@lobehub/chat 1.84.8 → 1.84.10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. package/CHANGELOG.md +54 -0
  2. package/apps/desktop/electron.vite.config.ts +3 -0
  3. package/changelog/v1.json +18 -0
  4. package/locales/ar/components.json +2 -1
  5. package/locales/ar/models.json +63 -0
  6. package/locales/bg-BG/components.json +2 -1
  7. package/locales/bg-BG/models.json +63 -0
  8. package/locales/de-DE/components.json +2 -1
  9. package/locales/de-DE/models.json +63 -0
  10. package/locales/en-US/components.json +2 -1
  11. package/locales/en-US/models.json +63 -0
  12. package/locales/es-ES/components.json +2 -1
  13. package/locales/es-ES/models.json +63 -0
  14. package/locales/fa-IR/components.json +2 -1
  15. package/locales/fa-IR/models.json +63 -0
  16. package/locales/fr-FR/components.json +2 -1
  17. package/locales/fr-FR/models.json +63 -0
  18. package/locales/it-IT/components.json +2 -1
  19. package/locales/it-IT/models.json +63 -0
  20. package/locales/ja-JP/components.json +2 -1
  21. package/locales/ja-JP/models.json +63 -0
  22. package/locales/ko-KR/components.json +2 -1
  23. package/locales/ko-KR/models.json +63 -0
  24. package/locales/nl-NL/components.json +2 -1
  25. package/locales/nl-NL/models.json +63 -0
  26. package/locales/pl-PL/components.json +2 -1
  27. package/locales/pl-PL/models.json +63 -0
  28. package/locales/pt-BR/components.json +2 -1
  29. package/locales/pt-BR/models.json +63 -0
  30. package/locales/ru-RU/components.json +2 -1
  31. package/locales/ru-RU/models.json +63 -0
  32. package/locales/tr-TR/components.json +2 -1
  33. package/locales/tr-TR/models.json +63 -0
  34. package/locales/vi-VN/components.json +2 -1
  35. package/locales/vi-VN/models.json +63 -0
  36. package/locales/zh-CN/components.json +2 -1
  37. package/locales/zh-CN/models.json +63 -0
  38. package/locales/zh-TW/components.json +2 -1
  39. package/locales/zh-TW/models.json +63 -0
  40. package/package.json +2 -2
  41. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Mobile/index.tsx +1 -1
  42. package/src/app/[variants]/(main)/chat/(workspace)/@topic/features/Header.tsx +5 -1
  43. package/src/app/[variants]/(main)/chat/settings/page.tsx +1 -0
  44. package/src/app/[variants]/(main)/settings/_layout/Desktop/index.tsx +4 -1
  45. package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/CheckError.tsx +4 -2
  46. package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/Container.tsx +2 -2
  47. package/src/app/[variants]/(main)/settings/provider/ProviderMenu/index.tsx +1 -0
  48. package/src/components/FileParsingStatus/index.tsx +1 -7
  49. package/src/components/ModelSelect/index.tsx +2 -2
  50. package/src/config/aiModels/siliconcloud.ts +89 -7
  51. package/src/config/modelProviders/google.ts +16 -0
  52. package/src/features/ChatInput/ActionBar/{Clear.tsx → Clear/index.tsx} +3 -2
  53. package/src/features/ChatInput/ActionBar/History/Controls.tsx +72 -0
  54. package/src/features/ChatInput/ActionBar/History/index.tsx +46 -0
  55. package/src/features/ChatInput/ActionBar/Knowledge/index.tsx +31 -25
  56. package/src/features/ChatInput/ActionBar/Knowledge/{Dropdown.tsx → useControls.tsx} +20 -40
  57. package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +8 -1
  58. package/src/features/ChatInput/ActionBar/Model/index.tsx +27 -19
  59. package/src/features/ChatInput/ActionBar/Params/{ParamsControls.tsx → Controls.tsx} +9 -9
  60. package/src/features/ChatInput/ActionBar/Params/index.tsx +17 -20
  61. package/src/features/ChatInput/{STT → ActionBar/STT}/common.tsx +1 -0
  62. package/src/features/ChatInput/ActionBar/Search/{SwitchPanel.tsx → Controls.tsx} +12 -11
  63. package/src/features/ChatInput/ActionBar/Search/index.tsx +20 -25
  64. package/src/features/ChatInput/ActionBar/Token/TokenTag.tsx +1 -1
  65. package/src/features/ChatInput/ActionBar/Tools/ToolItem.tsx +15 -6
  66. package/src/features/ChatInput/ActionBar/Tools/index.tsx +26 -18
  67. package/src/features/ChatInput/ActionBar/Tools/{Dropdown.tsx → useControls.tsx} +38 -63
  68. package/src/features/ChatInput/ActionBar/Upload/ServerMode.tsx +10 -11
  69. package/src/features/ChatInput/ActionBar/components/Action.tsx +90 -0
  70. package/src/features/ChatInput/{components → ActionBar/components}/ActionDropdown.tsx +4 -4
  71. package/src/features/ChatInput/{components → ActionBar/components}/ActionPopover.tsx +5 -4
  72. package/src/features/ChatInput/ActionBar/{Knowledge/ListItem.tsx → components/CheckbokWithLoading.tsx} +14 -12
  73. package/src/features/ChatInput/ActionBar/config.ts +1 -1
  74. package/src/features/Conversation/Error/OllamaBizError/index.tsx +2 -2
  75. package/src/features/Conversation/Error/index.tsx +3 -10
  76. package/src/features/KnowledgeBaseModal/AssignKnowledgeBase/Loading.tsx +1 -1
  77. package/src/features/ModelSwitchPanel/index.tsx +18 -5
  78. package/src/features/{Conversation/Error/OllamaDesktopSetupGuide/index.tsx → OllamaSetupGuide/Desktop.tsx} +25 -20
  79. package/src/features/OllamaSetupGuide/index.tsx +17 -0
  80. package/src/features/ShareModal/ShareImage/ChatList/index.tsx +1 -1
  81. package/src/features/ShareModal/ShareImage/Preview.tsx +2 -2
  82. package/src/features/ShareModal/ShareImage/index.tsx +8 -6
  83. package/src/hooks/useImgToClipboard.ts +4 -1
  84. package/src/layout/GlobalProvider/Locale.tsx +0 -8
  85. package/src/libs/agent-runtime/siliconcloud/index.ts +14 -1
  86. package/src/libs/agent-runtime/utils/openaiCompatibleFactory/index.ts +1 -1
  87. package/src/locales/default/components.ts +1 -0
  88. package/src/utils/server/auth.ts +6 -0
  89. package/src/features/ChatInput/ActionBar/History.tsx +0 -78
  90. package/src/features/Conversation/Error/OllamaBizError/SetupGuide.tsx +0 -14
  91. /package/src/features/ChatInput/{STT → ActionBar/STT}/browser.tsx +0 -0
  92. /package/src/features/ChatInput/{STT → ActionBar/STT}/index.tsx +0 -0
  93. /package/src/features/ChatInput/{STT → ActionBar/STT}/openai.tsx +0 -0
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "32K 컨텍스트 길이를 지원하는 강력한 중형 코드 모델로, 다국어 프로그래밍에 능숙합니다."
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B는 Qwen3 시리즈의 밀집형 148억 매개변수 인과 언어 모델로, 복잡한 추론과 효율적인 대화를 위해 설계되었습니다. 수학, 프로그래밍 및 논리 추론과 같은 작업을 위한 '사고' 모드와 일반 대화를 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 지침 준수, 에이전트 도구 사용, 창의적 글쓰기 및 100개 이상의 언어와 방언에서의 다국어 작업을 위해 미세 조정되었습니다. 기본적으로 32K 토큰 컨텍스트를 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B는 Qwen3 시리즈의 밀집형 148억 매개변수 인과 언어 모델로, 복잡한 추론과 효율적인 대화를 위해 설계되었습니다. 수학, 프로그래밍 및 논리 추론과 같은 작업을 위한 '사고' 모드와 일반 대화를 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 지침 준수, 에이전트 도구 사용, 창의적 글쓰기 및 100개 이상의 언어와 방언에서의 다국어 작업을 위해 미세 조정되었습니다. 기본적으로 32K 토큰 컨텍스트를 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B는 Qwen이 개발한 235B 매개변수 전문가 혼합(MoE) 모델로, 매번 전방 전달 시 22B 매개변수를 활성화합니다. 복잡한 추론, 수학 및 코드 작업을 위한 '사고' 모드와 일반 대화 효율을 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 강력한 추론 능력, 다국어 지원(100개 이상의 언어와 방언), 고급 지침 준수 및 에이전트 도구 호출 능력을 보여줍니다. 기본적으로 32K 토큰 컨텍스트 창을 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B는 Qwen이 개발한 235B 매개변수 전문가 혼합(MoE) 모델로, 매번 전방 전달 시 22B 매개변수를 활성화합니다. 복잡한 추론, 수학 및 코드 작업을 위한 '사고' 모드와 일반 대화 효율을 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 강력한 추론 능력, 다국어 지원(100개 이상의 언어와 방언), 고급 지침 준수 및 에이전트 도구 호출 능력을 보여줍니다. 기본적으로 32K 토큰 컨텍스트 창을 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3는 Qwen 대형 언어 모델 시리즈의 최신 세대로, 밀집 및 전문가 혼합(MoE) 아키텍처를 갖추고 있으며, 추론, 다국어 지원 및 고급 에이전트 작업에서 뛰어난 성능을 발휘합니다. 복잡한 추론의 사고 모드와 효율적인 대화의 비사고 모드 간의 원활한 전환 능력은 다기능적이고 고품질의 성능을 보장합니다.\n\nQwen3는 QwQ 및 Qwen2.5와 같은 이전 모델에 비해 현저하게 우수하며, 뛰어난 수학, 코딩, 상식 추론, 창의적 글쓰기 및 상호작용 대화 능력을 제공합니다. Qwen3-30B-A3B 변형은 305억 개의 매개변수(33억 개의 활성화 매개변수), 48층, 128명의 전문가(각 작업에 대해 8명 활성화)를 포함하며, 최대 131K 토큰 컨텍스트(YaRN 사용)를 지원하여 오픈 소스 모델의 새로운 기준을 설정합니다."
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3는 Qwen 대형 언어 모델 시리즈의 최신 세대로, 밀집 및 전문가 혼합(MoE) 아키텍처를 갖추고 있으며, 추론, 다국어 지원 및 고급 에이전트 작업에서 뛰어난 성능을 발휘합니다. 복잡한 추론의 사고 모드와 효율적인 대화의 비사고 모드 간의 원활한 전환 능력은 다기능적이고 고품질의 성능을 보장합니다.\n\nQwen3는 QwQ 및 Qwen2.5와 같은 이전 모델에 비해 현저하게 우수하며, 뛰어난 수학, 코딩, 상식 추론, 창의적 글쓰기 및 상호작용 대화 능력을 제공합니다. Qwen3-30B-A3B 변형은 305억 개의 매개변수(33억 개의 활성화 매개변수), 48층, 128명의 전문가(각 작업에 대해 8명 활성화)를 포함하며, 최대 131K 토큰 컨텍스트(YaRN 사용)를 지원하여 오픈 소스 모델의 새로운 기준을 설정합니다."
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B는 Qwen3 시리즈의 밀집형 328억 매개변수 인과 언어 모델로, 복잡한 추론과 효율적인 대화를 위해 최적화되었습니다. 수학, 코딩 및 논리 추론과 같은 작업을 위한 '사고' 모드와 더 빠르고 일반적인 대화를 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 지침 준수, 에이전트 도구 사용, 창의적 글쓰기 및 100개 이상의 언어와 방언에서의 다국어 작업에서 강력한 성능을 발휘합니다. 기본적으로 32K 토큰 컨텍스트를 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B는 Qwen3 시리즈의 밀집형 328억 매개변수 인과 언어 모델로, 복잡한 추론과 효율적인 대화를 위해 최적화되었습니다. 수학, 코딩 및 논리 추론과 같은 작업을 위한 '사고' 모드와 더 빠르고 일반적인 대화를 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 지침 준수, 에이전트 도구 사용, 창의적 글쓰기 및 100개 이상의 언어와 방언에서의 다국어 작업에서 강력한 성능을 발휘합니다. 기본적으로 32K 토큰 컨텍스트를 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B는 Qwen3 시리즈의 밀집형 82억 매개변수 인과 언어 모델로, 추론 집약적인 작업과 효율적인 대화를 위해 설계되었습니다. 수학, 코딩 및 논리 추론을 위한 '사고' 모드와 일반 대화를 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 지침 준수, 에이전트 통합, 창의적 글쓰기 및 100개 이상의 언어와 방언에서의 다국어 사용을 위해 미세 조정되었습니다. 기본적으로 32K 토큰 컨텍스트 창을 지원하며, YaRN을 통해 131K 토큰으로 확장할 수 있습니다."
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3는 능력이 대폭 향상된 새로운 세대의 통합 지식 모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며, 사고 모드 전환을 지원합니다."
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ는 AI 추론 능력을 향상시키는 데 중점을 둔 실험 연구 모델입니다."
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "지프 AI가 발표한 GLM-4 시리즈 최신 세대의 사전 훈련 모델의 오픈 소스 버전입니다."
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414는 THUDM이 개발한 GLM-4 시리즈의 90억 매개변수 언어 모델입니다. GLM-4-9B-0414는 더 큰 32B 대응 모델과 동일한 강화 학습 및 정렬 전략을 사용하여 훈련되었으며, 그 규모에 비해 높은 성능을 달성하여 여전히 강력한 언어 이해 및 생성 능력이 필요한 자원 제한 배포에 적합합니다."
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414는 THUDM이 개발한 GLM-4 시리즈의 9B 매개변수 언어 모델입니다. 이 모델은 더 큰 GLM-Z1 모델에 처음 적용된 기술을 포함하여, 확장된 강화 학습, 쌍 순위 정렬 및 수학, 코드 및 논리와 같은 추론 집약적인 작업에 대한 훈련을 포함합니다. 비록 규모는 작지만, 일반 추론 작업에서 강력한 성능을 발휘하며, 많은 오픈 소스 모델보다 우수한 성능을 보입니다."
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B는 GLM-4-Z1 시리즈의 32B 매개변수 심층 추론 모델로, 오랜 시간 동안 사고가 필요한 복잡하고 개방적인 작업을 위해 최적화되었습니다. 이 모델은 glm-4-32b-0414를 기반으로 하며, 추가적인 강화 학습 단계와 다단계 정렬 전략을 도입하여 확장된 인지 처리를 모방하는 '반성' 능력을 도입합니다. 여기에는 반복 추론, 다중 점 분석 및 검색, 검색 및 인용 인식 합성을 포함한 도구 강화 워크플로우가 포함됩니다.\n\n이 모델은 연구 기반 글쓰기, 비교 분석 및 복잡한 질문 응답에서 뛰어난 성능을 발휘합니다. 검색 및 탐색 원시(`search`, `click`, `open`, `finish`)를 위한 함수 호출을 지원하여 에이전트 기반 파이프라인에서 사용할 수 있습니다. 반성 행동은 규칙 기반 보상 및 지연 결정 메커니즘을 갖춘 다중 회전 제어에 의해 형성되며, OpenAI 내부 정렬 스택과 같은 심층 연구 프레임워크를 기준으로 합니다. 이 변형은 깊이가 필요하고 속도가 필요하지 않은 시나리오에 적합합니다."
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera는 DeepSeek-R1과 DeepSeek-V3(0324)를 결합하여 생성된 모델로, R1의 추론 능력과 V3의 토큰 효율성 개선을 통합합니다. 이 모델은 DeepSeek-MoE Transformer 아키텍처를 기반으로 하며, 일반 텍스트 생성 작업을 위해 최적화되었습니다.\n\n이 모델은 두 개의 소스 모델의 사전 훈련된 가중치를 결합하여 추론, 효율성 및 지침 준수 작업의 성능을 균형 있게 조정합니다. MIT 라이센스에 따라 배포되며, 연구 및 상업적 용도로 사용될 수 있습니다."
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B)는 효율적인 전략과 모델 아키텍처를 통해 향상된 계산 능력을 제공합니다."
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "No enabled model, please go to settings to enable.",
89
89
  "emptyProvider": "Geen ingeschakelde provider, ga naar instellingen om deze in te schakelen",
90
90
  "goToSettings": "Ga naar instellingen",
91
- "provider": "Provider"
91
+ "provider": "Provider",
92
+ "title": "Model"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "Krachtig middelgroot codeermodel, ondersteunt 32K contextlengte, gespecialiseerd in meertalige programmering."
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B is een dichte causale taalmodel met 14 miljard parameters in de Qwen3 serie, speciaal ontworpen voor complexe redenering en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, programmeren en logische redenering en de 'niet-denk' modus voor algemene gesprekken. Dit model is fijn afgesteld voor het volgen van instructies, het gebruik van agenttools, creatieve schrijfopdrachten en meertalige taken in meer dan 100 talen en dialecten. Het verwerkt van nature 32K tokens context en kan worden uitgebreid tot 131K tokens met YaRN."
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B is een dichte causale taalmodel met 14 miljard parameters in de Qwen3 serie, speciaal ontworpen voor complexe redenering en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, programmeren en logische redenering en de 'niet-denk' modus voor algemene gesprekken. Dit model is fijn afgesteld voor het volgen van instructies, het gebruik van agenttools, creatieve schrijfopdrachten en meertalige taken in meer dan 100 talen en dialecten. Het verwerkt van nature 32K tokens context en kan worden uitgebreid tot 131K tokens met YaRN."
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B is een 235B parameters expert-meng (MoE) model ontwikkeld door Qwen, dat 22B parameters activeert bij elke voorwaartse doorgang. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor complexe redenering, wiskunde en code taken en de 'niet-denk' modus voor algemene gespreks efficiëntie. Dit model toont krachtige redeneringscapaciteiten, meertalige ondersteuning (meer dan 100 talen en dialecten), geavanceerd volgen van instructies en het aanroepen van agenttools. Het verwerkt van nature een contextvenster van 32K tokens en kan worden uitgebreid tot 131K tokens met YaRN."
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B is een 235B parameters expert-meng (MoE) model ontwikkeld door Qwen, dat 22B parameters activeert bij elke voorwaartse doorgang. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor complexe redenering, wiskunde en code taken en de 'niet-denk' modus voor algemene gespreks efficiëntie. Dit model toont krachtige redeneringscapaciteiten, meertalige ondersteuning (meer dan 100 talen en dialecten), geavanceerd volgen van instructies en het aanroepen van agenttools. Het verwerkt van nature een contextvenster van 32K tokens en kan worden uitgebreid tot 131K tokens met YaRN."
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3 is de nieuwste generatie van de Qwen grote taalmodelserie, met een dichte en expert-meng (MoE) architectuur, die uitblinkt in redeneren, meertalige ondersteuning en geavanceerde agenttaken. De unieke mogelijkheid om naadloos over te schakelen tussen de denkmodus voor complexe redenering en de niet-denkmodus voor efficiënte gesprekken zorgt voor veelzijdige en hoogwaardige prestaties.\n\nQwen3 overtreft aanzienlijk eerdere modellen zoals QwQ en Qwen2.5, en biedt uitstekende vaardigheden in wiskunde, codering, gezond verstand redenering, creatieve schrijfvaardigheden en interactieve gesprekken. De Qwen3-30B-A3B variant bevat 30,5 miljard parameters (3,3 miljard actieve parameters), 48 lagen, 128 experts (waarvan 8 per taak geactiveerd), en ondersteunt tot 131K tokens context (met YaRN), waarmee het een nieuwe standaard voor open-source modellen stelt."
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3 is de nieuwste generatie van de Qwen grote taalmodelserie, met een dichte en expert-meng (MoE) architectuur, die uitblinkt in redeneren, meertalige ondersteuning en geavanceerde agenttaken. De unieke mogelijkheid om naadloos over te schakelen tussen de denkmodus voor complexe redenering en de niet-denkmodus voor efficiënte gesprekken zorgt voor veelzijdige en hoogwaardige prestaties.\n\nQwen3 overtreft aanzienlijk eerdere modellen zoals QwQ en Qwen2.5, en biedt uitstekende vaardigheden in wiskunde, codering, gezond verstand redenering, creatieve schrijfvaardigheden en interactieve gesprekken. De Qwen3-30B-A3B variant bevat 30,5 miljard parameters (3,3 miljard actieve parameters), 48 lagen, 128 experts (waarvan 8 per taak geactiveerd), en ondersteunt tot 131K tokens context (met YaRN), waarmee het een nieuwe standaard voor open-source modellen stelt."
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B is een dichte causale taalmodel met 32,8 miljard parameters in de Qwen3 serie, geoptimaliseerd voor complexe redenering en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, codering en logische redenering en de 'niet-denk' modus voor snellere, algemene gesprekken. Dit model presteert krachtig in het volgen van instructies, het gebruik van agenttools, creatieve schrijfopdrachten en meertalige taken in meer dan 100 talen en dialecten. Het verwerkt van nature 32K tokens context en kan worden uitgebreid tot 131K tokens met YaRN."
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B is een dichte causale taalmodel met 32,8 miljard parameters in de Qwen3 serie, geoptimaliseerd voor complexe redenering en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, codering en logische redenering en de 'niet-denk' modus voor snellere, algemene gesprekken. Dit model presteert krachtig in het volgen van instructies, het gebruik van agenttools, creatieve schrijfopdrachten en meertalige taken in meer dan 100 talen en dialecten. Het verwerkt van nature 32K tokens context en kan worden uitgebreid tot 131K tokens met YaRN."
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B is een dichte causale taalmodel met 8 miljard parameters in de Qwen3 serie, speciaal ontworpen voor redeneringsintensieve taken en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, codering en logische redenering en de 'niet-denk' modus voor algemene gesprekken. Dit model is fijn afgesteld voor het volgen van instructies, agentintegratie, creatieve schrijfopdrachten en meertalig gebruik in meer dan 100 talen en dialecten. Het ondersteunt van nature een contextvenster van 32K tokens en kan worden uitgebreid tot 131K tokens via YaRN."
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2 is Alibaba's nieuwe generatie grootschalig taalmodel, ondersteunt diverse toepassingsbehoeften met uitstekende prestaties."
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2 is Alibaba's nieuwe generatie grootschalig taalmodel, ondersteunt diverse toepassingsbehoeften met uitstekende prestaties."
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ is een experimenteel onderzoeksmodel dat zich richt op het verbeteren van de AI-redeneringscapaciteiten."
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "De open-source versie van de nieuwste generatie voorgetrainde modellen van de GLM-4-serie, uitgebracht door Zhizhu AI."
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414 is een taalmodel met 9B parameters in de GLM-4 serie, ontwikkeld door THUDM. GLM-4-9B-0414 wordt getraind met dezelfde versterkingsleer- en afstemmingsstrategieën als het grotere 32B tegenhanger, en bereikt hoge prestaties in verhouding tot zijn formaat, waardoor het geschikt is voor implementaties met beperkte middelen die nog steeds sterke taalbegrip en generatiecapaciteiten vereisen."
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414 is een taalmodel met 9B parameters in de GLM-4 serie, ontwikkeld door THUDM. Het maakt gebruik van technieken die oorspronkelijk zijn toegepast op het grotere GLM-Z1 model, waaronder uitgebreide versterkingsleer, parenrangschikking afstemming en training voor redeneringsintensieve taken zoals wiskunde, codering en logica. Ondanks zijn kleinere formaat, presteert het krachtig in algemene redeneringstaken en overtreft het veel open-source modellen op zijn gewichtsniveau."
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B is een diep redeneringsmodel met 32B parameters in de GLM-4-Z1 serie, geoptimaliseerd voor complexe, open taken die langdurig nadenken vereisen. Het is gebaseerd op glm-4-32b-0414, met extra versterkingsleerfasen en meerfasige afstemmingsstrategieën, en introduceert de 'reflectieve' capaciteit die is ontworpen om uitgebreide cognitieve verwerking te simuleren. Dit omvat iteratieve redenering, multi-hop analyse en tool-versterkte workflows, zoals zoeken, ophalen en citatie-bewuste synthese.\n\nDit model presteert uitstekend in onderzoeksgericht schrijven, vergelijkende analyses en complexe vraag-en-antwoord situaties. Het ondersteunt functie-aanroepen voor zoek- en navigatiecommando's (`search`, `click`, `open`, `finish`), waardoor het kan worden gebruikt in agent-gebaseerde pipelines. Reflectief gedrag wordt gevormd door een multi-rondencycluscontrole met op regels gebaseerde beloningen en een vertraagd besluitvormingsmechanisme, en is gebaseerd op diepgaande onderzoeksframeworks zoals de interne afstemmingsstack van OpenAI. Deze variant is geschikt voor scenario's die diepgang in plaats van snelheid vereisen."
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera is gecreëerd door de combinatie van DeepSeek-R1 en DeepSeek-V3 (0324), en combineert de redeneringscapaciteiten van R1 met de verbeteringen in token efficiëntie van V3. Het is gebaseerd op de DeepSeek-MoE Transformer architectuur en is geoptimaliseerd voor algemene tekstgeneratietaken.\n\nDit model combineert de voorgetrainde gewichten van de twee bronmodellen om de prestaties in redeneren, efficiëntie en het volgen van instructies in balans te brengen. Het is vrijgegeven onder de MIT-licentie en is bedoeld voor onderzoek en commerciële doeleinden."
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B) biedt verbeterde rekenkracht door middel van efficiënte strategieën en modelarchitectuur."
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "Brak włączonych modeli, przejdź do ustawień i włącz je",
89
89
  "emptyProvider": "Nie ma aktywnego dostawcy usług, przejdź do ustawień, aby go włączyć",
90
90
  "goToSettings": "Przejdź do ustawień",
91
- "provider": "Dostawca"
91
+ "provider": "Dostawca",
92
+ "title": "Model"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "Potężny średniej wielkości model kodu, wspierający długość kontekstu 32K, specjalizujący się w programowaniu wielojęzycznym."
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B to gęsty model językowy o 14 miliardach parametrów w serii Qwen3, zaprojektowany z myślą o złożonym wnioskowaniu i efektywnych dialogach. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do matematyki, programowania i wnioskowania logicznego a trybem 'nie-myślenia' stosowanym w ogólnych rozmowach. Model został dostosowany do przestrzegania instrukcji, użycia narzędzi agenta, twórczego pisania oraz wielojęzycznych zadań w ponad 100 językach i dialektach. Obsługuje natywnie 32K tokenów kontekstu i może być rozszerzany do 131K tokenów za pomocą YaRN."
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B to gęsty model językowy o 14 miliardach parametrów w serii Qwen3, zaprojektowany z myślą o złożonym wnioskowaniu i efektywnych dialogach. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do matematyki, programowania i wnioskowania logicznego a trybem 'nie-myślenia' stosowanym w ogólnych rozmowach. Model został dostosowany do przestrzegania instrukcji, użycia narzędzi agenta, twórczego pisania oraz wielojęzycznych zadań w ponad 100 językach i dialektach. Obsługuje natywnie 32K tokenów kontekstu i może być rozszerzany do 131K tokenów za pomocą YaRN."
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B to model mieszanki ekspertów (MoE) o 235 miliardach parametrów opracowany przez Qwen, aktywujący 22 miliardy parametrów przy każdym przejściu do przodu. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do złożonego wnioskowania, matematyki i zadań kodowania a trybem 'nie-myślenia' stosowanym w ogólnych rozmowach. Model wykazuje silne zdolności w zakresie wnioskowania, wsparcia wielojęzycznego (ponad 100 języków i dialektów), zaawansowanego przestrzegania instrukcji oraz wywoływania narzędzi agenta. Obsługuje natywnie okno kontekstu 32K tokenów i może być rozszerzany do 131K tokenów za pomocą YaRN."
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B to model mieszanki ekspertów (MoE) o 235 miliardach parametrów opracowany przez Qwen, aktywujący 22 miliardy parametrów przy każdym przejściu do przodu. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do złożonego wnioskowania, matematyki i zadań kodowania a trybem 'nie-myślenia' stosowanym w ogólnych rozmowach. Model wykazuje silne zdolności w zakresie wnioskowania, wsparcia wielojęzycznego (ponad 100 języków i dialektów), zaawansowanego przestrzegania instrukcji oraz wywoływania narzędzi agenta. Obsługuje natywnie okno kontekstu 32K tokenów i może być rozszerzany do 131K tokenów za pomocą YaRN."
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3 to najnowsza generacja serii dużych modeli językowych Qwen, charakteryzująca się architekturą gęstą i mieszanką ekspertów (MoE), która doskonale radzi sobie w zakresie wnioskowania, wsparcia wielojęzycznego i zaawansowanych zadań agenta. Jego unikalna zdolność do płynnego przełączania się między trybem myślenia w złożonym wnioskowaniu a trybem nie-myślenia w efektywnych dialogach zapewnia wszechstronność i wysoką jakość wydajności.\n\nQwen3 znacząco przewyższa wcześniejsze modele, takie jak QwQ i Qwen2.5, oferując doskonałe umiejętności w zakresie matematyki, kodowania, wnioskowania ogólnego, twórczego pisania i interaktywnych dialogów. Wariant Qwen3-30B-A3B zawiera 30,5 miliarda parametrów (3,3 miliarda aktywowanych parametrów), 48 warstw, 128 ekspertów (aktywowano 8 dla każdego zadania) i obsługuje kontekst do 131K tokenów (z użyciem YaRN), ustanawiając nowy standard dla modeli open source."
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3 to najnowsza generacja serii dużych modeli językowych Qwen, charakteryzująca się architekturą gęstą i mieszanką ekspertów (MoE), która doskonale radzi sobie w zakresie wnioskowania, wsparcia wielojęzycznego i zaawansowanych zadań agenta. Jego unikalna zdolność do płynnego przełączania się między trybem myślenia w złożonym wnioskowaniu a trybem nie-myślenia w efektywnych dialogach zapewnia wszechstronność i wysoką jakość wydajności.\n\nQwen3 znacząco przewyższa wcześniejsze modele, takie jak QwQ i Qwen2.5, oferując doskonałe umiejętności w zakresie matematyki, kodowania, wnioskowania ogólnego, twórczego pisania i interaktywnych dialogów. Wariant Qwen3-30B-A3B zawiera 30,5 miliarda parametrów (3,3 miliarda aktywowanych parametrów), 48 warstw, 128 ekspertów (aktywowano 8 dla każdego zadania) i obsługuje kontekst do 131K tokenów (z użyciem YaRN), ustanawiając nowy standard dla modeli open source."
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B to gęsty model językowy o 32 miliardach parametrów w serii Qwen3, zoptymalizowany pod kątem złożonego wnioskowania i efektywnych dialogów. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do matematyki, kodowania i wnioskowania logicznego a trybem 'nie-myślenia' stosowanym w szybszych, ogólnych rozmowach. Model wykazuje silną wydajność w przestrzeganiu instrukcji, użyciu narzędzi agenta, twórczym pisaniu oraz wielojęzycznych zadań w ponad 100 językach i dialektach. Obsługuje natywnie 32K tokenów kontekstu i może być rozszerzany do 131K tokenów za pomocą YaRN."
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B to gęsty model językowy o 32 miliardach parametrów w serii Qwen3, zoptymalizowany pod kątem złożonego wnioskowania i efektywnych dialogów. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do matematyki, kodowania i wnioskowania logicznego a trybem 'nie-myślenia' stosowanym w szybszych, ogólnych rozmowach. Model wykazuje silną wydajność w przestrzeganiu instrukcji, użyciu narzędzi agenta, twórczym pisaniu oraz wielojęzycznych zadań w ponad 100 językach i dialektach. Obsługuje natywnie 32K tokenów kontekstu i może być rozszerzany do 131K tokenów za pomocą YaRN."
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B to gęsty model językowy o 8 miliardach parametrów w serii Qwen3, zaprojektowany z myślą o zadaniach wymagających intensywnego wnioskowania i efektywnych dialogach. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do matematyki, kodowania i wnioskowania logicznego a trybem 'nie-myślenia' stosowanym w ogólnych rozmowach. Model został dostosowany do przestrzegania instrukcji, integracji agenta, twórczego pisania oraz wielojęzycznego użycia w ponad 100 językach i dialektach. Obsługuje natywnie okno kontekstu 32K tokenów i może być rozszerzany do 131K tokenów za pomocą YaRN."
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2 to nowa generacja dużego modelu językowego Alibaba, wspierająca różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2 to nowa generacja dużego modelu językowego Alibaba, wspierająca różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3 to nowa generacja modelu Qwen, który znacznie zwiększa możliwości w zakresie wnioskowania, ogólności, agenta i wielojęzyczności, osiągając wiodące w branży wyniki w wielu kluczowych obszarach i wspierając przełączanie trybów myślenia."
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ to eksperymentalny model badawczy, skoncentrowany na zwiększeniu zdolności wnioskowania AI."
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "Otwarta wersja najnowszej generacji modelu pretrenowanego GLM-4 wydanego przez Zhipu AI."
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414 to model językowy o 9 miliardach parametrów w serii GLM-4 opracowany przez THUDM. GLM-4-9B-0414 wykorzystuje te same strategie uczenia przez wzmocnienie i dostosowania, co jego większy model odpowiadający 32B, osiągając wysoką wydajność w stosunku do swojej skali, co czyni go odpowiednim do wdrożeń z ograniczonymi zasobami, które nadal wymagają silnych zdolności rozumienia i generowania języka."
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414 to model językowy o 9 miliardach parametrów w serii GLM-4 opracowany przez THUDM. Wykorzystuje techniki pierwotnie zastosowane w większym modelu GLM-Z1, w tym rozszerzone uczenie przez wzmocnienie, dostosowanie rankingowe w parach oraz trening do zadań intensywnie wymagających wnioskowania, takich jak matematyka, kodowanie i logika. Mimo mniejszej skali, wykazuje silną wydajność w ogólnych zadaniach wnioskowania i przewyższa wiele modeli open source na poziomie swoich wag."
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B to model głębokiego wnioskowania o 32 miliardach parametrów w serii GLM-4-Z1, zoptymalizowany do złożonych, otwartych zadań wymagających długotrwałego myślenia. Opiera się na glm-4-32b-0414, dodając dodatkowe etapy uczenia przez wzmocnienie i strategie wieloetapowego dostosowania, wprowadzając zdolność 'refleksji' mającą na celu symulację rozszerzonego przetwarzania poznawczego. Obejmuje to iteracyjne wnioskowanie, analizy wielokrokowe i wzbogacone narzędziami przepływy pracy, takie jak wyszukiwanie, pobieranie i syntezę z uwzględnieniem cytatów.\n\nModel doskonale sprawdza się w pisaniu badawczym, analizie porównawczej i złożonych pytaniach i odpowiedziach. Obsługuje wywołania funkcji dla prymitywów wyszukiwania i nawigacji (`search`, `click`, `open`, `finish`), co umożliwia jego użycie w agentowych przepływach pracy. Zachowanie refleksyjne kształtowane jest przez wieloetapową kontrolę cykliczną z nagrodami opartymi na regułach i mechanizmem opóźnionych decyzji, a także na głębokich ramach badawczych, takich jak wewnętrzny stos dostosowujący OpenAI. Ten wariant jest odpowiedni dla scenariuszy wymagających głębokości, a nie szybkości."
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera powstał poprzez połączenie DeepSeek-R1 i DeepSeek-V3 (0324), łącząc zdolności wnioskowania R1 z poprawą efektywności tokenów V3. Opiera się na architekturze DeepSeek-MoE Transformer i został zoptymalizowany do ogólnych zadań generowania tekstu.\n\nModel łączy w sobie wagi wstępnie wytrenowane z dwóch źródłowych modeli, aby zrównoważyć wydajność wnioskowania, efektywności i przestrzegania instrukcji. Został wydany na licencji MIT, z zamiarem użycia w badaniach i zastosowaniach komercyjnych."
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B) oferuje zwiększoną moc obliczeniową dzięki efektywnym strategiom i architekturze modelu."
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "Nenhum modelo habilitado. Por favor, vá para as configurações e habilite um.",
89
89
  "emptyProvider": "Nenhum provedor ativado, por favor vá para as configurações para ativar",
90
90
  "goToSettings": "Ir para as configurações",
91
- "provider": "Fornecedor"
91
+ "provider": "Fornecedor",
92
+ "title": "Modelo"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "Modelo de código de médio porte poderoso, suporta comprimento de contexto de 32K, especializado em programação multilíngue."
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B é um modelo de linguagem causal denso de 14 bilhões de parâmetros da série Qwen3, projetado para raciocínio complexo e diálogos eficientes. Ele suporta a alternância sem costura entre o modo de 'pensamento' para tarefas de matemática, programação e raciocínio lógico e o modo 'não pensante' para diálogos gerais. Este modelo foi ajustado para seguir instruções, usar ferramentas de agentes, escrever criativamente e realizar tarefas multilíngues em mais de 100 idiomas e dialetos. Ele processa nativamente um contexto de 32K tokens e pode ser expandido para 131K tokens usando uma extensão baseada em YaRN."
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B é um modelo de linguagem causal denso de 14 bilhões de parâmetros da série Qwen3, projetado para raciocínio complexo e diálogos eficientes. Ele suporta a alternância sem costura entre o modo de 'pensamento' para tarefas de matemática, programação e raciocínio lógico e o modo 'não pensante' para diálogos gerais. Este modelo foi ajustado para seguir instruções, usar ferramentas de agentes, escrever criativamente e realizar tarefas multilíngues em mais de 100 idiomas e dialetos. Ele processa nativamente um contexto de 32K tokens e pode ser expandido para 131K tokens usando uma extensão baseada em YaRN."
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B é um modelo de mistura especializada (MoE) de 235 bilhões de parâmetros desenvolvido pela Qwen, ativando 22 bilhões de parâmetros a cada passagem para frente. Ele suporta a alternância sem costura entre o modo de 'pensamento' para raciocínio complexo, matemática e tarefas de código e o modo 'não pensante' para eficiência em diálogos gerais. Este modelo demonstra forte capacidade de raciocínio, suporte multilíngue (mais de 100 idiomas e dialetos), alta capacidade de seguir instruções e chamar ferramentas de agentes. Ele processa nativamente uma janela de contexto de 32K tokens e pode ser expandido para 131K tokens usando uma extensão baseada em YaRN."
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B é um modelo de mistura especializada (MoE) de 235 bilhões de parâmetros desenvolvido pela Qwen, ativando 22 bilhões de parâmetros a cada passagem para frente. Ele suporta a alternância sem costura entre o modo de 'pensamento' para raciocínio complexo, matemática e tarefas de código e o modo 'não pensante' para eficiência em diálogos gerais. Este modelo demonstra forte capacidade de raciocínio, suporte multilíngue (mais de 100 idiomas e dialetos), alta capacidade de seguir instruções e chamar ferramentas de agentes. Ele processa nativamente uma janela de contexto de 32K tokens e pode ser expandido para 131K tokens usando uma extensão baseada em YaRN."
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3 é a última geração da série de modelos de linguagem Qwen, com uma arquitetura de mistura densa e especializada (MoE), destacando-se em raciocínio, suporte multilíngue e tarefas avançadas de agente. Sua capacidade única de alternar sem costura entre modos de pensamento para raciocínio complexo e modos não pensantes para diálogos eficientes garante um desempenho multifuncional e de alta qualidade.\n\nQwen3 supera significativamente modelos anteriores, como QwQ e Qwen2.5, oferecendo habilidades excepcionais em matemática, codificação, raciocínio lógico, escrita criativa e diálogos interativos. A variante Qwen3-30B-A3B contém 30,5 bilhões de parâmetros (3,3 bilhões de parâmetros ativados), 48 camadas, 128 especialistas (8 ativados por tarefa) e suporta um contexto de até 131K tokens (usando YaRN), estabelecendo um novo padrão para modelos de código aberto."
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3 é a última geração da série de modelos de linguagem Qwen, com uma arquitetura de mistura densa e especializada (MoE), destacando-se em raciocínio, suporte multilíngue e tarefas avançadas de agente. Sua capacidade única de alternar sem costura entre modos de pensamento para raciocínio complexo e modos não pensantes para diálogos eficientes garante um desempenho multifuncional e de alta qualidade.\n\nQwen3 supera significativamente modelos anteriores, como QwQ e Qwen2.5, oferecendo habilidades excepcionais em matemática, codificação, raciocínio lógico, escrita criativa e diálogos interativos. A variante Qwen3-30B-A3B contém 30,5 bilhões de parâmetros (3,3 bilhões de parâmetros ativados), 48 camadas, 128 especialistas (8 ativados por tarefa) e suporta um contexto de até 131K tokens (usando YaRN), estabelecendo um novo padrão para modelos de código aberto."
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B é um modelo de linguagem causal denso de 32 bilhões de parâmetros da série Qwen3, otimizado para raciocínio complexo e diálogos eficientes. Ele suporta a alternância sem costura entre o modo de 'pensamento' para tarefas de matemática, codificação e raciocínio lógico e o modo 'não pensante' para diálogos mais rápidos e gerais. Este modelo demonstra um desempenho robusto em seguir instruções, usar ferramentas de agentes, escrever criativamente e realizar tarefas multilíngues em mais de 100 idiomas e dialetos. Ele processa nativamente um contexto de 32K tokens e pode ser expandido para 131K tokens usando uma extensão baseada em YaRN."
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B é um modelo de linguagem causal denso de 32 bilhões de parâmetros da série Qwen3, otimizado para raciocínio complexo e diálogos eficientes. Ele suporta a alternância sem costura entre o modo de 'pensamento' para tarefas de matemática, codificação e raciocínio lógico e o modo 'não pensante' para diálogos mais rápidos e gerais. Este modelo demonstra um desempenho robusto em seguir instruções, usar ferramentas de agentes, escrever criativamente e realizar tarefas multilíngues em mais de 100 idiomas e dialetos. Ele processa nativamente um contexto de 32K tokens e pode ser expandido para 131K tokens usando uma extensão baseada em YaRN."
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B é um modelo de linguagem causal denso de 8 bilhões de parâmetros da série Qwen3, projetado para tarefas intensivas em raciocínio e diálogos eficientes. Ele suporta a alternância sem costura entre o modo de 'pensamento' para matemática, codificação e raciocínio lógico e o modo 'não pensante' para diálogos gerais. Este modelo foi ajustado para seguir instruções, integrar agentes, escrever criativamente e usar em mais de 100 idiomas e dialetos. Ele suporta nativamente uma janela de contexto de 32K tokens e pode ser expandido para 131K tokens através do YaRN."
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2 é a nova geração de modelo de linguagem em larga escala da Alibaba, oferecendo desempenho excepcional para atender a diversas necessidades de aplicação."
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2 é a nova geração de modelo de linguagem em larga escala da Alibaba, oferecendo desempenho excepcional para atender a diversas necessidades de aplicação."
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ é um modelo de pesquisa experimental, focado em melhorar a capacidade de raciocínio da IA."
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "Versão de código aberto da última geração do modelo pré-treinado GLM-4, lançado pela Zhizhu AI."
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414 é um modelo de linguagem de 9 bilhões de parâmetros da série GLM-4 desenvolvido pela THUDM. O GLM-4-9B-0414 é treinado usando as mesmas estratégias de aprendizado por reforço e alinhamento de seu modelo correspondente maior de 32B, alcançando alto desempenho em relação ao seu tamanho, tornando-o adequado para implantações com recursos limitados que ainda exigem forte capacidade de compreensão e geração de linguagem."
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414 é um modelo de linguagem de 9 bilhões de parâmetros da série GLM-4 desenvolvido pela THUDM. Ele utiliza técnicas inicialmente aplicadas a modelos maiores do GLM-Z1, incluindo aprendizado por reforço expandido, alinhamento de classificação em pares e treinamento para tarefas intensivas em raciocínio, como matemática, código e lógica. Apesar de seu tamanho menor, ele demonstra um desempenho robusto em tarefas gerais de raciocínio e supera muitos modelos de código aberto em seu nível de peso."
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B é um modelo de raciocínio profundo de 32 bilhões de parâmetros da série GLM-4-Z1, otimizado para tarefas complexas e abertas que exigem longos períodos de reflexão. Ele é construído sobre o glm-4-32b-0414, adicionando uma fase de aprendizado por reforço adicional e estratégias de alinhamento em múltiplas etapas, introduzindo a capacidade de 'reflexão' destinada a simular processamento cognitivo expandido. Isso inclui raciocínio iterativo, análise de múltiplos saltos e fluxos de trabalho aprimorados por ferramentas, como busca, recuperação e síntese consciente de citações.\n\nEste modelo se destaca em escrita de pesquisa, análise comparativa e perguntas complexas. Ele suporta chamadas de função para primitivos de busca e navegação (`search`, `click`, `open`, `finish`), permitindo seu uso em pipelines baseados em agentes. O comportamento reflexivo é moldado por recompensas baseadas em regras e um mecanismo de decisão atrasada controlado por múltiplos ciclos, com referência a estruturas de pesquisa profunda como a pilha de alinhamento interna da OpenAI. Esta variante é adequada para cenários que exigem profundidade em vez de velocidade."
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera é criado pela combinação do DeepSeek-R1 e DeepSeek-V3 (0324), unindo a capacidade de raciocínio do R1 e as melhorias de eficiência de tokens do V3. Ele é baseado na arquitetura DeepSeek-MoE Transformer e otimizado para tarefas gerais de geração de texto.\n\nEste modelo combina os pesos pré-treinados de duas fontes para equilibrar o desempenho em raciocínio, eficiência e tarefas de seguir instruções. Ele é lançado sob a licença MIT, destinado a uso em pesquisa e comercial."
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B) oferece capacidade de computação aprimorada através de estratégias e arquiteturas de modelo eficientes."
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "Нет активированных моделей. Пожалуйста, перейдите в настройки и включите модель",
89
89
  "emptyProvider": "Нет активных провайдеров, пожалуйста, перейдите в настройки для их включения",
90
90
  "goToSettings": "Перейти в настройки",
91
- "provider": "Поставщик"
91
+ "provider": "Поставщик",
92
+ "title": "Модель"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "Мощная средняя модель кода, поддерживающая контекст длиной 32K, специализирующаяся на многоязычном программировании."
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B — это компактная языковая модель с 14 миллиардами параметров из серии Qwen3, специально разработанная для сложного вывода и эффективного диалога. Она поддерживает бесшовное переключение между режимом размышления для задач, таких как математика, программирование и логический вывод, и неразмышляющим режимом для общего диалога. Эта модель была дообучена для выполнения инструкций, использования инструментов агентов, креативного письма и многоязычных задач на более чем 100 языках и диалектах. Она изначально обрабатывает контекст в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B — это компактная языковая модель с 14 миллиардами параметров из серии Qwen3, специально разработанная для сложного вывода и эффективного диалога. Она поддерживает бесшовное переключение между режимом размышления для задач, таких как математика, программирование и логический вывод, и неразмышляющим режимом для общего диалога. Эта модель была дообучена для выполнения инструкций, использования инструментов агентов, креативного письма и многоязычных задач на более чем 100 языках и диалектах. Она изначально обрабатывает контекст в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B — это модель смешанной экспертизы (MoE) с 235 миллиардами параметров, разработанная Qwen, которая активирует 22 миллиарда параметров за один проход. Она поддерживает бесшовное переключение между режимом размышления для сложного вывода, математики и кодирования и неразмышляющим режимом для общей диалоговой эффективности. Эта модель демонстрирует мощные способности вывода, многоязычную поддержку (более 100 языков и диалектов), высокую точность выполнения инструкций и вызов инструментов агентов. Она изначально обрабатывает контекстное окно в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B — это модель смешанной экспертизы (MoE) с 235 миллиардами параметров, разработанная Qwen, которая активирует 22 миллиарда параметров за один проход. Она поддерживает бесшовное переключение между режимом размышления для сложного вывода, математики и кодирования и неразмышляющим режимом для общей диалоговой эффективности. Эта модель демонстрирует мощные способности вывода, многоязычную поддержку (более 100 языков и диалектов), высокую точность выполнения инструкций и вызов инструментов агентов. Она изначально обрабатывает контекстное окно в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3 — это новое поколение серии крупных языковых моделей Qwen, обладающее архитектурой смешанной экспертизы (MoE), которое демонстрирует выдающиеся результаты в области вывода, многоязычной поддержки и сложных задач. Его уникальная способность бесшовно переключаться между режимами размышления для сложного вывода и неразмышляющим режимом для эффективного диалога обеспечивает многофункциональную и высококачественную производительность.\n\nQwen3 значительно превосходит предыдущие модели, такие как QwQ и Qwen2.5, предлагая выдающиеся способности в математике, программировании, логическом выводе, креативном письме и интерактивном диалоге. Вариант Qwen3-30B-A3B содержит 30,5 миллиарда параметров (3,3 миллиарда активируемых параметров), 48 слоев, 128 экспертов (по 8 активируемых для каждой задачи) и поддерживает контекст до 131K токенов (с использованием YaRN), устанавливая новый стандарт для открытых моделей."
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3 — это новое поколение серии крупных языковых моделей Qwen, обладающее архитектурой смешанной экспертизы (MoE), которое демонстрирует выдающиеся результаты в области вывода, многоязычной поддержки и сложных задач. Его уникальная способность бесшовно переключаться между режимами размышления для сложного вывода и неразмышляющим режимом для эффективного диалога обеспечивает многофункциональную и высококачественную производительность.\n\nQwen3 значительно превосходит предыдущие модели, такие как QwQ и Qwen2.5, предлагая выдающиеся способности в математике, программировании, логическом выводе, креативном письме и интерактивном диалоге. Вариант Qwen3-30B-A3B содержит 30,5 миллиарда параметров (3,3 миллиарда активируемых параметров), 48 слоев, 128 экспертов (по 8 активируемых для каждой задачи) и поддерживает контекст до 131K токенов (с использованием YaRN), устанавливая новый стандарт для открытых моделей."
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B — это компактная языковая модель с 32 миллиардами параметров из серии Qwen3, оптимизированная для сложного вывода и эффективного диалога. Она поддерживает бесшовное переключение между режимом размышления для задач, таких как математика, программирование и логический вывод, и неразмышляющим режимом для более быстрого общего диалога. Эта модель демонстрирует высокую производительность в выполнении инструкций, использовании инструментов агентов, креативном письме и многоязычных задачах на более чем 100 языках и диалектах. Она изначально обрабатывает контекст в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B — это компактная языковая модель с 32 миллиардами параметров из серии Qwen3, оптимизированная для сложного вывода и эффективного диалога. Она поддерживает бесшовное переключение между режимом размышления для задач, таких как математика, программирование и логический вывод, и неразмышляющим режимом для более быстрого общего диалога. Эта модель демонстрирует высокую производительность в выполнении инструкций, использовании инструментов агентов, креативном письме и многоязычных задачах на более чем 100 языках и диалектах. Она изначально обрабатывает контекст в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B — это компактная языковая модель с 8 миллиардами параметров из серии Qwen3, специально разработанная для задач, требующих интенсивного вывода, и эффективного диалога. Она поддерживает бесшовное переключение между режимом размышления для математики, программирования и логического вывода и неразмышляющим режимом для общего диалога. Эта модель была дообучена для выполнения инструкций, интеграции агентов, креативного письма и многоязычного использования на более чем 100 языках и диалектах. Она изначально поддерживает контекстное окно в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2 — это новое поколение крупномасштабной языковой модели от Alibaba, обеспечивающее отличные результаты для разнообразных приложений."
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2 — это новое поколение крупномасштабной языковой модели от Alibaba, обеспечивающее отличные результаты для разнообразных приложений."
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3 — это новое поколение модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли в области вывода, универсальности, агентов и многоязычности, а также поддерживающей переключение режимов размышления."
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ — это экспериментальная исследовательская модель, сосредоточенная на повышении возможностей вывода ИИ."
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "Открытая версия последнего поколения предобученной модели GLM-4, выпущенной Zhizhu AI."
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414 — это языковая модель с 9B параметрами из серии GLM-4, разработанная THUDM. GLM-4-9B-0414 использует те же стратегии усиленного обучения и выравнивания, что и ее более крупная модель с 32B, обеспечивая высокую производительность относительно своего размера, что делает ее подходящей для развертываний с ограниченными ресурсами, которые все еще требуют мощных возможностей понимания и генерации языка."
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414 — это языковая модель с 9B параметрами из серии GLM-4, разработанная THUDM. Она использует технологии, первоначально примененные в более крупной модели GLM-Z1, включая расширенное усиленное обучение, выравнивание парных рангов и обучение для задач, требующих интенсивного вывода, таких как математика, кодирование и логика. Несмотря на меньший размер, она демонстрирует высокую производительность в общих задачах вывода и превосходит многие открытые модели по уровню своих весов."
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B — это глубокая модель вывода с 32B параметрами из серии GLM-4-Z1, оптимизированная для сложных открытых задач, требующих длительного размышления. Она основана на glm-4-32b-0414 и включает дополнительные этапы усиленного обучения и многоступенчатую стратегию выравнивания, вводя способность \"размышления\", предназначенную для имитации расширенной когнитивной обработки. Это включает итеративный вывод, многошаговый анализ и рабочие процессы, улучшенные инструментами, такими как поиск, извлечение и синтез с учетом цитат.\n\nЭта модель демонстрирует отличные результаты в исследовательском письме, сравнительном анализе и сложных вопросах. Она поддерживает вызовы функций для поиска и навигации (\"search\", \"click\", \"open\", \"finish\"), что позволяет использовать ее в агентских потоках. Поведение размышления формируется с помощью многоуровневого контроля, основанного на правилах вознаграждения и механизмах отложенного принятия решений, и ориентируется на такие глубокие исследовательские рамки, как внутренний стек выравнивания OpenAI. Этот вариант подходит для сценариев, требующих глубины, а не скорости."
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera создана путем объединения DeepSeek-R1 и DeepSeek-V3 (0324), сочетая способности вывода R1 и улучшения эффективности токенов V3. Она основана на архитектуре DeepSeek-MoE Transformer и оптимизирована для общих задач генерации текста.\n\nЭта модель объединяет предобученные веса двух исходных моделей, чтобы сбалансировать производительность в задачах вывода, эффективности и выполнения инструкций. Она выпущена под лицензией MIT и предназначена для исследовательских и коммерческих целей."
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B) обеспечивает повышенные вычислительные возможности благодаря эффективным стратегиям и архитектуре модели."
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "Etkinleştirilmiş model bulunmamaktadır, lütfen ayarlara giderek açın",
89
89
  "emptyProvider": "Etkinleştirilmiş bir sağlayıcı yok, lütfen ayarlara gidin",
90
90
  "goToSettings": "Ayrıntılara git",
91
- "provider": "Sağlayıcı"
91
+ "provider": "Sağlayıcı",
92
+ "title": "Model"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {