@lobehub/chat 1.84.22 → 1.84.23

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -2,6 +2,31 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 1.84.23](https://github.com/lobehub/lobe-chat/compare/v1.84.22...v1.84.23)
6
+
7
+ <sup>Released on **2025-05-08**</sup>
8
+
9
+ #### 💄 Styles
10
+
11
+ - **misc**: Add new gemini & Mistral models.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Styles
19
+
20
+ - **misc**: Add new gemini & Mistral models, closes [#7730](https://github.com/lobehub/lobe-chat/issues/7730) ([b7753e2](https://github.com/lobehub/lobe-chat/commit/b7753e2))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
5
30
  ### [Version 1.84.22](https://github.com/lobehub/lobe-chat/compare/v1.84.21...v1.84.22)
6
31
 
7
32
  <sup>Released on **2025-05-07**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,13 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Add new gemini & Mistral models."
6
+ ]
7
+ },
8
+ "date": "2025-05-08",
9
+ "version": "1.84.23"
10
+ },
2
11
  {
3
12
  "children": {
4
13
  "fixes": [
@@ -127,7 +127,7 @@ services:
127
127
  LOBE_PID=\$!
128
128
  sleep 3
129
129
  if [ $(wget --timeout=5 --spider --server-response ${AUTH_CASDOOR_ISSUER}/.well-known/openid-configuration 2>&1 | grep -c 'HTTP/1.1 200 OK') -eq 0 ]; then
130
- echo '⚠️Warining: Unable to fetch OIDC configuration from Casdoor'
130
+ echo '⚠️Warning: Unable to fetch OIDC configuration from Casdoor'
131
131
  echo 'Request URL: ${AUTH_CASDOOR_ISSUER}/.well-known/openid-configuration'
132
132
  echo 'Read more at: https://lobehub.com/docs/self-hosting/server-database/docker-compose#necessary-configuration'
133
133
  echo ''
@@ -150,7 +150,7 @@ services:
150
150
  fi
151
151
  fi
152
152
  if [ $(wget --timeout=5 --spider --server-response ${S3_ENDPOINT}/minio/health/live 2>&1 | grep -c 'HTTP/1.1 200 OK') -eq 0 ]; then
153
- echo '⚠️Warining: Unable to fetch MinIO health status'
153
+ echo '⚠️Warning: Unable to fetch MinIO health status'
154
154
  echo 'Request URL: ${S3_ENDPOINT}/minio/health/live'
155
155
  echo 'Read more at: https://lobehub.com/docs/self-hosting/server-database/docker-compose#necessary-configuration'
156
156
  echo ''
@@ -86,9 +86,9 @@ Switch to the Environment section, fill in the environment variables, and click
86
86
 
87
87
  ```shell
88
88
  # Environment variables required for building
89
- NIXPACKS_PKGS="pnpm bun"
89
+ NIXPACKS_PKGS="bun"
90
90
  NIXPACKS_INSTALL_CMD="pnpm install"
91
- NIXPACKS_BUILD_CMD="pnpm run build"
91
+ NIXPACKS_BUILD_CMD="NODE_OPTIONS='--max-old-space-size=8192' pnpm run build"
92
92
  NIXPACKS_START_CMD="pnpm start"
93
93
 
94
94
  APP_URL=
@@ -1,95 +1,95 @@
1
- ---
2
- title: 在 Dokploy 上部署 LobeChat 的服务端数据库版本
3
- description: 本文详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat,包括数据库配置、身份验证服务配置的设置步骤。
4
- tags:
5
- - 服务端数据库
6
- - Postgres
7
- - Clerk
8
- - Dokploy部署
9
- - 数据库配置
10
- - 身份验证服务
11
- - 环境变量配置
12
- ---
13
-
14
- # 在 Dokploy 上部署服务端数据库版
15
-
16
- 本文将详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat。
17
-
18
- ## 一、准备工作
19
-
20
- ### 部署 Dokploy 并进行相关设置
21
-
22
- ```shell
23
- curl -sSL https://dokploy.com/install.sh | sh
24
- ```
25
-
26
- 1. 在 Dokploy 的 Settings / Git 处根据提示将 Github 绑定到 Dokploy
27
-
28
- ![](https://github.com/user-attachments/assets/c75eb19e-e0f5-4135-91e4-55be8be8a996)
29
-
30
- 2. 进入 Projects 界面创建一个 Project
31
-
32
- ![](https://github.com/user-attachments/assets/4e04928d-0171-48d1-afff-e22fc2faaf4e)
33
-
34
- ### 配置 S3 存储服务
35
-
36
- 在服务端数据库中我们需要配置 S3 存储服务来存储文件,详细配置教程请参考 使用 Vercel 部署中 [配置 S3 储存服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#%E4%B8%89%E3%80%81-%E9%85%8D%E7%BD%AE-s-3-%E5%AD%98%E5%82%A8%E6%9C%8D%E5%8A%A1)。配置完成后你将获得以下环境变量:
37
-
38
- ```shell
1
+ ---
2
+ title: 在 Dokploy 上部署 LobeChat 的服务端数据库版本
3
+ description: 本文详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat,包括数据库配置、身份验证服务配置的设置步骤。
4
+ tags:
5
+ - 服务端数据库
6
+ - Postgres
7
+ - Clerk
8
+ - Dokploy部署
9
+ - 数据库配置
10
+ - 身份验证服务
11
+ - 环境变量配置
12
+ ---
13
+
14
+ # 在 Dokploy 上部署服务端数据库版
15
+
16
+ 本文将详细介绍如何在 Dokploy 中部署服务端数据库版 LobeChat。
17
+
18
+ ## 一、准备工作
19
+
20
+ ### 部署 Dokploy 并进行相关设置
21
+
22
+ ```shell
23
+ curl -sSL https://dokploy.com/install.sh | sh
24
+ ```
25
+
26
+ 1. 在 Dokploy 的 Settings / Git 处根据提示将 Github 绑定到 Dokploy
27
+
28
+ ![](https://github.com/user-attachments/assets/c75eb19e-e0f5-4135-91e4-55be8be8a996)
29
+
30
+ 2. 进入 Projects 界面创建一个 Project
31
+
32
+ ![](https://github.com/user-attachments/assets/4e04928d-0171-48d1-afff-e22fc2faaf4e)
33
+
34
+ ### 配置 S3 存储服务
35
+
36
+ 在服务端数据库中我们需要配置 S3 存储服务来存储文件,详细配置教程请参考 使用 Vercel 部署中 [配置 S3 储存服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#%E4%B8%89%E3%80%81-%E9%85%8D%E7%BD%AE-s-3-%E5%AD%98%E5%82%A8%E6%9C%8D%E5%8A%A1)。配置完成后你将获得以下环境变量:
37
+
38
+ ```shell
39
39
  S3_ACCESS_KEY_ID=
40
40
  S3_SECRET_ACCESS_KEY=
41
41
  S3_ENDPOINT=
42
42
  S3_BUCKET=
43
43
  S3_PUBLIC_DOMAIN=
44
- S3_ENABLE_PATH_STYLE=
45
- ```
46
-
47
- ### 配置 Clerk 身份验证服务
48
-
49
- 获取 `NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY` 、`CLERK_SECRET_KEY` 、`CLERK_WEBHOOK_SECRET` 这三个环境变量,Clerk 的详细配置流程请参考 使用 Vercel 部署中 [配置身份验证服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#二、-配置身份验证服务)
50
-
51
- ```shell
44
+ S3_ENABLE_PATH_STYLE=
45
+ ```
46
+
47
+ ### 配置 Clerk 身份验证服务
48
+
49
+ 获取 `NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY` 、`CLERK_SECRET_KEY` 、`CLERK_WEBHOOK_SECRET` 这三个环境变量,Clerk 的详细配置流程请参考 使用 Vercel 部署中 [配置身份验证服务](https://lobehub.com/zh/docs/self-hosting/server-database/vercel#二、-配置身份验证服务)
50
+
51
+ ```shell
52
52
  NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY=pk_live_xxxxxxxxxxx
53
53
  CLERK_SECRET_KEY=sk_live_xxxxxxxxxxxxxxxxxxxxxx
54
- CLERK_WEBHOOK_SECRET=whsec_xxxxxxxxxxxxxxxxxxxxxx
55
- ```
56
-
57
- ## 二、在 Dokploy 上部署数据库
58
-
59
- 进入前面创建的 Project,点击 Create Service 选择 Database,在 Database 界面选择 PostgreSQL ,然后设置数据库名、用户、密码,在 Docker image 中填入 `pgvector/pgvector:pg17` 最后点击 Create 创建数据库。
60
-
61
- ![](https://github.com/user-attachments/assets/97899819-278f-42fd-804a-144d521d4b4f)
62
-
54
+ CLERK_WEBHOOK_SECRET=whsec_xxxxxxxxxxxxxxxxxxxxxx
55
+ ```
56
+
57
+ ## 二、在 Dokploy 上部署数据库
58
+
59
+ 进入前面创建的 Project,点击 Create Service 选择 Database,在 Database 界面选择 PostgreSQL ,然后设置数据库名、用户、密码,在 Docker image 中填入 `pgvector/pgvector:pg17` 最后点击 Create 创建数据库。
60
+
61
+ ![](https://github.com/user-attachments/assets/97899819-278f-42fd-804a-144d521d4b4f)
62
+
63
63
  进入创建的数据库,在 External Credentials 设置一个未被占用的端口,使其能能通过外部访问,否则 LobeChat 将无法连接到该数据库。
64
- 你可以在 External Host 查看 Postgres 数据库连接 URL ,如下:
65
-
66
- ```shell
67
- postgresql://postgres:wAbLxfXSwkxxxxxx@45.577.281.48:5432/postgres
68
- ```
69
-
70
- 最后点击 Deploy 部署数据库
71
-
72
- ![](https://github.com/user-attachments/assets/b4e89dd4-877b-43fe-aa42-4680de17ba8e)
73
-
74
- ## 在 Dokploy 上部署 LobeChat
75
-
76
- 点击 Create Service 选择 Application,创建 LobeChat 应用
77
-
78
- ![](https://github.com/user-attachments/assets/4cbbbcce-36be-48ff-bb0b-31607a0bba5c)
79
-
80
- 进入创建的 LobeChat 应用,选择你 fork 的 lobe-chat 项目及分支,点击 Save 保存
81
-
82
- ![](https://github.com/user-attachments/assets/2bb4c09d-75bb-4c46-bb2f-faf538308305)
83
-
84
- 切换到 Environment ,在其中填入环境变量,点击保存。
85
-
86
- ![](https://github.com/user-attachments/assets/0f79c266-cce5-4936-aabd-4c8f19196d91)
87
-
88
- ```shell
64
+ 你可以在 External Host 查看 Postgres 数据库连接 URL ,如下:
65
+
66
+ ```shell
67
+ postgresql://postgres:wAbLxfXSwkxxxxxx@45.577.281.48:5432/postgres
68
+ ```
69
+
70
+ 最后点击 Deploy 部署数据库
71
+
72
+ ![](https://github.com/user-attachments/assets/b4e89dd4-877b-43fe-aa42-4680de17ba8e)
73
+
74
+ ## 在 Dokploy 上部署 LobeChat
75
+
76
+ 点击 Create Service 选择 Application,创建 LobeChat 应用
77
+
78
+ ![](https://github.com/user-attachments/assets/4cbbbcce-36be-48ff-bb0b-31607a0bba5c)
79
+
80
+ 进入创建的 LobeChat 应用,选择你 fork 的 lobe-chat 项目及分支,点击 Save 保存
81
+
82
+ ![](https://github.com/user-attachments/assets/2bb4c09d-75bb-4c46-bb2f-faf538308305)
83
+
84
+ 切换到 Environment ,在其中填入环境变量,点击保存。
85
+
86
+ ![](https://github.com/user-attachments/assets/0f79c266-cce5-4936-aabd-4c8f19196d91)
87
+
88
+ ```shell
89
89
  # 构建所必需的环境变量
90
- NIXPACKS_PKGS="pnpm bun"
90
+ NIXPACKS_PKGS="bun"
91
91
  NIXPACKS_INSTALL_CMD="pnpm install"
92
- NIXPACKS_BUILD_CMD="pnpm run build"
92
+ NIXPACKS_BUILD_CMD="NODE_OPTIONS='--max-old-space-size=8192' pnpm run build"
93
93
  NIXPACKS_START_CMD="pnpm start"
94
94
 
95
95
  APP_URL=
@@ -120,19 +120,19 @@ S3_ENABLE_PATH_STYLE=
120
120
  # OpenAI 相关配置
121
121
  OPENAI_API_KEY=
122
122
  OPENAI_MODEL_LIST=
123
- OPENAI_PROXY_URL=
124
- ```
125
-
126
- 添加完环境变量并保存后,点击 Deploy 进行部署,你可以在 Deployments 处查看部署进程及日志信息
127
-
128
- ![](https://github.com/user-attachments/assets/411e2002-61f0-4010-9841-18e88ca895ec)
129
-
130
- 部署成功后在 Domains 页面,为你的 LobeChat 应用绑定自己的域名并申请证书。
131
-
132
- ![](https://github.com/user-attachments/assets/dd6bc4a4-3c20-4162-87fd-5cac57e5d7e7)
133
-
134
- ## 验证 LobeChat 是否正常工作
135
-
136
- 进入你的 LobeChat 网址,如果你点击左上角登录,可以正常显示登录弹窗,那么说明你已经配置成功了,尽情享用吧~
137
-
138
- ![](https://github.com/user-attachments/assets/798ddb18-50c7-462a-a083-0c6841351d26)
123
+ OPENAI_PROXY_URL=
124
+ ```
125
+
126
+ 添加完环境变量并保存后,点击 Deploy 进行部署,你可以在 Deployments 处查看部署进程及日志信息
127
+
128
+ ![](https://github.com/user-attachments/assets/411e2002-61f0-4010-9841-18e88ca895ec)
129
+
130
+ 部署成功后在 Domains 页面,为你的 LobeChat 应用绑定自己的域名并申请证书。
131
+
132
+ ![](https://github.com/user-attachments/assets/dd6bc4a4-3c20-4162-87fd-5cac57e5d7e7)
133
+
134
+ ## 验证 LobeChat 是否正常工作
135
+
136
+ 进入你的 LobeChat 网址,如果你点击左上角登录,可以正常显示登录弹窗,那么说明你已经配置成功了,尽情享用吧~
137
+
138
+ ![](https://github.com/user-attachments/assets/798ddb18-50c7-462a-a083-0c6841351d26)
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.84.22",
3
+ "version": "1.84.23",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -9,16 +9,17 @@ const googleChatModels: AIChatModelCard[] = [
9
9
  vision: true,
10
10
  },
11
11
  contextWindowTokens: 1_048_576 + 65_536,
12
- description: 'Gemini 2.5 Flash Preview 是 Google 性价比最高的模型,提供全面的功能。',
13
- displayName: 'Gemini 2.5 Flash Preview 04-17',
12
+ description:
13
+ 'Gemini 2.5 Pro Experimental 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。',
14
+ displayName: 'Gemini 2.5 Pro Experimental 03-25',
14
15
  enabled: true,
15
- id: 'gemini-2.5-flash-preview-04-17',
16
+ id: 'gemini-2.5-pro-exp-03-25',
16
17
  maxOutput: 65_536,
17
18
  pricing: {
18
- input: 0.15,
19
- output: 3.5, // Thinking
19
+ input: 0,
20
+ output: 0,
20
21
  },
21
- releasedAt: '2025-04-17',
22
+ releasedAt: '2025-03-25',
22
23
  settings: {
23
24
  searchImpl: 'params',
24
25
  searchProvider: 'google',
@@ -34,16 +35,15 @@ const googleChatModels: AIChatModelCard[] = [
34
35
  },
35
36
  contextWindowTokens: 1_048_576 + 65_536,
36
37
  description:
37
- 'Gemini 2.5 Pro Experimental 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。',
38
- displayName: 'Gemini 2.5 Pro Experimental 03-25',
39
- enabled: true,
40
- id: 'gemini-2.5-pro-exp-03-25',
38
+ 'Gemini 2.5 Pro Preview 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。',
39
+ displayName: 'Gemini 2.5 Pro Preview 05-06 (Paid)',
40
+ id: 'gemini-2.5-pro-preview-05-06',
41
41
  maxOutput: 65_536,
42
42
  pricing: {
43
- input: 0,
44
- output: 0,
43
+ input: 1.25, // prompts <= 200k tokens
44
+ output: 10, // prompts <= 200k tokens
45
45
  },
46
- releasedAt: '2025-03-25',
46
+ releasedAt: '2025-05-06',
47
47
  settings: {
48
48
  searchImpl: 'params',
49
49
  searchProvider: 'google',
@@ -74,6 +74,30 @@ const googleChatModels: AIChatModelCard[] = [
74
74
  },
75
75
  type: 'chat',
76
76
  },
77
+ {
78
+ abilities: {
79
+ functionCall: true,
80
+ reasoning: true,
81
+ search: true,
82
+ vision: true,
83
+ },
84
+ contextWindowTokens: 1_048_576 + 65_536,
85
+ description: 'Gemini 2.5 Flash Preview 是 Google 性价比最高的模型,提供全面的功能。',
86
+ displayName: 'Gemini 2.5 Flash Preview 04-17',
87
+ enabled: true,
88
+ id: 'gemini-2.5-flash-preview-04-17',
89
+ maxOutput: 65_536,
90
+ pricing: {
91
+ input: 0.15,
92
+ output: 3.5, // Thinking
93
+ },
94
+ releasedAt: '2025-04-17',
95
+ settings: {
96
+ searchImpl: 'params',
97
+ searchProvider: 'google',
98
+ },
99
+ type: 'chat',
100
+ },
77
101
  {
78
102
  abilities: {
79
103
  reasoning: true,
@@ -4,6 +4,22 @@ import { AIChatModelCard } from '@/types/aiModel';
4
4
  // https://mistral.ai/products/la-plateforme#pricing
5
5
 
6
6
  const mistralChatModels: AIChatModelCard[] = [
7
+ {
8
+ abilities: {
9
+ functionCall: true,
10
+ },
11
+ contextWindowTokens: 128_000,
12
+ description:
13
+ 'Mistral Medium 3 以 8 倍的成本提供最先进的性能,并从根本上简化了企业部署。',
14
+ displayName: 'Mistral Medium 3',
15
+ enabled: true,
16
+ id: 'mistral-medium-latest',
17
+ pricing: {
18
+ input: 0.4,
19
+ output: 2,
20
+ },
21
+ type: 'chat',
22
+ },
7
23
  {
8
24
  abilities: {
9
25
  functionCall: true,
@@ -12,11 +28,10 @@ const mistralChatModels: AIChatModelCard[] = [
12
28
  description:
13
29
  'Mistral Nemo是一个与Nvidia合作开发的12B模型,提供出色的推理和编码性能,易于集成和替换。',
14
30
  displayName: 'Mistral Nemo',
15
- enabled: true,
16
31
  id: 'open-mistral-nemo',
17
32
  pricing: {
18
- input: 0,
19
- output: 0,
33
+ input: 0.15,
34
+ output: 0.15,
20
35
  },
21
36
  type: 'chat',
22
37
  },
@@ -26,7 +41,7 @@ const mistralChatModels: AIChatModelCard[] = [
26
41
  },
27
42
  contextWindowTokens: 32_000,
28
43
  description: 'Mistral Small是成本效益高、快速且可靠的选项,适用于翻译、摘要和情感分析等用例。',
29
- displayName: 'Mistral Small',
44
+ displayName: 'Mistral Small 3.1',
30
45
  enabled: true,
31
46
  id: 'mistral-small-latest',
32
47
  pricing: {
@@ -42,7 +57,7 @@ const mistralChatModels: AIChatModelCard[] = [
42
57
  contextWindowTokens: 131_072,
43
58
  description:
44
59
  'Mistral Large是旗舰大模型,擅长多语言任务、复杂推理和代码生成,是高端应用的理想选择。',
45
- displayName: 'Mistral Large',
60
+ displayName: 'Mistral Large 24.11',
46
61
  enabled: true,
47
62
  id: 'mistral-large-latest',
48
63
  pricing: {
@@ -93,11 +108,10 @@ const mistralChatModels: AIChatModelCard[] = [
93
108
  description:
94
109
  'Pixtral 模型在图表和图理解、文档问答、多模态推理和指令遵循等任务上表现出强大的能力,能够以自然分辨率和宽高比摄入图像,还能够在长达 128K 令牌的长上下文窗口中处理任意数量的图像。',
95
110
  displayName: 'Pixtral 12B',
96
- enabled: true,
97
111
  id: 'pixtral-12b-2409',
98
112
  pricing: {
99
- input: 0,
100
- output: 0,
113
+ input: 0.15,
114
+ output: 0.15,
101
115
  },
102
116
  type: 'chat',
103
117
  },
@@ -129,45 +143,6 @@ const mistralChatModels: AIChatModelCard[] = [
129
143
  },
130
144
  type: 'chat',
131
145
  },
132
- {
133
- contextWindowTokens: 32_768,
134
- description:
135
- 'Mistral 7B是一款紧凑但高性能的模型,擅长批量处理和简单任务,如分类和文本生成,具有良好的推理能力。',
136
- displayName: 'Mistral 7B',
137
- id: 'open-mistral-7b', // Deprecated on 2025/03/30
138
- pricing: {
139
- input: 0.25,
140
- output: 0.25,
141
- },
142
- type: 'chat',
143
- },
144
- {
145
- contextWindowTokens: 32_768,
146
- description:
147
- 'Mixtral 8x7B是一个稀疏专家模型,利用多个参数提高推理速度,适合处理多语言和代码生成任务。',
148
- displayName: 'Mixtral 8x7B',
149
- id: 'open-mixtral-8x7b', // Deprecated on 2025/03/30
150
- pricing: {
151
- input: 0.7,
152
- output: 0.7,
153
- },
154
- type: 'chat',
155
- },
156
- {
157
- abilities: {
158
- functionCall: true,
159
- },
160
- contextWindowTokens: 65_536,
161
- description:
162
- 'Mixtral 8x22B是一个更大的专家模型,专注于复杂任务,提供出色的推理能力和更高的吞吐量。',
163
- displayName: 'Mixtral 8x22B',
164
- id: 'open-mixtral-8x22b', // Deprecated on 2025/03/30
165
- pricing: {
166
- input: 2,
167
- output: 6,
168
- },
169
- type: 'chat',
170
- },
171
146
  {
172
147
  contextWindowTokens: 256_000,
173
148
  description:
@@ -5,59 +5,59 @@ const vertexaiChatModels: AIChatModelCard[] = [
5
5
  {
6
6
  abilities: {
7
7
  functionCall: true,
8
+ reasoning: true,
8
9
  vision: true,
9
10
  },
10
- contextWindowTokens: 2_097_152 + 8192,
11
+ contextWindowTokens: 1_048_576 + 65_536,
11
12
  description:
12
- 'Gemini 2.0 Pro Experimental 是 Google 最新的实验性多模态AI模型,与历史版本相比有一定的质量提升,特别是对于世界知识、代码和长上下文。',
13
- displayName: 'Gemini 2.0 Pro Experimental 02-05',
13
+ 'Gemini 2.5 Pro Preview 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。',
14
+ displayName: 'Gemini 2.5 Pro Preview 05-06',
14
15
  enabled: true,
15
- id: 'gemini-2.0-pro-exp-02-05',
16
- maxOutput: 8192,
16
+ id: 'gemini-2.5-pro-preview-05-06',
17
+ maxOutput: 65_536,
17
18
  pricing: {
18
- cachedInput: 0,
19
- input: 0,
20
- output: 0,
19
+ input: 1.25, // prompts <= 200k tokens
20
+ output: 10, // prompts <= 200k tokens
21
21
  },
22
- releasedAt: '2025-02-05',
22
+ releasedAt: '2025-05-06',
23
23
  type: 'chat',
24
24
  },
25
25
  {
26
26
  abilities: {
27
27
  functionCall: true,
28
+ reasoning: true,
28
29
  vision: true,
29
30
  },
30
- contextWindowTokens: 1_048_576 + 8192,
31
+ contextWindowTokens: 1_048_576 + 65_536,
31
32
  description:
32
- 'Gemini 2.0 Flash 提供下一代功能和改进,包括卓越的速度、原生工具使用、多模态生成和1M令牌上下文窗口。',
33
- displayName: 'Gemini 2.0 Flash',
34
- enabled: true,
35
- id: 'gemini-2.0-flash',
36
- maxOutput: 8192,
33
+ 'Gemini 2.5 Pro Preview 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。',
34
+ displayName: 'Gemini 2.5 Pro Preview 03-25',
35
+ id: 'gemini-2.5-pro-preview-03-25',
36
+ maxOutput: 65_536,
37
37
  pricing: {
38
- cachedInput: 0.0375,
39
- input: 0.15,
40
- output: 0.6,
38
+ input: 1.25, // prompts <= 200k tokens
39
+ output: 10, // prompts <= 200k tokens
41
40
  },
42
- releasedAt: '2025-02-05',
41
+ releasedAt: '2025-04-09',
43
42
  type: 'chat',
44
43
  },
45
44
  {
46
45
  abilities: {
47
46
  functionCall: true,
47
+ reasoning: true,
48
48
  vision: true,
49
49
  },
50
- contextWindowTokens: 1_048_576 + 8192,
51
- description: 'Gemini 2.0 Flash 模型变体,针对成本效益和低延迟等目标进行了优化。',
52
- displayName: 'Gemini 2.0 Flash-Lite',
53
- id: 'gemini-2.0-flash-lite',
54
- maxOutput: 8192,
50
+ contextWindowTokens: 1_048_576 + 65_536,
51
+ description: 'Gemini 2.5 Flash Preview 是 Google 性价比最高的模型,提供全面的功能。',
52
+ displayName: 'Gemini 2.5 Flash Preview 04-17',
53
+ enabled: true,
54
+ id: 'gemini-2.5-flash-preview-04-17',
55
+ maxOutput: 65_536,
55
56
  pricing: {
56
- cachedInput: 0.018_75,
57
- input: 0.075,
58
- output: 0.3,
57
+ input: 0.15,
58
+ output: 3.5, // Thinking
59
59
  },
60
- releasedAt: '2025-02-05',
60
+ releasedAt: '2025-04-17',
61
61
  type: 'chat',
62
62
  },
63
63
  {
@@ -68,8 +68,8 @@ const vertexaiChatModels: AIChatModelCard[] = [
68
68
  contextWindowTokens: 1_048_576 + 8192,
69
69
  description:
70
70
  'Gemini 2.0 Flash 提供下一代功能和改进,包括卓越的速度、原生工具使用、多模态生成和1M令牌上下文窗口。',
71
- displayName: 'Gemini 2.0 Flash 001',
72
- id: 'gemini-2.0-flash-001',
71
+ displayName: 'Gemini 2.0 Flash',
72
+ id: 'gemini-2.0-flash',
73
73
  maxOutput: 8192,
74
74
  pricing: {
75
75
  cachedInput: 0.0375,
@@ -81,33 +81,33 @@ const vertexaiChatModels: AIChatModelCard[] = [
81
81
  },
82
82
  {
83
83
  abilities: {
84
- reasoning: true,
84
+ functionCall: true,
85
85
  vision: true,
86
86
  },
87
- contextWindowTokens: 1_048_576 + 65_536,
88
- description:
89
- 'Gemini 2.0 Flash Thinking Exp 是 Google 的实验性多模态推理AI模型,能对复杂问题进行推理,拥有新的思维能力。',
90
- displayName: 'Gemini 2.0 Flash Thinking Experimental 01-21',
91
- enabled: true,
92
- id: 'gemini-2.0-flash-thinking-exp-01-21',
93
- maxOutput: 65_536,
87
+ contextWindowTokens: 1_048_576 + 8192,
88
+ description: 'Gemini 2.0 Flash 模型变体,针对成本效益和低延迟等目标进行了优化。',
89
+ displayName: 'Gemini 2.0 Flash-Lite',
90
+ id: 'gemini-2.0-flash-lite',
91
+ maxOutput: 8192,
94
92
  pricing: {
95
- cachedInput: 0,
96
- input: 0,
97
- output: 0,
93
+ cachedInput: 0.018_75,
94
+ input: 0.075,
95
+ output: 0.3,
98
96
  },
99
- releasedAt: '2025-01-21',
97
+ releasedAt: '2025-02-05',
100
98
  type: 'chat',
101
99
  },
102
100
  {
103
- abilities: { functionCall: true, vision: true },
101
+ abilities: {
102
+ functionCall: true,
103
+ vision: true
104
+ },
104
105
  contextWindowTokens: 1_000_000 + 8192,
105
106
  description: 'Gemini 1.5 Flash 002 是一款高效的多模态模型,支持广泛应用的扩展。',
106
107
  displayName: 'Gemini 1.5 Flash 002',
107
108
  id: 'gemini-1.5-flash-002',
108
109
  maxOutput: 8192,
109
110
  pricing: {
110
- cachedInput: 0.018_75,
111
111
  input: 0.075,
112
112
  output: 0.3,
113
113
  },
@@ -115,21 +115,10 @@ const vertexaiChatModels: AIChatModelCard[] = [
115
115
  type: 'chat',
116
116
  },
117
117
  {
118
- abilities: { functionCall: true, vision: true },
119
- contextWindowTokens: 1_000_000 + 8192,
120
- description: 'Gemini 1.5 Flash 001 是一款高效的多模态模型,支持广泛应用的扩展。',
121
- displayName: 'Gemini 1.5 Flash 001',
122
- id: 'gemini-1.5-flash-001',
123
- maxOutput: 8192,
124
- pricing: {
125
- cachedInput: 0.018_75,
126
- input: 0.075,
127
- output: 0.3,
118
+ abilities: {
119
+ functionCall: true,
120
+ vision: true
128
121
  },
129
- type: 'chat',
130
- },
131
- {
132
- abilities: { functionCall: true, vision: true },
133
122
  contextWindowTokens: 2_000_000 + 8192,
134
123
  description:
135
124
  'Gemini 1.5 Pro 002 是最新的生产就绪模型,提供更高质量的输出,特别在数学、长上下文和视觉任务方面有显著提升。',
@@ -137,28 +126,12 @@ const vertexaiChatModels: AIChatModelCard[] = [
137
126
  id: 'gemini-1.5-pro-002',
138
127
  maxOutput: 8192,
139
128
  pricing: {
140
- cachedInput: 0.315,
141
129
  input: 1.25,
142
130
  output: 2.5,
143
131
  },
144
132
  releasedAt: '2024-09-24',
145
133
  type: 'chat',
146
134
  },
147
- {
148
- abilities: { functionCall: true, vision: true },
149
- contextWindowTokens: 2_000_000 + 8192,
150
- description: 'Gemini 1.5 Pro 001 是可扩展的多模态AI解决方案,支持广泛的复杂任务。',
151
- displayName: 'Gemini 1.5 Pro 001',
152
- id: 'gemini-1.5-pro-001',
153
- maxOutput: 8192,
154
- pricing: {
155
- cachedInput: 0.875,
156
- input: 3.5,
157
- output: 10.5,
158
- },
159
- releasedAt: '2024-02-15',
160
- type: 'chat',
161
- },
162
135
  ];
163
136
 
164
137
  export const allModels = [...vertexaiChatModels];
@@ -8,7 +8,7 @@ const VertexAI: ModelProviderCard = {
8
8
  'Google 的 Gemini 系列是其最先进、通用的 AI模型,由 Google DeepMind 打造,专为多模态设计,支持文本、代码、图像、音频和视频的无缝理解与处理。适用于从数据中心到移动设备的多种环境,极大提升了AI模型的效率与应用广泛性。',
9
9
  id: 'vertexai',
10
10
  modelsUrl: 'https://console.cloud.google.com/vertex-ai/model-garden',
11
- name: 'VertexAI',
11
+ name: 'Vertex AI',
12
12
  settings: {
13
13
  disableBrowserRequest: true,
14
14
  showModelFetcher: false,
@@ -1,6 +1,7 @@
1
1
  'use client';
2
2
 
3
- import { Drawer, Grid, Tabs } from '@lobehub/ui';
3
+ import { Grid, Icon, Modal, Segmented } from '@lobehub/ui';
4
+ import { MessageSquare, Settings2 } from 'lucide-react';
4
5
  import { memo, useState } from 'react';
5
6
  import { useTranslation } from 'react-i18next';
6
7
 
@@ -20,39 +21,42 @@ const HotkeyHelperPanel = memo(() => {
20
21
  const handleClose = () => updateSystemStatus({ showHotkeyHelper: false });
21
22
 
22
23
  return (
23
- <Drawer
24
- height={240}
25
- mask={false}
26
- maskClosable={false}
27
- onClose={handleClose}
24
+ <Modal
25
+ centered
26
+ footer={null}
27
+ onCancel={handleClose}
28
28
  open={open}
29
- placement={'bottom'}
30
29
  styles={{
31
- bodyContent: { paddingBlock: 24 },
32
- title: { paddingBlock: 0 },
30
+ body: { paddingBlock: 24 },
31
+ mask: {
32
+ backdropFilter: 'blur(8px)',
33
+ backgroundColor: 'rgba(0, 0, 0, 0.5)',
34
+ },
33
35
  }}
34
36
  title={
35
- <Tabs
36
- activeKey={active}
37
- compact
38
- items={[
37
+ <Segmented
38
+ onChange={(key) => setActive(key as HotkeyGroupId)}
39
+ options={[
39
40
  {
40
- key: HotkeyGroupEnum.Essential,
41
+ icon: <Icon icon={Settings2} />,
41
42
  label: t('hotkey.group.essential'),
43
+ value: HotkeyGroupEnum.Essential,
42
44
  },
43
45
  {
44
- key: HotkeyGroupEnum.Conversation,
46
+ icon: <Icon icon={MessageSquare} />,
45
47
  label: t('hotkey.group.conversation'),
48
+ value: HotkeyGroupEnum.Conversation,
46
49
  },
47
50
  ]}
48
- onChange={(key) => setActive(key as HotkeyGroupId)}
51
+ value={active}
52
+ variant="filled"
49
53
  />
50
54
  }
51
55
  >
52
56
  <Grid gap={32}>
53
57
  <HotkeyContent groupId={active} />
54
58
  </Grid>
55
- </Drawer>
59
+ </Modal>
56
60
  );
57
61
  });
58
62