@lobehub/chat 1.88.20 → 1.88.21
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.i18nrc.js +1 -1
- package/CHANGELOG.md +26 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/chat.json +3 -0
- package/locales/ar/models.json +92 -17
- package/locales/ar/setting.json +0 -12
- package/locales/bg-BG/chat.json +3 -0
- package/locales/bg-BG/models.json +92 -17
- package/locales/bg-BG/setting.json +0 -12
- package/locales/de-DE/chat.json +3 -0
- package/locales/de-DE/models.json +92 -17
- package/locales/de-DE/setting.json +0 -12
- package/locales/en-US/chat.json +3 -0
- package/locales/en-US/models.json +92 -17
- package/locales/en-US/setting.json +0 -12
- package/locales/es-ES/chat.json +3 -0
- package/locales/es-ES/models.json +92 -17
- package/locales/es-ES/setting.json +0 -12
- package/locales/fa-IR/chat.json +3 -0
- package/locales/fa-IR/models.json +92 -17
- package/locales/fa-IR/setting.json +0 -12
- package/locales/fr-FR/chat.json +3 -0
- package/locales/fr-FR/models.json +92 -17
- package/locales/fr-FR/setting.json +0 -12
- package/locales/it-IT/chat.json +3 -0
- package/locales/it-IT/models.json +92 -17
- package/locales/it-IT/setting.json +0 -12
- package/locales/ja-JP/chat.json +3 -0
- package/locales/ja-JP/models.json +92 -17
- package/locales/ja-JP/setting.json +0 -12
- package/locales/ko-KR/chat.json +3 -0
- package/locales/ko-KR/models.json +92 -17
- package/locales/ko-KR/setting.json +0 -12
- package/locales/nl-NL/chat.json +3 -0
- package/locales/nl-NL/models.json +92 -17
- package/locales/nl-NL/setting.json +0 -12
- package/locales/pl-PL/chat.json +3 -0
- package/locales/pl-PL/models.json +92 -17
- package/locales/pl-PL/setting.json +0 -12
- package/locales/pt-BR/chat.json +3 -0
- package/locales/pt-BR/models.json +92 -17
- package/locales/pt-BR/setting.json +0 -12
- package/locales/ru-RU/chat.json +3 -0
- package/locales/ru-RU/models.json +92 -17
- package/locales/ru-RU/setting.json +0 -12
- package/locales/tr-TR/chat.json +3 -0
- package/locales/tr-TR/models.json +92 -17
- package/locales/tr-TR/setting.json +0 -12
- package/locales/vi-VN/chat.json +3 -0
- package/locales/vi-VN/models.json +92 -17
- package/locales/vi-VN/setting.json +0 -12
- package/locales/zh-CN/chat.json +3 -0
- package/locales/zh-CN/models.json +89 -14
- package/locales/zh-CN/setting.json +0 -12
- package/locales/zh-TW/chat.json +3 -0
- package/locales/zh-TW/models.json +92 -17
- package/locales/zh-TW/setting.json +0 -12
- package/package.json +1 -1
- package/src/config/aiModels/deepseek.ts +5 -3
- package/src/config/aiModels/groq.ts +16 -29
- package/src/config/aiModels/hunyuan.ts +104 -82
- package/src/config/aiModels/novita.ts +27 -121
- package/src/config/aiModels/openai.ts +19 -2
- package/src/config/aiModels/openrouter.ts +59 -47
- package/src/config/aiModels/siliconcloud.ts +73 -39
- package/src/config/aiModels/volcengine.ts +3 -3
- package/src/config/aiModels/xai.ts +2 -0
- package/src/features/AgentSetting/AgentModal/index.tsx +1 -26
- package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +12 -0
- package/src/features/ChatInput/ActionBar/Model/ReasoningEffortSlider.tsx +57 -0
- package/src/libs/model-runtime/novita/__snapshots__/index.test.ts.snap +1 -1
- package/src/locales/default/chat.ts +3 -0
- package/src/locales/default/setting.ts +0 -12
- package/src/services/chat.ts +5 -1
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +0 -5
- package/src/types/agent/chatConfig.ts +1 -0
- package/src/types/aiModel.ts +5 -1
@@ -341,9 +341,6 @@
|
|
341
341
|
"Qwen2.5-Coder-32B-Instruct": {
|
342
342
|
"description": "Qwen2.5-Coder-32B-Instruct is een groot taalmodel dat speciaal is ontworpen voor codegeneratie, codebegrip en efficiënte ontwikkelingsscenario's, met een toonaangevende parameteromvang van 32B, dat kan voldoen aan diverse programmeerbehoeften."
|
343
343
|
},
|
344
|
-
"SenseCat-5-1202": {
|
345
|
-
"description": "De nieuwste versie gebaseerd op V5.5, met significante verbeteringen ten opzichte van de vorige versie in basisvaardigheden in het Chinees en Engels, chatten, exacte wetenschappen, geesteswetenschappen, schrijven, wiskundige logica, en woordtelling."
|
346
|
-
},
|
347
344
|
"SenseChat": {
|
348
345
|
"description": "Basisversie van het model (V4), met een contextlengte van 4K, heeft sterke algemene capaciteiten."
|
349
346
|
},
|
@@ -356,6 +353,9 @@
|
|
356
353
|
"SenseChat-5": {
|
357
354
|
"description": "De nieuwste versie van het model (V5.5), met een contextlengte van 128K, heeft aanzienlijke verbeteringen in wiskundig redeneren, Engelse conversatie, instructievolging en begrip van lange teksten, en kan zich meten met GPT-4o."
|
358
355
|
},
|
356
|
+
"SenseChat-5-1202": {
|
357
|
+
"description": "Gebaseerd op versie V5.5, met significante verbeteringen ten opzichte van de vorige versie in basisvaardigheden in Chinees en Engels, chatten, exacte wetenschappen, geesteswetenschappen, schrijven, wiskundige logica en woordenaantalcontrole."
|
358
|
+
},
|
359
359
|
"SenseChat-5-Cantonese": {
|
360
360
|
"description": "Met een contextlengte van 32K overtreft het de conversatiebegrip in het Kantonees van GPT-4 en kan het zich in verschillende domeinen zoals kennis, redeneren, wiskunde en coderen meten met GPT-4 Turbo."
|
361
361
|
},
|
@@ -515,6 +515,12 @@
|
|
515
515
|
"ai21-jamba-1.5-mini": {
|
516
516
|
"description": "Een meertalig model met 52 miljard parameters (12 miljard actief), biedt een contextvenster van 256K, functieaanroep, gestructureerde output en gegronde generatie."
|
517
517
|
},
|
518
|
+
"ai21-labs/AI21-Jamba-1.5-Large": {
|
519
|
+
"description": "Een meertalig model met 398 miljard parameters (waarvan 94 miljard actief), biedt een contextvenster van 256K tokens, functieaanroepen, gestructureerde output en feitelijke generatie."
|
520
|
+
},
|
521
|
+
"ai21-labs/AI21-Jamba-1.5-Mini": {
|
522
|
+
"description": "Een meertalig model met 52 miljard parameters (waarvan 12 miljard actief), biedt een contextvenster van 256K tokens, functieaanroepen, gestructureerde output en feitelijke generatie."
|
523
|
+
},
|
518
524
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
519
525
|
"description": "Claude 3.5 Sonnet heeft de industrienormen verbeterd, met prestaties die de concurrentiemodellen en Claude 3 Opus overtreffen, en presteert uitstekend in brede evaluaties, met de snelheid en kosten van ons gemiddelde model."
|
520
526
|
},
|
@@ -668,6 +674,12 @@
|
|
668
674
|
"cohere-command-r-plus": {
|
669
675
|
"description": "Command R+ is een state-of-the-art RAG-geoptimaliseerd model ontworpen om enterprise-grade workloads aan te pakken."
|
670
676
|
},
|
677
|
+
"cohere/Cohere-command-r": {
|
678
|
+
"description": "Command R is een schaalbaar generatief model ontworpen voor RAG en toolgebruik, waarmee bedrijven productieklaar AI kunnen realiseren."
|
679
|
+
},
|
680
|
+
"cohere/Cohere-command-r-plus": {
|
681
|
+
"description": "Command R+ is een geavanceerd RAG-geoptimaliseerd model, ontworpen voor bedrijfsniveau workloads."
|
682
|
+
},
|
671
683
|
"command": {
|
672
684
|
"description": "Een instructievolgend dialoogmodel dat hoge kwaliteit en betrouwbaarheid biedt voor taaltaken, met een langere contextlengte dan ons basisgeneratiemodel."
|
673
685
|
},
|
@@ -1028,6 +1040,12 @@
|
|
1028
1040
|
"gemini-2.5-flash-preview-04-17": {
|
1029
1041
|
"description": "Gemini 2.5 Flash Preview is het meest kosteneffectieve model van Google, dat uitgebreide functionaliteit biedt."
|
1030
1042
|
},
|
1043
|
+
"gemini-2.5-flash-preview-04-17-thinking": {
|
1044
|
+
"description": "Gemini 2.5 Flash Preview is het meest kosteneffectieve model van Google en biedt uitgebreide functionaliteiten."
|
1045
|
+
},
|
1046
|
+
"gemini-2.5-flash-preview-05-20": {
|
1047
|
+
"description": "Gemini 2.5 Flash Preview is het meest kosteneffectieve model van Google en biedt uitgebreide functionaliteiten."
|
1048
|
+
},
|
1031
1049
|
"gemini-2.5-pro-exp-03-25": {
|
1032
1050
|
"description": "Gemini 2.5 Pro Experimental is Google's meest geavanceerde denkmodel, dat in staat is om te redeneren over complexe problemen in code, wiskunde en STEM-gebieden, en bovendien gebruik maakt van lange contexten om grote datasets, codebases en documenten te analyseren."
|
1033
1051
|
},
|
@@ -1262,23 +1280,17 @@
|
|
1262
1280
|
"grok-2-vision-1212": {
|
1263
1281
|
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
1264
1282
|
},
|
1265
|
-
"grok-3
|
1266
|
-
"description": "Vlaggenschipmodel, gespecialiseerd in data-extractie, programmeren en
|
1283
|
+
"grok-3": {
|
1284
|
+
"description": "Vlaggenschipmodel, gespecialiseerd in data-extractie, programmeren en tekstsamenvatting voor bedrijfsapplicaties, met diepgaande kennis in financiën, gezondheidszorg, recht en wetenschap."
|
1267
1285
|
},
|
1268
|
-
"grok-3-fast
|
1269
|
-
"description": "Vlaggenschipmodel, gespecialiseerd in data-extractie, programmeren en
|
1286
|
+
"grok-3-fast": {
|
1287
|
+
"description": "Vlaggenschipmodel, gespecialiseerd in data-extractie, programmeren en tekstsamenvatting voor bedrijfsapplicaties, met diepgaande kennis in financiën, gezondheidszorg, recht en wetenschap."
|
1270
1288
|
},
|
1271
|
-
"grok-3-mini
|
1272
|
-
"description": "Lichtgewicht model dat
|
1289
|
+
"grok-3-mini": {
|
1290
|
+
"description": "Lichtgewicht model dat eerst nadenkt voor het reageren. Snel en intelligent, geschikt voor logische taken zonder diepgaande domeinkennis en kan de oorspronkelijke denkprocessen vastleggen."
|
1273
1291
|
},
|
1274
|
-
"grok-3-mini-fast
|
1275
|
-
"description": "Lichtgewicht model dat
|
1276
|
-
},
|
1277
|
-
"grok-beta": {
|
1278
|
-
"description": "Biedt prestaties vergelijkbaar met Grok 2, maar met hogere efficiëntie, snelheid en functionaliteit."
|
1279
|
-
},
|
1280
|
-
"grok-vision-beta": {
|
1281
|
-
"description": "Het nieuwste model voor beeldbegrip, dat een breed scala aan visuele informatie kan verwerken, waaronder documenten, grafieken, screenshots en foto's."
|
1292
|
+
"grok-3-mini-fast": {
|
1293
|
+
"description": "Lichtgewicht model dat eerst nadenkt voor het reageren. Snel en intelligent, geschikt voor logische taken zonder diepgaande domeinkennis en kan de oorspronkelijke denkprocessen vastleggen."
|
1282
1294
|
},
|
1283
1295
|
"gryphe/mythomax-l2-13b": {
|
1284
1296
|
"description": "MythoMax l2 13B is een taalmodel dat creativiteit en intelligentie combineert door meerdere topmodellen te integreren."
|
@@ -1322,6 +1334,9 @@
|
|
1322
1334
|
"hunyuan-t1-latest": {
|
1323
1335
|
"description": "De eerste ultra-grote Hybrid-Transformer-Mamba inferentiemodel in de industrie, dat de inferentiemogelijkheden uitbreidt, met een superieure decodesnelheid en verder afgestemd op menselijke voorkeuren."
|
1324
1336
|
},
|
1337
|
+
"hunyuan-t1-vision": {
|
1338
|
+
"description": "Hunyuan multimodaal begrip en diepdenkend model, ondersteunt native multimodale lange-denk-ketens, excelleert in diverse beeldredeneerscenario's en verbetert aanzienlijk ten opzichte van snelle denkers bij exacte wetenschappen."
|
1339
|
+
},
|
1325
1340
|
"hunyuan-translation": {
|
1326
1341
|
"description": "Ondersteunt vertalingen tussen het Chinees en 15 andere talen, waaronder Engels, Japans, Frans, Portugees, Spaans, Turks, Russisch, Arabisch, Koreaans, Italiaans, Duits, Vietnamees, Maleis en Indonesisch. Gebaseerd op een geautomatiseerde evaluatie van de COMET-score met een meervoudige scenario-vertalingstestset, overtreft het in het algemeen de vertaalcapaciteiten van vergelijkbare modellen op de markt."
|
1327
1342
|
},
|
@@ -1586,6 +1601,30 @@
|
|
1586
1601
|
"meta.llama3-8b-instruct-v1:0": {
|
1587
1602
|
"description": "Meta Llama 3 is een open groot taalmodel (LLM) gericht op ontwikkelaars, onderzoekers en bedrijven, ontworpen om hen te helpen bij het bouwen, experimenteren en verantwoordelijk opschalen van hun generatieve AI-ideeën. Als onderdeel van het basis systeem voor wereldwijde gemeenschapsinnovatie is het zeer geschikt voor apparaten met beperkte rekenkracht en middelen, edge-apparaten en snellere trainingstijden."
|
1588
1603
|
},
|
1604
|
+
"meta/Llama-3.2-11B-Vision-Instruct": {
|
1605
|
+
"description": "Uitstekende beeldredeneercapaciteiten op hoge resolutie afbeeldingen, geschikt voor visuele begripstoepassingen."
|
1606
|
+
},
|
1607
|
+
"meta/Llama-3.2-90B-Vision-Instruct": {
|
1608
|
+
"description": "Geavanceerde beeldredeneercapaciteiten voor visuele begripagenttoepassingen."
|
1609
|
+
},
|
1610
|
+
"meta/Llama-3.3-70B-Instruct": {
|
1611
|
+
"description": "Llama 3.3 is het meest geavanceerde meertalige open-source grote taalmodel in de Llama-serie, biedt prestaties vergelijkbaar met een 405B model tegen zeer lage kosten. Gebaseerd op de Transformer-architectuur en verbeterd via supervised fine-tuning (SFT) en reinforcement learning met menselijke feedback (RLHF) voor bruikbaarheid en veiligheid. De instructie-geoptimaliseerde versie is geoptimaliseerd voor meertalige dialogen en presteert beter dan veel open-source en gesloten chatmodellen op diverse industriële benchmarks. Kennisafkapdatum is december 2023."
|
1612
|
+
},
|
1613
|
+
"meta/Meta-Llama-3-70B-Instruct": {
|
1614
|
+
"description": "Een krachtig model met 70 miljard parameters, uitmuntend in redeneren, coderen en brede taaltoepassingen."
|
1615
|
+
},
|
1616
|
+
"meta/Meta-Llama-3-8B-Instruct": {
|
1617
|
+
"description": "Een veelzijdig model met 8 miljard parameters, geoptimaliseerd voor dialoog- en tekstgeneratietaken."
|
1618
|
+
},
|
1619
|
+
"meta/Meta-Llama-3.1-405B-Instruct": {
|
1620
|
+
"description": "Llama 3.1 tekstmodel met instructie-finetuning, geoptimaliseerd voor meertalige dialoogtoepassingen, presteert uitstekend op veelgebruikte industriële benchmarks vergeleken met beschikbare open-source en gesloten chatmodellen."
|
1621
|
+
},
|
1622
|
+
"meta/Meta-Llama-3.1-70B-Instruct": {
|
1623
|
+
"description": "Llama 3.1 tekstmodel met instructie-finetuning, geoptimaliseerd voor meertalige dialoogtoepassingen, presteert uitstekend op veelgebruikte industriële benchmarks vergeleken met beschikbare open-source en gesloten chatmodellen."
|
1624
|
+
},
|
1625
|
+
"meta/Meta-Llama-3.1-8B-Instruct": {
|
1626
|
+
"description": "Llama 3.1 tekstmodel met instructie-finetuning, geoptimaliseerd voor meertalige dialoogtoepassingen, presteert uitstekend op veelgebruikte industriële benchmarks vergeleken met beschikbare open-source en gesloten chatmodellen."
|
1627
|
+
},
|
1589
1628
|
"meta/llama-3.1-405b-instruct": {
|
1590
1629
|
"description": "Geavanceerd LLM, ondersteunt synthetische gegevensgeneratie, kennisdistillatie en redeneren, geschikt voor chatbots, programmeren en specifieke domeintaken."
|
1591
1630
|
},
|
@@ -1610,6 +1649,30 @@
|
|
1610
1649
|
"meta/llama-3.3-70b-instruct": {
|
1611
1650
|
"description": "Geavanceerd LLM, gespecialiseerd in redeneren, wiskunde, algemene kennis en functieaanroepen."
|
1612
1651
|
},
|
1652
|
+
"microsoft/Phi-3-medium-128k-instruct": {
|
1653
|
+
"description": "Hetzelfde Phi-3-medium model, maar met een groter contextvenster, geschikt voor RAG of weinig prompts."
|
1654
|
+
},
|
1655
|
+
"microsoft/Phi-3-medium-4k-instruct": {
|
1656
|
+
"description": "Een model met 14 miljard parameters, kwalitatief beter dan Phi-3-mini, gericht op hoogwaardige, redeneerrijke data."
|
1657
|
+
},
|
1658
|
+
"microsoft/Phi-3-mini-128k-instruct": {
|
1659
|
+
"description": "Hetzelfde Phi-3-mini model, maar met een groter contextvenster, geschikt voor RAG of weinig prompts."
|
1660
|
+
},
|
1661
|
+
"microsoft/Phi-3-mini-4k-instruct": {
|
1662
|
+
"description": "Het kleinste lid van de Phi-3 familie, geoptimaliseerd voor kwaliteit en lage latentie."
|
1663
|
+
},
|
1664
|
+
"microsoft/Phi-3-small-128k-instruct": {
|
1665
|
+
"description": "Hetzelfde Phi-3-small model, maar met een groter contextvenster, geschikt voor RAG of weinig prompts."
|
1666
|
+
},
|
1667
|
+
"microsoft/Phi-3-small-8k-instruct": {
|
1668
|
+
"description": "Een model met 7 miljard parameters, kwalitatief beter dan Phi-3-mini, gericht op hoogwaardige, redeneerrijke data."
|
1669
|
+
},
|
1670
|
+
"microsoft/Phi-3.5-mini-instruct": {
|
1671
|
+
"description": "Een bijgewerkte versie van het Phi-3-mini model."
|
1672
|
+
},
|
1673
|
+
"microsoft/Phi-3.5-vision-instruct": {
|
1674
|
+
"description": "Een bijgewerkte versie van het Phi-3-vision model."
|
1675
|
+
},
|
1613
1676
|
"microsoft/WizardLM-2-8x22B": {
|
1614
1677
|
"description": "WizardLM 2 is een taalmodel van Microsoft AI dat uitblinkt in complexe gesprekken, meertaligheid, redenering en intelligente assistenttoepassingen."
|
1615
1678
|
},
|
@@ -1628,6 +1691,15 @@
|
|
1628
1691
|
"mistral": {
|
1629
1692
|
"description": "Mistral is het 7B-model van Mistral AI, geschikt voor variabele taalverwerkingsbehoeften."
|
1630
1693
|
},
|
1694
|
+
"mistral-ai/Mistral-Large-2411": {
|
1695
|
+
"description": "Het vlaggenschipmodel van Mistral, geschikt voor grootschalige redeneertaken of sterk gespecialiseerde complexe taken (zoals synthetische tekstgeneratie, codegeneratie, RAG of agenten)."
|
1696
|
+
},
|
1697
|
+
"mistral-ai/Mistral-Nemo": {
|
1698
|
+
"description": "Mistral Nemo is een geavanceerd taalmodel (LLM) met toonaangevende redeneercapaciteiten, wereldkennis en codeervaardigheden binnen zijn grootteklasse."
|
1699
|
+
},
|
1700
|
+
"mistral-ai/mistral-small-2503": {
|
1701
|
+
"description": "Mistral Small is geschikt voor elke taalgebaseerde taak die hoge efficiëntie en lage latentie vereist."
|
1702
|
+
},
|
1631
1703
|
"mistral-large": {
|
1632
1704
|
"description": "Mixtral Large is het vlaggenschipmodel van Mistral, dat de capaciteiten van codegeneratie, wiskunde en inferentie combineert, ondersteunt een contextvenster van 128k."
|
1633
1705
|
},
|
@@ -1769,6 +1841,9 @@
|
|
1769
1841
|
"openai/gpt-4o-mini": {
|
1770
1842
|
"description": "GPT-4o mini is het nieuwste model van OpenAI, gelanceerd na GPT-4 Omni, dat tekst- en afbeeldingsinvoer ondersteunt en tekstuitvoer genereert. Als hun meest geavanceerde kleine model is het veel goedkoper dan andere recente toonaangevende modellen en meer dan 60% goedkoper dan GPT-3.5 Turbo. Het behoudt de meest geavanceerde intelligentie met een aanzienlijke prijs-kwaliteitverhouding. GPT-4o mini behaalde 82% op de MMLU-test en staat momenteel hoger in chatvoorkeuren dan GPT-4."
|
1771
1843
|
},
|
1844
|
+
"openai/o1": {
|
1845
|
+
"description": "o1 is het nieuwe redeneermodel van OpenAI, ondersteunt tekst- en beeldinvoer en genereert tekstuitvoer, geschikt voor complexe taken die brede algemene kennis vereisen. Dit model heeft een context van 200K en een kennisafkapdatum van oktober 2023."
|
1846
|
+
},
|
1772
1847
|
"openai/o1-mini": {
|
1773
1848
|
"description": "o1-mini is een snel en kosteneffectief redeneermodel dat is ontworpen voor programmeer-, wiskunde- en wetenschappelijke toepassingen. Dit model heeft een context van 128K en een kennisafkapdatum van oktober 2023."
|
1774
1849
|
},
|
@@ -259,9 +259,6 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Limiet voor enkele reacties inschakelen"
|
261
261
|
},
|
262
|
-
"enableReasoningEffort": {
|
263
|
-
"title": "Inschakelen van redeneringsinspanningsaanpassing"
|
264
|
-
},
|
265
262
|
"frequencyPenalty": {
|
266
263
|
"desc": "Hoe hoger de waarde, hoe rijker en gevarieerder de woordkeuze; hoe lager de waarde, hoe eenvoudiger en directer de woordkeuze",
|
267
264
|
"title": "Woordenschat diversiteit"
|
@@ -281,15 +278,6 @@
|
|
281
278
|
"desc": "Hoe hoger de waarde, hoe meer de neiging om verschillende uitdrukkingen te gebruiken en herhaling van concepten te vermijden; hoe lager de waarde, hoe meer de neiging om herhalende concepten of verhalen te gebruiken, wat zorgt voor meer consistentie in de uitdrukking",
|
282
279
|
"title": "Uitdrukkingsdiversiteit"
|
283
280
|
},
|
284
|
-
"reasoningEffort": {
|
285
|
-
"desc": "Hoe hoger de waarde, hoe sterker de redeneringscapaciteit, maar dit kan de responstijd en het tokenverbruik verhogen",
|
286
|
-
"options": {
|
287
|
-
"high": "Hoog",
|
288
|
-
"low": "Laag",
|
289
|
-
"medium": "Gemiddeld"
|
290
|
-
},
|
291
|
-
"title": "Redeneringsinspanningsniveau"
|
292
|
-
},
|
293
281
|
"submit": "Modelinstellingen bijwerken",
|
294
282
|
"temperature": {
|
295
283
|
"desc": "Hoe hoger de waarde, hoe creatiever en fantasierijker het antwoord; hoe lager de waarde, hoe strikter het antwoord.",
|
package/locales/pl-PL/chat.json
CHANGED
@@ -341,9 +341,6 @@
|
|
341
341
|
"Qwen2.5-Coder-32B-Instruct": {
|
342
342
|
"description": "Qwen2.5-Coder-32B-Instruct to duży model językowy zaprojektowany specjalnie do generowania kodu, rozumienia kodu i efektywnych scenariuszy rozwoju, wykorzystujący wiodącą w branży skalę 32B parametrów, zdolny do zaspokojenia różnorodnych potrzeb programistycznych."
|
343
343
|
},
|
344
|
-
"SenseCat-5-1202": {
|
345
|
-
"description": "Jest to najnowsza wersja oparta na V5.5, która w porównaniu do poprzedniej wersji wykazuje znaczną poprawę w kilku wymiarach, takich jak podstawowe umiejętności w języku chińskim i angielskim, czat, wiedza ścisła, wiedza humanistyczna, pisanie, logika matematyczna oraz kontrola liczby słów."
|
346
|
-
},
|
347
344
|
"SenseChat": {
|
348
345
|
"description": "Podstawowa wersja modelu (V4), długość kontekstu 4K, silne zdolności ogólne."
|
349
346
|
},
|
@@ -356,6 +353,9 @@
|
|
356
353
|
"SenseChat-5": {
|
357
354
|
"description": "Najnowsza wersja modelu (V5.5), długość kontekstu 128K, znacznie poprawione zdolności w zakresie rozumowania matematycznego, rozmów w języku angielskim, podążania za instrukcjami oraz rozumienia długich tekstów, dorównująca GPT-4o."
|
358
355
|
},
|
356
|
+
"SenseChat-5-1202": {
|
357
|
+
"description": "Oparty na najnowszej wersji V5.5, z wyraźnymi ulepszeniami w podstawowych zdolnościach w języku chińskim i angielskim, czacie, wiedzy ścisłej i humanistycznej, pisaniu, logice matematycznej oraz kontroli liczby słów."
|
358
|
+
},
|
359
359
|
"SenseChat-5-Cantonese": {
|
360
360
|
"description": "Długość kontekstu 32K, w rozumieniu rozmów w języku kantońskim przewyższa GPT-4, w wielu dziedzinach, takich jak wiedza, rozumowanie, matematyka i programowanie, dorównuje GPT-4 Turbo."
|
361
361
|
},
|
@@ -515,6 +515,12 @@
|
|
515
515
|
"ai21-jamba-1.5-mini": {
|
516
516
|
"description": "Model wielojęzyczny z 52 miliardami parametrów (12 miliardów aktywnych), oferujący okno kontekstowe o długości 256K, wywoływanie funkcji, strukturalne wyjście i generację opartą na kontekście."
|
517
517
|
},
|
518
|
+
"ai21-labs/AI21-Jamba-1.5-Large": {
|
519
|
+
"description": "Model wielojęzyczny o 398 miliardach parametrów (94 miliardy aktywnych), oferujący okno kontekstowe o długości 256K, wywoływanie funkcji, strukturalne wyjście oraz generowanie oparte na faktach."
|
520
|
+
},
|
521
|
+
"ai21-labs/AI21-Jamba-1.5-Mini": {
|
522
|
+
"description": "Model wielojęzyczny o 52 miliardach parametrów (12 miliardów aktywnych), oferujący okno kontekstowe o długości 256K, wywoływanie funkcji, strukturalne wyjście oraz generowanie oparte na faktach."
|
523
|
+
},
|
518
524
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
519
525
|
"description": "Claude 3.5 Sonnet podnosi standardy branżowe, przewyższając modele konkurencji oraz Claude 3 Opus, osiągając doskonałe wyniki w szerokim zakresie ocen, jednocześnie oferując szybkość i koszty na poziomie naszych modeli średniej klasy."
|
520
526
|
},
|
@@ -668,6 +674,12 @@
|
|
668
674
|
"cohere-command-r-plus": {
|
669
675
|
"description": "Command R+ to model zoptymalizowany pod kątem RAG, zaprojektowany do obsługi obciążeń roboczych na poziomie przedsiębiorstwa."
|
670
676
|
},
|
677
|
+
"cohere/Cohere-command-r": {
|
678
|
+
"description": "Command R to skalowalny model generatywny zaprojektowany do zastosowań RAG i narzędziowych, umożliwiający firmom wdrożenie AI na poziomie produkcyjnym."
|
679
|
+
},
|
680
|
+
"cohere/Cohere-command-r-plus": {
|
681
|
+
"description": "Command R+ to zaawansowany model zoptymalizowany pod kątem RAG, stworzony do obsługi obciążeń na poziomie przedsiębiorstwa."
|
682
|
+
},
|
671
683
|
"command": {
|
672
684
|
"description": "Model konwersacyjny, który przestrzega instrukcji, oferujący wysoką jakość i niezawodność w zadaniach językowych, a także dłuższą długość kontekstu w porównaniu do naszych podstawowych modeli generacyjnych."
|
673
685
|
},
|
@@ -1028,6 +1040,12 @@
|
|
1028
1040
|
"gemini-2.5-flash-preview-04-17": {
|
1029
1041
|
"description": "Gemini 2.5 Flash Preview to najbardziej opłacalny model Google, oferujący wszechstronne funkcje."
|
1030
1042
|
},
|
1043
|
+
"gemini-2.5-flash-preview-04-17-thinking": {
|
1044
|
+
"description": "Gemini 2.5 Flash Preview to najbardziej opłacalny model Google, oferujący wszechstronne funkcje."
|
1045
|
+
},
|
1046
|
+
"gemini-2.5-flash-preview-05-20": {
|
1047
|
+
"description": "Gemini 2.5 Flash Preview to najbardziej opłacalny model Google, oferujący wszechstronne funkcje."
|
1048
|
+
},
|
1031
1049
|
"gemini-2.5-pro-exp-03-25": {
|
1032
1050
|
"description": "Gemini 2.5 Pro Experimental to najnowocześniejszy model myślenia Google, zdolny do wnioskowania w zakresie kodu, matematyki i złożonych problemów w dziedzinie STEM, a także do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów, wykorzystując długi kontekst."
|
1033
1051
|
},
|
@@ -1262,23 +1280,17 @@
|
|
1262
1280
|
"grok-2-vision-1212": {
|
1263
1281
|
"description": "Model ten poprawił dokładność, przestrzeganie instrukcji oraz zdolności wielojęzyczne."
|
1264
1282
|
},
|
1265
|
-
"grok-3
|
1266
|
-
"description": "Flagowy model, specjalizujący się w ekstrakcji danych, programowaniu i
|
1267
|
-
},
|
1268
|
-
"grok-3-fast-beta": {
|
1269
|
-
"description": "Flagowy model, specjalizujący się w ekstrakcji danych, programowaniu i podsumowywaniu tekstów w zastosowaniach korporacyjnych, posiadający głęboką wiedzę w dziedzinach takich jak finanse, medycyna, prawo i nauka."
|
1270
|
-
},
|
1271
|
-
"grok-3-mini-beta": {
|
1272
|
-
"description": "Lekki model, który przed rozmową najpierw przemyśli. Działa szybko i inteligentnie, nadaje się do logicznych zadań, które nie wymagają głębokiej wiedzy w danej dziedzinie, i potrafi uchwycić pierwotne ścieżki myślenia."
|
1283
|
+
"grok-3": {
|
1284
|
+
"description": "Flagowy model, specjalizujący się w ekstrakcji danych, programowaniu i streszczaniu tekstów na poziomie korporacyjnym, z głęboką wiedzą w dziedzinach finansów, medycyny, prawa i nauki."
|
1273
1285
|
},
|
1274
|
-
"grok-3-
|
1275
|
-
"description": "
|
1286
|
+
"grok-3-fast": {
|
1287
|
+
"description": "Flagowy model, specjalizujący się w ekstrakcji danych, programowaniu i streszczaniu tekstów na poziomie korporacyjnym, z głęboką wiedzą w dziedzinach finansów, medycyny, prawa i nauki."
|
1276
1288
|
},
|
1277
|
-
"grok-
|
1278
|
-
"description": "
|
1289
|
+
"grok-3-mini": {
|
1290
|
+
"description": "Lekki model, który najpierw analizuje przed rozmową. Działa szybko i inteligentnie, odpowiedni do zadań logicznych nie wymagających głębokiej wiedzy dziedzinowej, z możliwością śledzenia pierwotnego toku myślenia."
|
1279
1291
|
},
|
1280
|
-
"grok-
|
1281
|
-
"description": "
|
1292
|
+
"grok-3-mini-fast": {
|
1293
|
+
"description": "Lekki model, który najpierw analizuje przed rozmową. Działa szybko i inteligentnie, odpowiedni do zadań logicznych nie wymagających głębokiej wiedzy dziedzinowej, z możliwością śledzenia pierwotnego toku myślenia."
|
1282
1294
|
},
|
1283
1295
|
"gryphe/mythomax-l2-13b": {
|
1284
1296
|
"description": "MythoMax l2 13B to model językowy łączący kreatywność i inteligencję, zintegrowany z wieloma wiodącymi modelami."
|
@@ -1322,6 +1334,9 @@
|
|
1322
1334
|
"hunyuan-t1-latest": {
|
1323
1335
|
"description": "Pierwszy na świecie ultra-duży model wnioskowania Hybrid-Transformer-Mamba, rozszerzający zdolności wnioskowania, z niezwykle szybkim dekodowaniem, lepiej dostosowany do ludzkich preferencji."
|
1324
1336
|
},
|
1337
|
+
"hunyuan-t1-vision": {
|
1338
|
+
"description": "Model głębokiego myślenia multimodalnego Hunyuan, obsługujący natywne łańcuchy myślowe multimodalne, doskonały w różnych scenariuszach wnioskowania obrazowego, z wyraźną przewagą nad modelami szybkiego myślenia w rozwiązywaniu problemów ścisłych."
|
1339
|
+
},
|
1325
1340
|
"hunyuan-translation": {
|
1326
1341
|
"description": "Obsługuje tłumaczenie między 15 językami, w tym chińskim, angielskim, japońskim, francuskim, portugalskim, hiszpańskim, tureckim, rosyjskim, arabskim, koreańskim, włoskim, niemieckim, wietnamskim, malajskim i indonezyjskim, opartym na automatycznej ocenie COMET w oparciu o zestaw testowy do tłumaczenia w różnych scenariuszach, wykazując ogólnie lepsze zdolności tłumaczeniowe w porównaniu do modeli o podobnej skali na rynku."
|
1327
1342
|
},
|
@@ -1586,6 +1601,30 @@
|
|
1586
1601
|
"meta.llama3-8b-instruct-v1:0": {
|
1587
1602
|
"description": "Meta Llama 3 to otwarty duży model językowy (LLM) skierowany do deweloperów, badaczy i przedsiębiorstw, mający na celu pomoc w budowaniu, eksperymentowaniu i odpowiedzialnym rozwijaniu ich pomysłów na generatywną sztuczną inteligencję. Jako część podstawowego systemu innowacji globalnej społeczności, jest idealny dla urządzeń o ograniczonej mocy obliczeniowej i zasobach, a także dla szybszego czasu szkolenia."
|
1588
1603
|
},
|
1604
|
+
"meta/Llama-3.2-11B-Vision-Instruct": {
|
1605
|
+
"description": "Wysokiej jakości zdolności wnioskowania obrazowego na obrazach o wysokiej rozdzielczości, idealne do zastosowań związanych z rozumieniem wizualnym."
|
1606
|
+
},
|
1607
|
+
"meta/Llama-3.2-90B-Vision-Instruct": {
|
1608
|
+
"description": "Zaawansowane zdolności wnioskowania obrazowego przeznaczone do zastosowań agentów rozumienia wizualnego."
|
1609
|
+
},
|
1610
|
+
"meta/Llama-3.3-70B-Instruct": {
|
1611
|
+
"description": "Llama 3.3 to najnowocześniejszy wielojęzyczny, otwarty model językowy z serii Llama, oferujący wydajność porównywalną z modelem 405B przy bardzo niskich kosztach. Opiera się na architekturze Transformer i jest ulepszony przez nadzorowane dostrajanie (SFT) oraz uczenie ze wzmocnieniem na podstawie opinii ludzi (RLHF). Wersja dostrojona pod kątem instrukcji jest zoptymalizowana do wielojęzycznych dialogów i przewyższa wiele otwartych i zamkniętych modeli czatu w licznych branżowych benchmarkach. Data odcięcia wiedzy: grudzień 2023."
|
1612
|
+
},
|
1613
|
+
"meta/Meta-Llama-3-70B-Instruct": {
|
1614
|
+
"description": "Potężny model o 70 miliardach parametrów, wyróżniający się wnioskowaniem, kodowaniem i szerokim zastosowaniem językowym."
|
1615
|
+
},
|
1616
|
+
"meta/Meta-Llama-3-8B-Instruct": {
|
1617
|
+
"description": "Wszechstronny model o 8 miliardach parametrów, zoptymalizowany do zadań dialogowych i generowania tekstu."
|
1618
|
+
},
|
1619
|
+
"meta/Meta-Llama-3.1-405B-Instruct": {
|
1620
|
+
"description": "Model tekstowy Llama 3.1 dostrojony pod kątem instrukcji, zoptymalizowany do wielojęzycznych zastosowań dialogowych, osiągający doskonałe wyniki w wielu dostępnych otwartych i zamkniętych modelach czatu na popularnych branżowych benchmarkach."
|
1621
|
+
},
|
1622
|
+
"meta/Meta-Llama-3.1-70B-Instruct": {
|
1623
|
+
"description": "Model tekstowy Llama 3.1 dostrojony pod kątem instrukcji, zoptymalizowany do wielojęzycznych zastosowań dialogowych, osiągający doskonałe wyniki w wielu dostępnych otwartych i zamkniętych modelach czatu na popularnych branżowych benchmarkach."
|
1624
|
+
},
|
1625
|
+
"meta/Meta-Llama-3.1-8B-Instruct": {
|
1626
|
+
"description": "Model tekstowy Llama 3.1 dostrojony pod kątem instrukcji, zoptymalizowany do wielojęzycznych zastosowań dialogowych, osiągający doskonałe wyniki w wielu dostępnych otwartych i zamkniętych modelach czatu na popularnych branżowych benchmarkach."
|
1627
|
+
},
|
1589
1628
|
"meta/llama-3.1-405b-instruct": {
|
1590
1629
|
"description": "Zaawansowany LLM, wspierający generowanie danych syntetycznych, destylację wiedzy i wnioskowanie, odpowiedni do chatbotów, programowania i zadań w określonych dziedzinach."
|
1591
1630
|
},
|
@@ -1610,6 +1649,30 @@
|
|
1610
1649
|
"meta/llama-3.3-70b-instruct": {
|
1611
1650
|
"description": "Zaawansowany LLM, specjalizujący się w wnioskowaniu, matematyce, zdrowym rozsądku i wywoływaniu funkcji."
|
1612
1651
|
},
|
1652
|
+
"microsoft/Phi-3-medium-128k-instruct": {
|
1653
|
+
"description": "Ten sam model Phi-3-medium, ale z większym rozmiarem kontekstu, odpowiedni do RAG lub nielicznych podpowiedzi."
|
1654
|
+
},
|
1655
|
+
"microsoft/Phi-3-medium-4k-instruct": {
|
1656
|
+
"description": "Model o 14 miliardach parametrów, lepszej jakości niż Phi-3-mini, skoncentrowany na wysokiej jakości i danych wymagających intensywnego wnioskowania."
|
1657
|
+
},
|
1658
|
+
"microsoft/Phi-3-mini-128k-instruct": {
|
1659
|
+
"description": "Ten sam model Phi-3-mini, ale z większym rozmiarem kontekstu, odpowiedni do RAG lub nielicznych podpowiedzi."
|
1660
|
+
},
|
1661
|
+
"microsoft/Phi-3-mini-4k-instruct": {
|
1662
|
+
"description": "Najmniejszy członek rodziny Phi-3, zoptymalizowany pod kątem jakości i niskich opóźnień."
|
1663
|
+
},
|
1664
|
+
"microsoft/Phi-3-small-128k-instruct": {
|
1665
|
+
"description": "Ten sam model Phi-3-small, ale z większym rozmiarem kontekstu, odpowiedni do RAG lub nielicznych podpowiedzi."
|
1666
|
+
},
|
1667
|
+
"microsoft/Phi-3-small-8k-instruct": {
|
1668
|
+
"description": "Model o 7 miliardach parametrów, lepszej jakości niż Phi-3-mini, skoncentrowany na wysokiej jakości i danych wymagających intensywnego wnioskowania."
|
1669
|
+
},
|
1670
|
+
"microsoft/Phi-3.5-mini-instruct": {
|
1671
|
+
"description": "Zaktualizowana wersja modelu Phi-3-mini."
|
1672
|
+
},
|
1673
|
+
"microsoft/Phi-3.5-vision-instruct": {
|
1674
|
+
"description": "Zaktualizowana wersja modelu Phi-3-vision."
|
1675
|
+
},
|
1613
1676
|
"microsoft/WizardLM-2-8x22B": {
|
1614
1677
|
"description": "WizardLM 2 to model językowy oferowany przez Microsoft AI, który wyróżnia się w złożonych rozmowach, wielojęzyczności, wnioskowaniu i jako inteligentny asystent."
|
1615
1678
|
},
|
@@ -1628,6 +1691,15 @@
|
|
1628
1691
|
"mistral": {
|
1629
1692
|
"description": "Mistral to model 7B wydany przez Mistral AI, odpowiedni do zmiennych potrzeb przetwarzania języka."
|
1630
1693
|
},
|
1694
|
+
"mistral-ai/Mistral-Large-2411": {
|
1695
|
+
"description": "Flagowy model Mistral, odpowiedni do zadań wymagających dużej mocy obliczeniowej lub wysoko wyspecjalizowanych, takich jak generowanie tekstu syntetycznego, generowanie kodu, RAG lub agentów."
|
1696
|
+
},
|
1697
|
+
"mistral-ai/Mistral-Nemo": {
|
1698
|
+
"description": "Mistral Nemo to nowoczesny model językowy (LLM) oferujący najlepsze w swojej klasie zdolności wnioskowania, wiedzy o świecie i kodowania."
|
1699
|
+
},
|
1700
|
+
"mistral-ai/mistral-small-2503": {
|
1701
|
+
"description": "Mistral Small jest przeznaczony do wszelkich zadań językowych wymagających wysokiej wydajności i niskich opóźnień."
|
1702
|
+
},
|
1631
1703
|
"mistral-large": {
|
1632
1704
|
"description": "Mixtral Large to flagowy model Mistral, łączący zdolności generowania kodu, matematyki i wnioskowania, wspierający kontekst o długości 128k."
|
1633
1705
|
},
|
@@ -1769,6 +1841,9 @@
|
|
1769
1841
|
"openai/gpt-4o-mini": {
|
1770
1842
|
"description": "GPT-4o mini to najnowszy model OpenAI, wydany po GPT-4 Omni, obsługujący wejścia tekstowe i wizualne. Jako ich najnowocześniejszy mały model, jest znacznie tańszy od innych niedawnych modeli czołowych i kosztuje o ponad 60% mniej niż GPT-3.5 Turbo. Utrzymuje najnowocześniejszą inteligencję, oferując jednocześnie znaczną wartość za pieniądze. GPT-4o mini uzyskał wynik 82% w teście MMLU i obecnie zajmuje wyższą pozycję w preferencjach czatu niż GPT-4."
|
1771
1843
|
},
|
1844
|
+
"openai/o1": {
|
1845
|
+
"description": "o1 to nowy model wnioskowania OpenAI, obsługujący wejścia tekstowo-obrazowe i generujący tekst, odpowiedni do złożonych zadań wymagających szerokiej wiedzy ogólnej. Model posiada kontekst o długości 200K oraz datę odcięcia wiedzy na październik 2023."
|
1846
|
+
},
|
1772
1847
|
"openai/o1-mini": {
|
1773
1848
|
"description": "o1-mini to szybki i ekonomiczny model wnioskowania zaprojektowany z myślą o programowaniu, matematyce i zastosowaniach naukowych. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
|
1774
1849
|
},
|
@@ -259,9 +259,6 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Włącz limit jednorazowej odpowiedzi"
|
261
261
|
},
|
262
|
-
"enableReasoningEffort": {
|
263
|
-
"title": "Włącz dostosowanie intensywności rozumowania"
|
264
|
-
},
|
265
262
|
"frequencyPenalty": {
|
266
263
|
"desc": "Im większa wartość, tym bardziej zróżnicowane i bogate słownictwo; im mniejsza wartość, tym prostsze i bardziej bezpośrednie słownictwo",
|
267
264
|
"title": "Różnorodność słownictwa"
|
@@ -281,15 +278,6 @@
|
|
281
278
|
"desc": "Im większa wartość, tym większa tendencja do różnorodnych wyrażeń, unikanie powtórzeń; im mniejsza wartość, tym większa tendencja do używania powtarzających się koncepcji lub narracji, co prowadzi do większej spójności",
|
282
279
|
"title": "Różnorodność wyrażeń"
|
283
280
|
},
|
284
|
-
"reasoningEffort": {
|
285
|
-
"desc": "Im wyższa wartość, tym silniejsza zdolność rozumowania, ale może to zwiększyć czas odpowiedzi i zużycie tokenów",
|
286
|
-
"options": {
|
287
|
-
"high": "Wysoki",
|
288
|
-
"low": "Niski",
|
289
|
-
"medium": "Średni"
|
290
|
-
},
|
291
|
-
"title": "Intensywność rozumowania"
|
292
|
-
},
|
293
281
|
"submit": "Zaktualizuj ustawienia modelu",
|
294
282
|
"temperature": {
|
295
283
|
"desc": "Im większa wartość, tym bardziej kreatywne i wyobrażeniowe będą odpowiedzi; im mniejsza wartość, tym bardziej rygorystyczne odpowiedzi",
|
package/locales/pt-BR/chat.json
CHANGED