@lobehub/chat 1.81.3 → 1.81.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.eslintrc.js +1 -0
- package/.github/workflows/release.yml +5 -0
- package/.github/workflows/test.yml +5 -0
- package/CHANGELOG.md +58 -0
- package/changelog/v1.json +21 -0
- package/locales/ar/common.json +2 -0
- package/locales/ar/electron.json +32 -0
- package/locales/ar/models.json +129 -3
- package/locales/ar/plugin.json +1 -0
- package/locales/ar/tool.json +25 -0
- package/locales/bg-BG/common.json +2 -0
- package/locales/bg-BG/electron.json +32 -0
- package/locales/bg-BG/models.json +129 -3
- package/locales/bg-BG/plugin.json +1 -0
- package/locales/bg-BG/tool.json +25 -0
- package/locales/de-DE/common.json +2 -0
- package/locales/de-DE/electron.json +32 -0
- package/locales/de-DE/models.json +129 -3
- package/locales/de-DE/plugin.json +1 -0
- package/locales/de-DE/tool.json +25 -0
- package/locales/en-US/common.json +2 -0
- package/locales/en-US/electron.json +32 -0
- package/locales/en-US/models.json +129 -3
- package/locales/en-US/plugin.json +1 -0
- package/locales/en-US/tool.json +25 -0
- package/locales/es-ES/common.json +2 -0
- package/locales/es-ES/electron.json +32 -0
- package/locales/es-ES/models.json +129 -3
- package/locales/es-ES/plugin.json +1 -0
- package/locales/es-ES/tool.json +25 -0
- package/locales/fa-IR/common.json +2 -0
- package/locales/fa-IR/electron.json +32 -0
- package/locales/fa-IR/models.json +129 -3
- package/locales/fa-IR/plugin.json +1 -0
- package/locales/fa-IR/tool.json +25 -0
- package/locales/fr-FR/common.json +2 -0
- package/locales/fr-FR/electron.json +32 -0
- package/locales/fr-FR/models.json +129 -3
- package/locales/fr-FR/plugin.json +1 -0
- package/locales/fr-FR/tool.json +25 -0
- package/locales/it-IT/common.json +2 -0
- package/locales/it-IT/electron.json +32 -0
- package/locales/it-IT/models.json +129 -3
- package/locales/it-IT/plugin.json +1 -0
- package/locales/it-IT/tool.json +25 -0
- package/locales/ja-JP/common.json +2 -0
- package/locales/ja-JP/electron.json +32 -0
- package/locales/ja-JP/models.json +129 -3
- package/locales/ja-JP/plugin.json +1 -0
- package/locales/ja-JP/tool.json +25 -0
- package/locales/ko-KR/common.json +2 -0
- package/locales/ko-KR/electron.json +32 -0
- package/locales/ko-KR/models.json +129 -3
- package/locales/ko-KR/plugin.json +1 -0
- package/locales/ko-KR/tool.json +25 -0
- package/locales/nl-NL/common.json +2 -0
- package/locales/nl-NL/electron.json +32 -0
- package/locales/nl-NL/models.json +129 -3
- package/locales/nl-NL/plugin.json +1 -0
- package/locales/nl-NL/tool.json +25 -0
- package/locales/pl-PL/common.json +2 -0
- package/locales/pl-PL/electron.json +32 -0
- package/locales/pl-PL/models.json +129 -3
- package/locales/pl-PL/plugin.json +1 -0
- package/locales/pl-PL/tool.json +25 -0
- package/locales/pt-BR/common.json +2 -0
- package/locales/pt-BR/electron.json +32 -0
- package/locales/pt-BR/models.json +129 -3
- package/locales/pt-BR/plugin.json +1 -0
- package/locales/pt-BR/tool.json +25 -0
- package/locales/ru-RU/common.json +2 -0
- package/locales/ru-RU/electron.json +32 -0
- package/locales/ru-RU/models.json +129 -3
- package/locales/ru-RU/plugin.json +1 -0
- package/locales/ru-RU/tool.json +25 -0
- package/locales/tr-TR/common.json +2 -0
- package/locales/tr-TR/electron.json +32 -0
- package/locales/tr-TR/models.json +129 -3
- package/locales/tr-TR/plugin.json +1 -0
- package/locales/tr-TR/tool.json +25 -0
- package/locales/vi-VN/common.json +2 -0
- package/locales/vi-VN/electron.json +32 -0
- package/locales/vi-VN/models.json +129 -3
- package/locales/vi-VN/plugin.json +1 -0
- package/locales/vi-VN/tool.json +25 -0
- package/locales/zh-CN/common.json +2 -0
- package/locales/zh-CN/electron.json +32 -0
- package/locales/zh-CN/models.json +134 -8
- package/locales/zh-CN/plugin.json +1 -0
- package/locales/zh-CN/tool.json +25 -0
- package/locales/zh-TW/common.json +2 -0
- package/locales/zh-TW/electron.json +32 -0
- package/locales/zh-TW/models.json +129 -3
- package/locales/zh-TW/plugin.json +1 -0
- package/locales/zh-TW/tool.json +25 -0
- package/package.json +4 -3
- package/packages/electron-client-ipc/src/events/index.ts +5 -5
- package/packages/electron-client-ipc/src/events/localFile.ts +22 -0
- package/packages/electron-client-ipc/src/events/{file.ts → upload.ts} +1 -1
- package/packages/electron-client-ipc/src/types/index.ts +2 -1
- package/packages/electron-client-ipc/src/types/localFile.ts +52 -0
- package/packages/file-loaders/README.md +63 -0
- package/packages/file-loaders/package.json +42 -0
- package/packages/file-loaders/src/index.ts +2 -0
- package/packages/file-loaders/src/loadFile.ts +206 -0
- package/packages/file-loaders/src/loaders/docx/__snapshots__/index.test.ts.snap +74 -0
- package/packages/file-loaders/src/loaders/docx/fixtures/test.docx +0 -0
- package/packages/file-loaders/src/loaders/docx/index.test.ts +41 -0
- package/packages/file-loaders/src/loaders/docx/index.ts +73 -0
- package/packages/file-loaders/src/loaders/excel/__snapshots__/index.test.ts.snap +58 -0
- package/packages/file-loaders/src/loaders/excel/fixtures/test.xlsx +0 -0
- package/packages/file-loaders/src/loaders/excel/index.test.ts +47 -0
- package/packages/file-loaders/src/loaders/excel/index.ts +121 -0
- package/packages/file-loaders/src/loaders/index.ts +19 -0
- package/packages/file-loaders/src/loaders/pdf/__snapshots__/index.test.ts.snap +98 -0
- package/packages/file-loaders/src/loaders/pdf/index.test.ts +49 -0
- package/packages/file-loaders/src/loaders/pdf/index.ts +133 -0
- package/packages/file-loaders/src/loaders/pptx/__snapshots__/index.test.ts.snap +40 -0
- package/packages/file-loaders/src/loaders/pptx/fixtures/test.pptx +0 -0
- package/packages/file-loaders/src/loaders/pptx/index.test.ts +47 -0
- package/packages/file-loaders/src/loaders/pptx/index.ts +186 -0
- package/packages/file-loaders/src/loaders/text/__snapshots__/index.test.ts.snap +15 -0
- package/packages/file-loaders/src/loaders/text/fixtures/test.txt +2 -0
- package/packages/file-loaders/src/loaders/text/index.test.ts +38 -0
- package/packages/file-loaders/src/loaders/text/index.ts +53 -0
- package/packages/file-loaders/src/types.ts +200 -0
- package/packages/file-loaders/src/utils/isTextReadableFile.ts +68 -0
- package/packages/file-loaders/src/utils/parser-utils.ts +112 -0
- package/packages/file-loaders/test/__snapshots__/loaders.test.ts.snap +93 -0
- package/packages/file-loaders/test/fixtures/test.csv +4 -0
- package/packages/file-loaders/test/fixtures/test.docx +0 -0
- package/packages/file-loaders/test/fixtures/test.epub +0 -0
- package/packages/file-loaders/test/fixtures/test.md +3 -0
- package/packages/file-loaders/test/fixtures/test.pptx +0 -0
- package/packages/file-loaders/test/fixtures/test.txt +3 -0
- package/packages/file-loaders/test/loaders.test.ts +39 -0
- package/scripts/prebuild.mts +5 -1
- package/src/app/(backend)/trpc/desktop/[trpc]/route.ts +26 -0
- package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/ObjectEntity.tsx +81 -0
- package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/ValueCell.tsx +43 -0
- package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/index.tsx +120 -0
- package/src/features/Conversation/Messages/Assistant/Tool/Render/CustomRender.tsx +75 -2
- package/src/features/Conversation/Messages/Assistant/Tool/Render/KeyValueEditor.tsx +214 -0
- package/src/features/User/UserPanel/useMenu.tsx +8 -1
- package/src/libs/agent-runtime/google/index.ts +3 -0
- package/src/libs/trpc/client/desktop.ts +14 -0
- package/src/locales/default/common.ts +2 -0
- package/src/locales/default/electron.ts +34 -0
- package/src/locales/default/index.ts +2 -0
- package/src/locales/default/tool.ts +25 -0
- package/src/server/routers/desktop/index.ts +9 -0
- package/src/server/routers/desktop/pgTable.ts +43 -0
- package/src/services/electron/autoUpdate.ts +17 -0
- package/src/services/electron/file.ts +31 -0
- package/src/services/electron/localFileService.ts +39 -0
- package/src/services/electron/remoteServer.ts +40 -0
- package/src/store/chat/index.ts +1 -1
- package/src/store/chat/slices/builtinTool/actions/index.ts +3 -1
- package/src/store/chat/slices/builtinTool/actions/localFile.ts +129 -0
- package/src/store/chat/slices/builtinTool/initialState.ts +2 -0
- package/src/store/chat/slices/builtinTool/selectors.ts +2 -0
- package/src/store/chat/slices/plugin/action.ts +3 -3
- package/src/store/chat/store.ts +2 -0
- package/src/store/electron/actions/sync.ts +117 -0
- package/src/store/electron/index.ts +1 -0
- package/src/store/electron/initialState.ts +18 -0
- package/src/store/electron/selectors/index.ts +1 -0
- package/src/store/electron/selectors/sync.ts +9 -0
- package/src/store/electron/store.ts +29 -0
- package/src/tools/index.ts +8 -0
- package/src/tools/local-files/Render/ListFiles/Result.tsx +42 -0
- package/src/tools/local-files/Render/ListFiles/index.tsx +68 -0
- package/src/tools/local-files/Render/ReadLocalFile/ReadFileSkeleton.tsx +50 -0
- package/src/tools/local-files/Render/ReadLocalFile/ReadFileView.tsx +197 -0
- package/src/tools/local-files/Render/ReadLocalFile/index.tsx +31 -0
- package/src/tools/local-files/Render/ReadLocalFile/style.ts +37 -0
- package/src/tools/local-files/Render/SearchFiles/Result.tsx +42 -0
- package/src/tools/local-files/Render/SearchFiles/SearchQuery/SearchView.tsx +77 -0
- package/src/tools/local-files/Render/SearchFiles/SearchQuery/index.tsx +72 -0
- package/src/tools/local-files/Render/SearchFiles/index.tsx +32 -0
- package/src/tools/local-files/Render/index.tsx +36 -0
- package/src/tools/local-files/components/FileItem.tsx +117 -0
- package/src/tools/local-files/index.ts +149 -0
- package/src/tools/local-files/systemRole.ts +46 -0
- package/src/tools/local-files/type.ts +33 -0
- package/src/tools/renders.ts +3 -0
- package/packages/electron-client-ipc/src/events/search.ts +0 -4
- package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments.tsx +0 -165
- /package/packages/electron-client-ipc/src/types/{file.ts → upload.ts} +0 -0
@@ -5,9 +5,15 @@
|
|
5
5
|
"01-ai/yi-1.5-9b-chat": {
|
6
6
|
"description": "Zero One, najnowszy model open source z dostrojeniem, zawierający 9 miliardów parametrów, dostosowany do różnych scenariuszy dialogowych, z wysokiej jakości danymi treningowymi, dostosowany do preferencji ludzkich."
|
7
7
|
},
|
8
|
+
"360/deepseek-r1": {
|
9
|
+
"description": "[Wersja 360] DeepSeek-R1 wykorzystuje techniki uczenia przez wzmocnienie na dużą skalę w fazie po treningu, znacznie poprawiając zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. W zadaniach matematycznych, kodowania i wnioskowania w języku naturalnym osiąga wyniki porównywalne z oficjalną wersją OpenAI o1."
|
10
|
+
},
|
8
11
|
"360gpt-pro": {
|
9
12
|
"description": "360GPT Pro, jako ważny członek serii modeli AI 360, zaspokaja różnorodne potrzeby aplikacji przetwarzania języka naturalnego dzięki wydajnym zdolnościom przetwarzania tekstu, obsługując zrozumienie długich tekstów i wielokrotne dialogi."
|
10
13
|
},
|
14
|
+
"360gpt-pro-trans": {
|
15
|
+
"description": "Model dedykowany do tłumaczeń, głęboko dostrojony i zoptymalizowany, oferujący wiodące efekty tłumaczeniowe."
|
16
|
+
},
|
11
17
|
"360gpt-turbo": {
|
12
18
|
"description": "360GPT Turbo oferuje potężne zdolności obliczeniowe i dialogowe, charakteryzując się doskonałym rozumieniem semantycznym i wydajnością generacyjną, stanowiąc idealne rozwiązanie dla firm i deweloperów jako inteligentny asystent."
|
13
19
|
},
|
@@ -62,6 +68,18 @@
|
|
62
68
|
"DeepSeek-R1-Distill-Qwen-7B": {
|
63
69
|
"description": "Model destylacyjny DeepSeek-R1 oparty na Qwen2.5-Math-7B, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
64
70
|
},
|
71
|
+
"DeepSeek-V3": {
|
72
|
+
"description": "DeepSeek-V3 to model MoE opracowany przez firmę DeepSeek. Wyniki DeepSeek-V3 w wielu testach przewyższają inne modele open source, takie jak Qwen2.5-72B i Llama-3.1-405B, a jego wydajność jest porównywalna z najlepszymi zamkniętymi modelami na świecie, takimi jak GPT-4o i Claude-3.5-Sonnet."
|
73
|
+
},
|
74
|
+
"Doubao-1.5-thinking-pro": {
|
75
|
+
"description": "Doubao-1.5 to nowy model głębokiego myślenia, który wyróżnia się w dziedzinach takich jak matematyka, programowanie, wnioskowanie naukowe oraz w ogólnych zadaniach kreatywnego pisania, osiągając lub zbliżając się do poziomu pierwszej ligi w wielu uznawanych benchmarkach, takich jak AIME 2024, Codeforces, GPQA. Obsługuje okno kontekstowe 128k, 16k wyjścia."
|
76
|
+
},
|
77
|
+
"Doubao-1.5-thinking-pro-vision": {
|
78
|
+
"description": "Doubao-1.5 to nowy model głębokiego myślenia, który wyróżnia się w dziedzinach takich jak matematyka, programowanie, wnioskowanie naukowe oraz w ogólnych zadaniach kreatywnego pisania, osiągając lub zbliżając się do poziomu pierwszej ligi w wielu uznawanych benchmarkach, takich jak AIME 2024, Codeforces, GPQA. Obsługuje okno kontekstowe 128k, 16k wyjścia."
|
79
|
+
},
|
80
|
+
"Doubao-1.5-vision-pro": {
|
81
|
+
"description": "Doubao-1.5-vision-pro to nowo zaktualizowany model multimodalny, który obsługuje rozpoznawanie obrazów o dowolnej rozdzielczości i ekstremalnych proporcjach, wzmacniając zdolności wnioskowania wizualnego, rozpoznawania dokumentów, rozumienia szczegółowych informacji i przestrzegania instrukcji."
|
82
|
+
},
|
65
83
|
"Doubao-1.5-vision-pro-32k": {
|
66
84
|
"description": "Doubao-1.5-vision-pro to nowa wersja ulepszonego modelu multimodalnego, który obsługuje rozpoznawanie obrazów o dowolnej rozdzielczości i ekstremalnych proporcjach, wzmacniając zdolności wnioskowania wizualnego, rozpoznawania dokumentów, rozumienia szczegółowych informacji oraz przestrzegania instrukcji."
|
67
85
|
},
|
@@ -341,6 +359,15 @@
|
|
341
359
|
"SenseChat-Vision": {
|
342
360
|
"description": "Najnowsza wersja modelu (V5.5), obsługująca wiele obrazów jako wejście, w pełni optymalizuje podstawowe możliwości modelu, osiągając znaczną poprawę w rozpoznawaniu atrybutów obiektów, relacji przestrzennych, rozpoznawaniu zdarzeń, zrozumieniu scen, rozpoznawaniu emocji, wnioskowaniu logicznym oraz generowaniu i rozumieniu tekstu."
|
343
361
|
},
|
362
|
+
"SenseNova-V6-Pro": {
|
363
|
+
"description": "Osiąga natywną jedność zdolności do przetwarzania obrazów, tekstów i wideo, przełamując tradycyjne ograniczenia rozdzielnych modalności, zdobywając podwójne mistrzostwo w ocenach OpenCompass i SuperCLUE."
|
364
|
+
},
|
365
|
+
"SenseNova-V6-Reasoner": {
|
366
|
+
"description": "Łączy głębokie rozumienie wizualne i językowe, umożliwiając powolne myślenie i głęboką analizę, prezentując pełny proces myślowy."
|
367
|
+
},
|
368
|
+
"SenseNova-V6-Turbo": {
|
369
|
+
"description": "Osiąga natywną jedność zdolności do przetwarzania obrazów, tekstów i wideo, przełamując tradycyjne ograniczenia rozdzielnych modalności, przewyższając w kluczowych wymiarach, takich jak podstawowe umiejętności multimodalne i językowe, oraz osiągając wysokie wyniki w wielu testach, wielokrotnie plasując się w czołówce krajowej i międzynarodowej."
|
370
|
+
},
|
344
371
|
"Skylark2-lite-8k": {
|
345
372
|
"description": "Model drugiej generacji Skylark (Skylark2) o wysokiej szybkości reakcji, odpowiedni do scenariuszy wymagających wysokiej reaktywności, wrażliwych na koszty, z mniejszymi wymaganiami co do precyzji modelu, z długością okna kontekstowego 8k."
|
346
373
|
},
|
@@ -356,6 +383,21 @@
|
|
356
383
|
"Skylark2-pro-turbo-8k": {
|
357
384
|
"description": "Model drugiej generacji Skylark (Skylark2) z szybszym wnioskowaniem i niższymi kosztami, z długością okna kontekstowego 8k."
|
358
385
|
},
|
386
|
+
"THUDM/GLM-4-32B-0414": {
|
387
|
+
"description": "GLM-4-32B-0414 to nowa generacja otwartego modelu z serii GLM, posiadająca 32 miliardy parametrów. Model ten osiąga wyniki porównywalne z serią GPT OpenAI i serią V3/R1 DeepSeek."
|
388
|
+
},
|
389
|
+
"THUDM/GLM-4-9B-0414": {
|
390
|
+
"description": "GLM-4-9B-0414 to mały model z serii GLM, mający 9 miliardów parametrów. Model ten dziedziczy cechy technologiczne serii GLM-4-32B, ale oferuje lżejsze opcje wdrożeniowe. Mimo mniejszych rozmiarów, GLM-4-9B-0414 nadal wykazuje doskonałe zdolności w generowaniu kodu, projektowaniu stron internetowych, generowaniu grafiki SVG i pisaniu opartym na wyszukiwaniu."
|
391
|
+
},
|
392
|
+
"THUDM/GLM-Z1-32B-0414": {
|
393
|
+
"description": "GLM-Z1-32B-0414 to model wnioskowania z głęboką zdolnością myślenia. Model ten oparty jest na GLM-4-32B-0414, rozwinięty poprzez zimny start i rozszerzone uczenie przez wzmocnienie, a także przeszedł dalsze szkolenie w zadaniach matematycznych, kodowania i logiki. W porównaniu do modelu bazowego, GLM-Z1-32B-0414 znacznie poprawił zdolności matematyczne i umiejętność rozwiązywania złożonych zadań."
|
394
|
+
},
|
395
|
+
"THUDM/GLM-Z1-9B-0414": {
|
396
|
+
"description": "GLM-Z1-9B-0414 to mały model z serii GLM, mający tylko 9 miliardów parametrów, ale zachowujący tradycję otwartego źródła, jednocześnie wykazując zdumiewające zdolności. Mimo mniejszych rozmiarów, model ten nadal osiąga doskonałe wyniki w wnioskowaniu matematycznym i ogólnych zadaniach, a jego ogólna wydajność jest na czołowej pozycji wśród modeli o podobnej wielkości."
|
397
|
+
},
|
398
|
+
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
399
|
+
"description": "GLM-Z1-Rumination-32B-0414 to model głębokiego wnioskowania z zdolnością do refleksji (konkurujący z Deep Research OpenAI). W przeciwieństwie do typowych modeli głębokiego myślenia, model refleksyjny stosuje dłuższy czas głębokiego myślenia do rozwiązywania bardziej otwartych i złożonych problemów."
|
400
|
+
},
|
359
401
|
"THUDM/chatglm3-6b": {
|
360
402
|
"description": "ChatGLM3-6B to otwarty model z serii ChatGLM, opracowany przez Zhipu AI. Model ten zachowuje doskonałe cechy poprzednich modeli, takie jak płynność rozmowy i niski próg wdrożenia, jednocześnie wprowadzając nowe funkcje. Wykorzystuje bardziej zróżnicowane dane treningowe, większą liczbę kroków treningowych i bardziej rozsądne strategie treningowe, osiągając doskonałe wyniki w modelach pretrenowanych poniżej 10B. ChatGLM3-6B obsługuje złożone scenariusze, takie jak wieloetapowe rozmowy, wywoływanie narzędzi, wykonywanie kodu i zadania agenta. Oprócz modelu konwersacyjnego, udostępniono również podstawowy model ChatGLM-6B-Base oraz model do rozmów długotematycznych ChatGLM3-6B-32K. Model jest całkowicie otwarty dla badań akademickich i pozwala na bezpłatne wykorzystanie komercyjne po rejestracji."
|
361
403
|
},
|
@@ -521,6 +563,9 @@
|
|
521
563
|
"charglm-3": {
|
522
564
|
"description": "CharGLM-3 zaprojektowany z myślą o odgrywaniu ról i emocjonalnym towarzyszeniu, obsługujący ultra-długą pamięć wielokrotną i spersonalizowane dialogi, z szerokim zakresem zastosowań."
|
523
565
|
},
|
566
|
+
"charglm-4": {
|
567
|
+
"description": "CharGLM-4 zaprojektowany z myślą o odgrywaniu ról i emocjonalnym towarzyszeniu, wspierający długotrwałą pamięć i spersonalizowane rozmowy, z szerokim zakresem zastosowań."
|
568
|
+
},
|
524
569
|
"chatglm3": {
|
525
570
|
"description": "ChatGLM3 to zamknięty model opracowany przez AI ZhiPu i KEG Laboratorium z Politechniki Tsinghua, który przeszedł wstępne treningi na ogromnej liczbie identyfikatorów chińskich i angielskich oraz trening zgodności z preferencjami ludzkimi. W porównaniu do pierwszej generacji modelu, ChatGLM3 osiągnął poprawę o 16%, 36% i 280% w testach MMLU, C-Eval i GSM8K, oraz zajął pierwsze miejsce na liście chińskich zadań C-Eval. Jest odpowiedni do zastosowań, które wymagają wysokiej wiedzy, zdolności wnioskowania i kreatywności, takich jak tworzenie tekstów reklamowych, pisarstwo powieści, pisarstwo naukowe i generowanie kodu."
|
526
571
|
},
|
@@ -632,9 +677,18 @@
|
|
632
677
|
"command-r-plus-04-2024": {
|
633
678
|
"description": "Command R+ to model konwersacyjny, który przestrzega instrukcji, oferujący wyższą jakość i niezawodność w zadaniach językowych, a także dłuższą długość kontekstu w porównaniu do wcześniejszych modeli. Jest najlepiej dostosowany do złożonych przepływów pracy RAG i wieloetapowego korzystania z narzędzi."
|
634
679
|
},
|
680
|
+
"command-r-plus-08-2024": {
|
681
|
+
"description": "Command R+ to model konwersacyjny przestrzegający instrukcji, oferujący wyższą jakość i niezawodność w zadaniach językowych, a także dłuższy kontekst w porównaniu do wcześniejszych modeli. Najlepiej sprawdza się w złożonych przepływach pracy RAG i wieloetapowym korzystaniu z narzędzi."
|
682
|
+
},
|
635
683
|
"command-r7b-12-2024": {
|
636
684
|
"description": "command-r7b-12-2024 to mała i wydajna zaktualizowana wersja, wydana w grudniu 2024 roku. Doskonale sprawdza się w zadaniach wymagających złożonego rozumowania i wieloetapowego przetwarzania, takich jak RAG, korzystanie z narzędzi i agenci."
|
637
685
|
},
|
686
|
+
"compound-beta": {
|
687
|
+
"description": "Compound-beta to złożony system AI wspierany przez wiele otwartych modeli dostępnych w GroqCloud, który inteligentnie i selektywnie wykorzystuje narzędzia do odpowiadania na zapytania użytkowników."
|
688
|
+
},
|
689
|
+
"compound-beta-mini": {
|
690
|
+
"description": "Compound-beta-mini to złożony system AI wspierany przez publicznie dostępne modele w GroqCloud, który inteligentnie i selektywnie wykorzystuje narzędzia do odpowiadania na zapytania użytkowników."
|
691
|
+
},
|
638
692
|
"dall-e-2": {
|
639
693
|
"description": "Druga generacja modelu DALL·E, obsługująca bardziej realistyczne i dokładne generowanie obrazów, o rozdzielczości czterokrotnie większej niż pierwsza generacja."
|
640
694
|
},
|
@@ -779,6 +833,18 @@
|
|
779
833
|
"deepseek/deepseek-v3/community": {
|
780
834
|
"description": "DeepSeek-V3 osiągnął znaczący przełom w szybkości wnioskowania w porównaniu do wcześniejszych modeli. Zajmuje pierwsze miejsce wśród modeli open source i może konkurować z najnowocześniejszymi modelami zamkniętymi na świecie. DeepSeek-V3 wykorzystuje architekturę wielogłowicowej uwagi (MLA) oraz DeepSeekMoE, które zostały w pełni zweryfikowane w DeepSeek-V2. Ponadto, DeepSeek-V3 wprowadza pomocniczą strategię bezstratną do równoważenia obciążenia oraz ustala cele treningowe dla wieloetykietowego przewidywania, aby uzyskać lepszą wydajność."
|
781
835
|
},
|
836
|
+
"deepseek_r1": {
|
837
|
+
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmocnienie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom szkoleniowym poprawia ogólne efekty."
|
838
|
+
},
|
839
|
+
"deepseek_r1_distill_llama_70b": {
|
840
|
+
"description": "DeepSeek-R1-Distill-Llama-70B to model uzyskany poprzez destylację treningową z Llama-3.3-70B-Instruct. Model ten jest częścią serii DeepSeek-R1, a dzięki użyciu próbek wygenerowanych przez DeepSeek-R1, wykazuje doskonałe wyniki w matematyce, programowaniu i wnioskowaniu."
|
841
|
+
},
|
842
|
+
"deepseek_r1_distill_qwen_14b": {
|
843
|
+
"description": "DeepSeek-R1-Distill-Qwen-14B to model uzyskany poprzez destylację wiedzy z Qwen2.5-14B. Model ten został dostrojony przy użyciu 800 000 starannie wybranych próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe zdolności wnioskowania."
|
844
|
+
},
|
845
|
+
"deepseek_r1_distill_qwen_32b": {
|
846
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B to model uzyskany poprzez destylację wiedzy z Qwen2.5-32B. Model ten został dostrojony przy użyciu 800 000 starannie wybranych próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe wyniki w wielu dziedzinach, w tym matematyce, programowaniu i wnioskowaniu."
|
847
|
+
},
|
782
848
|
"doubao-1.5-lite-32k": {
|
783
849
|
"description": "Doubao-1.5-lite to nowa generacja modelu o lekkiej konstrukcji, charakteryzująca się ekstremalną szybkością reakcji, osiągając światowy poziom zarówno w zakresie wydajności, jak i opóźnienia."
|
784
850
|
},
|
@@ -788,6 +854,9 @@
|
|
788
854
|
"doubao-1.5-pro-32k": {
|
789
855
|
"description": "Doubao-1.5-pro to nowa generacja głównego modelu, który oferuje kompleksowe ulepszenia wydajności, wykazując doskonałe wyniki w zakresie wiedzy, kodowania, wnioskowania i innych obszarów."
|
790
856
|
},
|
857
|
+
"doubao-1.5-vision-lite": {
|
858
|
+
"description": "Doubao-1.5-vision-lite to nowo zaktualizowany model multimodalny, który obsługuje rozpoznawanie obrazów o dowolnej rozdzielczości i ekstremalnych proporcjach, wzmacniając zdolności wnioskowania wizualnego, rozpoznawania dokumentów, rozumienia szczegółowych informacji i przestrzegania instrukcji. Obsługuje okno kontekstowe 128k, maksymalna długość wyjścia to 16k tokenów."
|
859
|
+
},
|
791
860
|
"emohaa": {
|
792
861
|
"description": "Emohaa to model psychologiczny, posiadający profesjonalne umiejętności doradcze, pomagający użytkownikom zrozumieć problemy emocjonalne."
|
793
862
|
},
|
@@ -914,6 +983,9 @@
|
|
914
983
|
"gemini-2.0-pro-exp-02-05": {
|
915
984
|
"description": "Gemini 2.0 Pro Experimental to najnowszy eksperymentalny model AI o wielu modalnościach od Google, który w porównaniu do wcześniejszych wersji oferuje pewne poprawy jakości, szczególnie w zakresie wiedzy o świecie, kodu i długiego kontekstu."
|
916
985
|
},
|
986
|
+
"gemini-2.5-flash-preview-04-17": {
|
987
|
+
"description": "Gemini 2.5 Flash Preview to najbardziej opłacalny model Google, oferujący wszechstronne funkcje."
|
988
|
+
},
|
917
989
|
"gemini-2.5-pro-exp-03-25": {
|
918
990
|
"description": "Gemini 2.5 Pro Experimental to najnowocześniejszy model myślenia Google, zdolny do wnioskowania w zakresie kodu, matematyki i złożonych problemów w dziedzinie STEM, a także do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów, wykorzystując długi kontekst."
|
919
991
|
},
|
@@ -953,6 +1025,9 @@
|
|
953
1025
|
"glm-4-air": {
|
954
1026
|
"description": "GLM-4-Air to opłacalna wersja, której wydajność jest zbliżona do GLM-4, oferująca szybkie działanie i przystępną cenę."
|
955
1027
|
},
|
1028
|
+
"glm-4-air-250414": {
|
1029
|
+
"description": "GLM-4-Air to wersja o wysokim stosunku jakości do ceny, o wydajności zbliżonej do GLM-4, oferująca szybkie tempo i przystępną cenę."
|
1030
|
+
},
|
956
1031
|
"glm-4-airx": {
|
957
1032
|
"description": "GLM-4-AirX oferuje wydajną wersję GLM-4-Air, z szybkością wnioskowania do 2,6 razy szybszą."
|
958
1033
|
},
|
@@ -962,6 +1037,9 @@
|
|
962
1037
|
"glm-4-flash": {
|
963
1038
|
"description": "GLM-4-Flash to idealny wybór do przetwarzania prostych zadań, najszybszy i najtańszy."
|
964
1039
|
},
|
1040
|
+
"glm-4-flash-250414": {
|
1041
|
+
"description": "GLM-4-Flash to idealny wybór do prostych zadań, najszybszy i darmowy."
|
1042
|
+
},
|
965
1043
|
"glm-4-flashx": {
|
966
1044
|
"description": "GLM-4-FlashX to ulepszona wersja Flash, charakteryzująca się niezwykle szybkim czasem wnioskowania."
|
967
1045
|
},
|
@@ -980,6 +1058,18 @@
|
|
980
1058
|
"glm-4v-plus": {
|
981
1059
|
"description": "GLM-4V-Plus ma zdolność rozumienia treści wideo oraz wielu obrazów, odpowiedni do zadań multimodalnych."
|
982
1060
|
},
|
1061
|
+
"glm-4v-plus-0111": {
|
1062
|
+
"description": "GLM-4V-Plus posiada zdolność rozumienia treści wideo oraz wielu obrazów, odpowiedni do zadań multimodalnych."
|
1063
|
+
},
|
1064
|
+
"glm-z1-air": {
|
1065
|
+
"description": "Model wnioskowania: posiadający silne zdolności wnioskowania, odpowiedni do zadań wymagających głębokiego wnioskowania."
|
1066
|
+
},
|
1067
|
+
"glm-z1-airx": {
|
1068
|
+
"description": "Ekstremalne wnioskowanie: charakteryzujące się ultra szybkim tempem wnioskowania i silnymi efektami wnioskowania."
|
1069
|
+
},
|
1070
|
+
"glm-z1-flash": {
|
1071
|
+
"description": "Seria GLM-Z1 posiada silne zdolności wnioskowania złożonego, osiągając doskonałe wyniki w dziedzinach takich jak wnioskowanie logiczne, matematyka i programowanie. Maksymalna długość kontekstu wynosi 32K."
|
1072
|
+
},
|
983
1073
|
"glm-zero-preview": {
|
984
1074
|
"description": "GLM-Zero-Preview posiada silne zdolności do złożonego wnioskowania, wyróżniając się w dziedzinach takich jak wnioskowanie logiczne, matematyka i programowanie."
|
985
1075
|
},
|
@@ -1199,12 +1289,15 @@
|
|
1199
1289
|
"hunyuan-turbos-20250226": {
|
1200
1290
|
"description": "hunyuan-TurboS pv2.1.2 to stabilna wersja zaktualizowanej bazy treningowej, z podniesioną liczbą tokenów; poprawione zdolności myślenia w matematyce/logice/kodzie; poprawa ogólnego doświadczenia w języku chińskim i angielskim, w tym w tworzeniu tekstu, rozumieniu tekstu, pytaniach i odpowiedziach oraz rozmowach."
|
1201
1291
|
},
|
1202
|
-
"hunyuan-turbos-20250313": {
|
1203
|
-
"description": "Ujednolicenie stylu rozwiązywania problemów matematycznych, wzmocnienie wieloetapowych pytań i odpowiedzi matematycznych. Optymalizacja stylu odpowiedzi w tworzeniu tekstu, eliminacja smaku AI, zwiększenie literackiego wyrazu."
|
1204
|
-
},
|
1205
1292
|
"hunyuan-turbos-latest": {
|
1206
1293
|
"description": "hunyuan-TurboS to najnowsza wersja flagowego modelu Hunyuan, oferująca silniejsze zdolności myślenia i lepsze efekty doświadczenia."
|
1207
1294
|
},
|
1295
|
+
"hunyuan-turbos-longtext-128k-20250325": {
|
1296
|
+
"description": "Specjalizuje się w zadaniach związanych z długimi tekstami, takimi jak streszczenia dokumentów i pytania do dokumentów, a także ma zdolność do generowania ogólnych tekstów. W analizie i generowaniu długich tekstów wykazuje doskonałe wyniki, skutecznie radząc sobie z złożonymi i szczegółowymi wymaganiami przetwarzania długich treści."
|
1297
|
+
},
|
1298
|
+
"hunyuan-turbos-vision": {
|
1299
|
+
"description": "Model ten jest przeznaczony do scenariuszy zrozumienia obrazów i tekstów, oparty na nowej generacji flagowego modelu wizualno-językowego turbos, koncentrującego się na zadaniach związanych z rozumieniem obrazów i tekstów, w tym rozpoznawaniu bytów na podstawie obrazów, pytaniach o wiedzę, tworzeniu treści reklamowych i rozwiązywaniu problemów na podstawie zdjęć, w porównaniu do poprzedniej generacji modeli, oferując kompleksowe ulepszenia."
|
1300
|
+
},
|
1208
1301
|
"hunyuan-vision": {
|
1209
1302
|
"description": "Najnowocześniejszy model multimodalny Hunyuan, wspierający generowanie treści tekstowych na podstawie obrazów i tekstu."
|
1210
1303
|
},
|
@@ -1223,6 +1316,12 @@
|
|
1223
1316
|
"internlm3-latest": {
|
1224
1317
|
"description": "Nasza najnowsza seria modeli, charakteryzująca się doskonałą wydajnością wnioskowania, prowadzi wśród modeli open-source o podobnej skali. Domyślnie wskazuje na naszą najnowszą wersję modelu InternLM3."
|
1225
1318
|
},
|
1319
|
+
"jamba-large": {
|
1320
|
+
"description": "Nasz najsilniejszy i najbardziej zaawansowany model, zaprojektowany do obsługi złożonych zadań na poziomie przedsiębiorstw, oferujący doskonałą wydajność."
|
1321
|
+
},
|
1322
|
+
"jamba-mini": {
|
1323
|
+
"description": "Najbardziej efektywny model w swojej klasie, łączący szybkość z jakością, o mniejszych rozmiarach."
|
1324
|
+
},
|
1226
1325
|
"jina-deepsearch-v1": {
|
1227
1326
|
"description": "Głębokie wyszukiwanie łączy wyszukiwanie w sieci, czytanie i wnioskowanie, umożliwiając kompleksowe badania. Możesz to traktować jako agenta, który przyjmuje Twoje zadania badawcze - przeprowadza szerokie poszukiwania i wielokrotne iteracje, zanim poda odpowiedź. Proces ten obejmuje ciągłe badania, wnioskowanie i rozwiązywanie problemów z różnych perspektyw. To zasadniczo różni się od standardowych dużych modeli, które generują odpowiedzi bezpośrednio z wstępnie wytrenowanych danych oraz od tradycyjnych systemów RAG, które polegają na jednorazowym powierzchownym wyszukiwaniu."
|
1228
1327
|
},
|
@@ -1568,9 +1667,18 @@
|
|
1568
1667
|
"o1-preview": {
|
1569
1668
|
"description": "o1 to nowy model wnioskowania OpenAI, odpowiedni do złożonych zadań wymagających szerokiej wiedzy ogólnej. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
|
1570
1669
|
},
|
1670
|
+
"o3": {
|
1671
|
+
"description": "o3 to wszechstronny i potężny model, który doskonale sprawdza się w wielu dziedzinach. Ustanawia nowe standardy w zadaniach matematycznych, naukowych, programistycznych i wizualnych. Jest również biegły w pisaniu technicznym i przestrzeganiu instrukcji. Użytkownicy mogą go wykorzystać do analizy tekstów, kodów i obrazów, rozwiązując złożone problemy wieloetapowe."
|
1672
|
+
},
|
1571
1673
|
"o3-mini": {
|
1572
1674
|
"description": "o3-mini to nasz najnowszy mały model wnioskowania, który oferuje wysoką inteligencję przy tych samych kosztach i celach opóźnienia co o1-mini."
|
1573
1675
|
},
|
1676
|
+
"o3-mini-high": {
|
1677
|
+
"description": "o3-mini w wersji o wysokim poziomie wnioskowania, oferujący wysoką inteligencję przy tych samych kosztach i celach opóźnienia co o1-mini."
|
1678
|
+
},
|
1679
|
+
"o4-mini": {
|
1680
|
+
"description": "o4-mini to nasz najnowszy mały model z serii o. Został zoptymalizowany do szybkiego i efektywnego wnioskowania, osiągając wysoką wydajność i efektywność w zadaniach kodowania i wizualnych."
|
1681
|
+
},
|
1574
1682
|
"open-codestral-mamba": {
|
1575
1683
|
"description": "Codestral Mamba to model językowy Mamba 2 skoncentrowany na generowaniu kodu, oferujący silne wsparcie dla zaawansowanych zadań kodowania i wnioskowania."
|
1576
1684
|
},
|
@@ -1598,6 +1706,12 @@
|
|
1598
1706
|
"openai/o1-preview": {
|
1599
1707
|
"description": "o1 to nowy model wnioskowania OpenAI, odpowiedni do złożonych zadań wymagających szerokiej wiedzy ogólnej. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
|
1600
1708
|
},
|
1709
|
+
"openai/o4-mini": {
|
1710
|
+
"description": "o4-mini zoptymalizowany do szybkiego i efektywnego wnioskowania, osiągający wysoką wydajność i efektywność w zadaniach kodowania i wizualnych."
|
1711
|
+
},
|
1712
|
+
"openai/o4-mini-high": {
|
1713
|
+
"description": "o4-mini w wersji o wysokim poziomie wnioskowania, zoptymalizowany do szybkiego i efektywnego wnioskowania, osiągający wysoką wydajność i efektywność w zadaniach kodowania i wizualnych."
|
1714
|
+
},
|
1601
1715
|
"openrouter/auto": {
|
1602
1716
|
"description": "W zależności od długości kontekstu, tematu i złożoności, Twoje zapytanie zostanie wysłane do Llama 3 70B Instruct, Claude 3.5 Sonnet (samoregulacja) lub GPT-4o."
|
1603
1717
|
},
|
@@ -1793,6 +1907,9 @@
|
|
1793
1907
|
"qwq-plus-latest": {
|
1794
1908
|
"description": "Model inferency QwQ, oparty na modelu Qwen2.5, został znacznie ulepszony dzięki uczeniu przez wzmocnienie, co zwiększa jego zdolności inferencyjne. Kluczowe wskaźniki modelu, takie jak matematyczny kod i inne (AIME 24/25, LiveCodeBench), oraz niektóre ogólne wskaźniki (IFEval, LiveBench itp.) osiągają poziom pełnej wersji DeepSeek-R1."
|
1795
1909
|
},
|
1910
|
+
"qwq_32b": {
|
1911
|
+
"description": "Model wnioskowania średniej wielkości z serii Qwen. W porównaniu do tradycyjnych modeli dostosowanych do instrukcji, QwQ, posiadający zdolności myślenia i wnioskowania, może znacznie poprawić wydajność w zadaniach końcowych, zwłaszcza w rozwiązywaniu trudnych problemów."
|
1912
|
+
},
|
1796
1913
|
"r1-1776": {
|
1797
1914
|
"description": "R1-1776 to wersja modelu DeepSeek R1, która została poddana dalszemu treningowi, aby dostarczać nieocenzurowane, bezstronne informacje faktograficzne."
|
1798
1915
|
},
|
@@ -1853,12 +1970,21 @@
|
|
1853
1970
|
"step-2-16k": {
|
1854
1971
|
"description": "Obsługuje interakcje z dużą ilością kontekstu, idealny do złożonych scenariuszy dialogowych."
|
1855
1972
|
},
|
1973
|
+
"step-2-16k-exp": {
|
1974
|
+
"description": "Eksperymentalna wersja modelu step-2, zawierająca najnowsze funkcje, aktualizacje w trybie ciągłym. Nie zaleca się używania w produkcji."
|
1975
|
+
},
|
1856
1976
|
"step-2-mini": {
|
1857
1977
|
"description": "Model oparty na nowej generacji własnej architektury Attention MFA, osiągający podobne wyniki jak step1 przy bardzo niskich kosztach, jednocześnie zapewniając wyższą przepustowość i szybszy czas reakcji. Potrafi obsługiwać ogólne zadania, a w zakresie umiejętności kodowania ma szczególne zdolności."
|
1858
1978
|
},
|
1979
|
+
"step-r1-v-mini": {
|
1980
|
+
"description": "Model ten to potężny model wnioskowania z zdolnościami rozumienia obrazów, zdolny do przetwarzania informacji wizualnych i tekstowych, generując tekst po głębokim przemyśleniu. Model ten wyróżnia się w dziedzinie wnioskowania wizualnego, a także posiada pierwszorzędne zdolności wnioskowania matematycznego, kodowania i tekstu. Długość kontekstu wynosi 100k."
|
1981
|
+
},
|
1859
1982
|
"taichu_llm": {
|
1860
1983
|
"description": "Model językowy TaiChu charakteryzuje się wyjątkową zdolnością rozumienia języka oraz umiejętnościami w zakresie tworzenia tekstów, odpowiadania na pytania, programowania, obliczeń matematycznych, wnioskowania logicznego, analizy emocji i streszczenia tekstu. Innowacyjnie łączy wstępne uczenie się na dużych zbiorach danych z bogatą wiedzą z wielu źródeł, stale doskonaląc technologię algorytmiczną i nieustannie przyswajając nową wiedzę z zakresu słownictwa, struktury, gramatyki i semantyki z ogromnych zbiorów danych tekstowych, co prowadzi do ciągłej ewolucji modelu. Umożliwia użytkownikom łatwiejszy dostęp do informacji i usług oraz bardziej inteligentne doświadczenia."
|
1861
1984
|
},
|
1985
|
+
"taichu_o1": {
|
1986
|
+
"description": "taichu_o1 to nowa generacja modelu wnioskowania, która poprzez interakcje multimodalne i uczenie przez wzmocnienie realizuje łańcuchy myślenia przypominające ludzkie, wspierając złożone symulacje decyzji, jednocześnie prezentując ścieżki myślenia modelu przy zachowaniu wysokiej precyzji wyników, odpowiednia do analizy strategii i głębokiego myślenia."
|
1987
|
+
},
|
1862
1988
|
"taichu_vl": {
|
1863
1989
|
"description": "Łączy zdolności rozumienia obrazów, transferu wiedzy i logicznego wnioskowania, wyróżniając się w dziedzinie pytań i odpowiedzi na podstawie tekstu i obrazów."
|
1864
1990
|
},
|
package/locales/pl-PL/tool.json
CHANGED
@@ -7,6 +7,20 @@
|
|
7
7
|
"images": "Obrazy:",
|
8
8
|
"prompt": "słowo kluczowe"
|
9
9
|
},
|
10
|
+
"localFiles": {
|
11
|
+
"file": "Plik",
|
12
|
+
"folder": "Folder",
|
13
|
+
"open": "Otwórz",
|
14
|
+
"openFile": "Otwórz plik",
|
15
|
+
"openFolder": "Otwórz folder",
|
16
|
+
"read": {
|
17
|
+
"more": "Zobacz więcej"
|
18
|
+
},
|
19
|
+
"readFile": "Odczytaj plik",
|
20
|
+
"readFileError": "Błąd odczytu pliku, sprawdź, czy ścieżka do pliku jest poprawna",
|
21
|
+
"readFiles": "Odczytaj pliki",
|
22
|
+
"readFilesError": "Błąd odczytu plików, sprawdź, czy ścieżka do plików jest poprawna"
|
23
|
+
},
|
10
24
|
"search": {
|
11
25
|
"createNewSearch": "Utwórz nową historię wyszukiwania",
|
12
26
|
"emptyResult": "Nie znaleziono wyników, spróbuj zmienić słowa kluczowe",
|
@@ -44,5 +58,16 @@
|
|
44
58
|
"summary": "Podsumowanie",
|
45
59
|
"summaryTooltip": "Podsumuj bieżącą treść",
|
46
60
|
"viewMoreResults": "Zobacz więcej {{results}} wyników"
|
61
|
+
},
|
62
|
+
"updateArgs": {
|
63
|
+
"duplicateKeyError": "Klucz pola musi być unikalny",
|
64
|
+
"form": {
|
65
|
+
"add": "Dodaj element",
|
66
|
+
"key": "Klucz pola",
|
67
|
+
"value": "Wartość pola"
|
68
|
+
},
|
69
|
+
"formValidationFailed": "Walidacja formularza nie powiodła się, sprawdź format parametrów",
|
70
|
+
"keyRequired": "Klucz pola nie może być pusty",
|
71
|
+
"stringifyError": "Nie można zserializować parametrów, sprawdź format parametrów"
|
47
72
|
}
|
48
73
|
}
|
@@ -0,0 +1,32 @@
|
|
1
|
+
{
|
2
|
+
"remoteServer": {
|
3
|
+
"authError": "Erro de autorização: {{error}}",
|
4
|
+
"authPending": "Por favor, complete a autorização no navegador",
|
5
|
+
"configDesc": "Conecte-se ao servidor LobeChat remoto para habilitar a sincronização de dados",
|
6
|
+
"configError": "Erro na configuração",
|
7
|
+
"configTitle": "Configurar sincronização na nuvem",
|
8
|
+
"connect": "Conectar e autorizar",
|
9
|
+
"connected": "Conectado",
|
10
|
+
"disconnect": "Desconectar",
|
11
|
+
"disconnectError": "Falha ao desconectar",
|
12
|
+
"disconnected": "Desconectado",
|
13
|
+
"fetchError": "Falha ao obter a configuração",
|
14
|
+
"invalidUrl": "Por favor, insira um URL válido",
|
15
|
+
"serverUrl": "Endereço do servidor",
|
16
|
+
"statusConnected": "Conectado",
|
17
|
+
"statusDisconnected": "Desconectado",
|
18
|
+
"urlRequired": "Por favor, insira o endereço do servidor"
|
19
|
+
},
|
20
|
+
"updater": {
|
21
|
+
"downloadingUpdate": "Baixando atualização",
|
22
|
+
"downloadingUpdateDesc": "A atualização está sendo baixada, por favor aguarde...",
|
23
|
+
"later": "Atualizar depois",
|
24
|
+
"newVersionAvailable": "Nova versão disponível",
|
25
|
+
"newVersionAvailableDesc": "Uma nova versão {{version}} foi encontrada, deseja baixar agora?",
|
26
|
+
"restartAndInstall": "Reiniciar e instalar",
|
27
|
+
"updateError": "Erro na atualização",
|
28
|
+
"updateReady": "Atualização pronta",
|
29
|
+
"updateReadyDesc": "Lobe Chat {{version}} foi baixado com sucesso, reinicie o aplicativo para concluir a instalação.",
|
30
|
+
"upgradeNow": "Atualizar agora"
|
31
|
+
}
|
32
|
+
}
|