principais indicadores em matemática e código (AIME 24/25, LiveCodeBench), bem como alguns indicadores gerais (IFEval, LiveBench, etc.), alcançam o nível completo do DeepSeek-R1."
|
2116
2146
|
},
|
2117
2147
|
"qwq_32b": {
|
2118
2148
|
"description": "Modelo de inferência de tamanho médio da série Qwen. Comparado a modelos tradicionais de ajuste de instruções, o QwQ, com suas capacidades de pensamento e raciocínio, pode melhorar significativamente o desempenho em tarefas de downstream, especialmente na resolução de problemas difíceis."
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"mistral": {
|
72
72
|
"description": "A Mistral oferece modelos avançados gerais, especializados e de pesquisa, amplamente utilizados em raciocínio complexo, tarefas multilíngues, geração de código, entre outros, permitindo que os usuários integrem funcionalidades personalizadas por meio de interfaces de chamada de função."
|
73
73
|
},
|
74
|
+
"modelscope": {
|
75
|
+
"description": "ModelScope é uma plataforma de modelo como serviço lançada pela Alibaba Cloud, que oferece uma ampla variedade de modelos de IA e serviços de inferência."
|
76
|
+
},
|
74
77
|
"moonshot": {
|
75
78
|
"description": "Moonshot é uma plataforma de código aberto lançada pela Beijing Dark Side Technology Co., Ltd., oferecendo uma variedade de modelos de processamento de linguagem natural, com ampla gama de aplicações, incluindo, mas não se limitando a, criação de conteúdo, pesquisa acadêmica, recomendações inteligentes e diagnósticos médicos, suportando processamento de textos longos e tarefas de geração complexas."
|
76
79
|
},
|
@@ -208,6 +208,10 @@
|
|
208
208
|
"title": "Использовать клиентский режим запросов"
|
209
209
|
},
|
210
210
|
"helpDoc": "Документация по настройке",
|
211
|
+
"responsesApi": {
|
212
|
+
"desc": "Использует новый формат запросов OpenAI, открывая доступ к таким продвинутым функциям, как цепочки мышления",
|
213
|
+
"title": "Использование спецификации Responses API"
|
214
|
+
},
|
211
215
|
"waitingForMore": "Больше моделей находится в <1>планировании подключения</1>, ожидайте с нетерпением"
|
212
216
|
},
|
213
217
|
"createNew": {
|