@lobehub/chat 1.75.0 → 1.75.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -2,6 +2,31 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 1.75.1](https://github.com/lobehub/lobe-chat/compare/v1.75.0...v1.75.1)
6
+
7
+ <sup>Released on **2025-03-26**</sup>
8
+
9
+ #### 💄 Styles
10
+
11
+ - **misc**: Update siliconcloud models.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Styles
19
+
20
+ - **misc**: Update siliconcloud models, closes [#7072](https://github.com/lobehub/lobe-chat/issues/7072) ([8a524d4](https://github.com/lobehub/lobe-chat/commit/8a524d4))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
5
30
  ## [Version 1.75.0](https://github.com/lobehub/lobe-chat/compare/v1.74.11...v1.75.0)
6
31
 
7
32
  <sup>Released on **2025-03-26**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,13 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Update siliconcloud models."
6
+ ]
7
+ },
8
+ "date": "2025-03-26",
9
+ "version": "1.75.1"
10
+ },
2
11
  {
3
12
  "children": {
4
13
  "features": [
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.75.0",
3
+ "version": "1.75.1",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -26,6 +26,26 @@ const googleChatModels: AIChatModelCard[] = [
26
26
  },
27
27
  type: 'chat',
28
28
  },
29
+ {
30
+ abilities: {
31
+ reasoning: true,
32
+ vision: true,
33
+ },
34
+ contextWindowTokens: 1_048_576 + 65_536,
35
+ description:
36
+ 'Gemini 2.0 Flash Thinking Exp 是 Google 的实验性多模态推理AI模型,能对复杂问题进行推理,拥有新的思维能力。',
37
+ displayName: 'Gemini 2.0 Flash Thinking Experimental 01-21',
38
+ enabled: true,
39
+ id: 'gemini-2.0-flash-thinking-exp-01-21',
40
+ maxOutput: 65_536,
41
+ pricing: {
42
+ cachedInput: 0,
43
+ input: 0,
44
+ output: 0,
45
+ },
46
+ releasedAt: '2025-01-21',
47
+ type: 'chat',
48
+ },
29
49
  {
30
50
  abilities: {
31
51
  functionCall: true,
@@ -101,41 +121,6 @@ const googleChatModels: AIChatModelCard[] = [
101
121
  },
102
122
  type: 'chat',
103
123
  },
104
- {
105
- abilities: {
106
- vision: true,
107
- },
108
- contextWindowTokens: 1_048_576 + 8192,
109
- description: 'Gemini 2.0 Flash 模型变体,针对成本效益和低延迟等目标进行了优化。',
110
- displayName: 'Gemini 2.0 Flash-Lite',
111
- id: 'gemini-2.0-flash-lite',
112
- maxOutput: 8192,
113
- pricing: {
114
- cachedInput: 0.018_75,
115
- input: 0.075,
116
- output: 0.3,
117
- },
118
- releasedAt: '2025-02-05',
119
- type: 'chat',
120
- },
121
- {
122
- abilities: {
123
- imageOutput: true,
124
- vision: true,
125
- },
126
- contextWindowTokens: 32_768,
127
- description: 'Gemini 2.0 Flash 模型变体,针对成本效益和低延迟等目标进行了优化。',
128
- displayName: 'Gemini 2.0 Flash Exp',
129
- enabled: true,
130
- id: 'gemini-2.0-flash-exp',
131
- maxOutput: 8192,
132
- pricing: {
133
- input: 0,
134
- output: 0,
135
- },
136
- releasedAt: '2025-02-05',
137
- type: 'chat',
138
- },
139
124
  {
140
125
  abilities: {
141
126
  imageOutput: true,
@@ -160,8 +145,8 @@ const googleChatModels: AIChatModelCard[] = [
160
145
  },
161
146
  contextWindowTokens: 1_048_576 + 8192,
162
147
  description: 'Gemini 2.0 Flash 模型变体,针对成本效益和低延迟等目标进行了优化。',
163
- displayName: 'Gemini 2.0 Flash-Lite 001',
164
- id: 'gemini-2.0-flash-lite-001',
148
+ displayName: 'Gemini 2.0 Flash-Lite',
149
+ id: 'gemini-2.0-flash-lite',
165
150
  maxOutput: 8192,
166
151
  pricing: {
167
152
  cachedInput: 0.018_75,
@@ -173,41 +158,36 @@ const googleChatModels: AIChatModelCard[] = [
173
158
  },
174
159
  {
175
160
  abilities: {
176
- reasoning: true,
177
161
  vision: true,
178
162
  },
179
- contextWindowTokens: 1_048_576 + 65_536,
180
- description:
181
- 'Gemini 2.0 Flash Thinking Exp 是 Google 的实验性多模态推理AI模型,能对复杂问题进行推理,拥有新的思维能力。',
182
- displayName: 'Gemini 2.0 Flash Thinking Experimental',
183
- id: 'gemini-2.0-flash-thinking-exp',
184
- maxOutput: 65_536,
163
+ contextWindowTokens: 1_048_576 + 8192,
164
+ description: 'Gemini 2.0 Flash 模型变体,针对成本效益和低延迟等目标进行了优化。',
165
+ displayName: 'Gemini 2.0 Flash-Lite 001',
166
+ id: 'gemini-2.0-flash-lite-001',
167
+ maxOutput: 8192,
185
168
  pricing: {
186
- cachedInput: 0,
187
- input: 0,
188
- output: 0,
169
+ cachedInput: 0.018_75,
170
+ input: 0.075,
171
+ output: 0.3,
189
172
  },
190
- releasedAt: '2025-01-21',
173
+ releasedAt: '2025-02-05',
191
174
  type: 'chat',
192
175
  },
193
176
  {
194
177
  abilities: {
195
- reasoning: true,
178
+ imageOutput: true,
196
179
  vision: true,
197
180
  },
198
- contextWindowTokens: 1_048_576 + 65_536,
199
- description:
200
- 'Gemini 2.0 Flash Thinking Exp 是 Google 的实验性多模态推理AI模型,能对复杂问题进行推理,拥有新的思维能力。',
201
- displayName: 'Gemini 2.0 Flash Thinking Experimental 01-21',
202
- enabled: true,
203
- id: 'gemini-2.0-flash-thinking-exp-01-21',
204
- maxOutput: 65_536,
181
+ contextWindowTokens: 32_768,
182
+ description: 'Gemini 2.0 Flash 模型变体,针对成本效益和低延迟等目标进行了优化。',
183
+ displayName: 'Gemini 2.0 Flash Exp',
184
+ id: 'gemini-2.0-flash-exp',
185
+ maxOutput: 8192,
205
186
  pricing: {
206
- cachedInput: 0,
207
187
  input: 0,
208
188
  output: 0,
209
189
  },
210
- releasedAt: '2025-01-21',
190
+ releasedAt: '2025-02-05',
211
191
  type: 'chat',
212
192
  },
213
193
  {
@@ -237,7 +217,7 @@ const googleChatModels: AIChatModelCard[] = [
237
217
  contextWindowTokens: 1_008_192,
238
218
  description: 'Gemini 1.5 Flash 002 是一款高效的多模态模型,支持广泛应用的扩展。',
239
219
  displayName: 'Gemini 1.5 Flash 002',
240
- id: 'gemini-1.5-flash-002',
220
+ id: 'gemini-1.5-flash-002', // Deprecated on 2025-09-24
241
221
  maxOutput: 8192,
242
222
  pricing: {
243
223
  cachedInput: 0.018_75,
@@ -255,7 +235,7 @@ const googleChatModels: AIChatModelCard[] = [
255
235
  contextWindowTokens: 1_008_192,
256
236
  description: 'Gemini 1.5 Flash 001 是一款高效的多模态模型,支持广泛应用的扩展。',
257
237
  displayName: 'Gemini 1.5 Flash 001',
258
- id: 'gemini-1.5-flash-001',
238
+ id: 'gemini-1.5-flash-001', // Deprecated on 2025-05-27
259
239
  maxOutput: 8192,
260
240
  pricing: {
261
241
  cachedInput: 0.018_75,
@@ -273,7 +253,7 @@ const googleChatModels: AIChatModelCard[] = [
273
253
  description:
274
254
  'Gemini 1.5 Pro 002 是最新的生产就绪模型,提供更高质量的输出,特别在数学、长上下文和视觉任务方面有显著提升。',
275
255
  displayName: 'Gemini 1.5 Pro 002',
276
- id: 'gemini-1.5-pro-002',
256
+ id: 'gemini-1.5-pro-002', // Deprecated on 2025-09-24
277
257
  maxOutput: 8192,
278
258
  pricing: {
279
259
  cachedInput: 0.315,
@@ -291,7 +271,7 @@ const googleChatModels: AIChatModelCard[] = [
291
271
  contextWindowTokens: 2_008_192,
292
272
  description: 'Gemini 1.5 Pro 001 是可扩展的多模态AI解决方案,支持广泛的复杂任务。',
293
273
  displayName: 'Gemini 1.5 Pro 001',
294
- id: 'gemini-1.5-pro-001',
274
+ id: 'gemini-1.5-pro-001', // Deprecated on 2025-05-27
295
275
  maxOutput: 8192,
296
276
  pricing: {
297
277
  cachedInput: 0.875,
@@ -309,7 +289,7 @@ const googleChatModels: AIChatModelCard[] = [
309
289
  contextWindowTokens: 1_008_192,
310
290
  description: 'Gemini 1.5 Flash 8B 是一款高效的多模态模型,支持广泛应用的扩展。',
311
291
  displayName: 'Gemini 1.5 Flash 8B',
312
- id: 'gemini-1.5-flash-8b',
292
+ id: 'gemini-1.5-flash-8b-latest',
313
293
  maxOutput: 8192,
314
294
  pricing: {
315
295
  cachedInput: 0.02,
@@ -198,6 +198,17 @@ const novitaChatModels: AIChatModelCard[] = [
198
198
  },
199
199
  type: 'chat',
200
200
  },
201
+ {
202
+ contextWindowTokens: 64_000,
203
+ displayName: 'Deepseek V3 0324',
204
+ enabled: true,
205
+ id: 'deepseek/deepseek-v3-0324',
206
+ pricing: {
207
+ input: 1.2,
208
+ output: 1.2,
209
+ },
210
+ type: 'chat',
211
+ },
201
212
  {
202
213
  abilities: {
203
214
  reasoning: true,
@@ -5,6 +5,7 @@ import { AIChatModelCard } from '@/types/aiModel';
5
5
  const siliconcloudChatModels: AIChatModelCard[] = [
6
6
  {
7
7
  abilities: {
8
+ functionCall: true,
8
9
  reasoning: true,
9
10
  },
10
11
  contextWindowTokens: 65_536,
@@ -22,14 +23,12 @@ const siliconcloudChatModels: AIChatModelCard[] = [
22
23
  },
23
24
  {
24
25
  abilities: {
25
- // Not support tool use, ref: https://cloud.siliconflow.cn/models?target=deepseek-ai%2FDeepSeek-V3
26
- functionCall: false,
26
+ functionCall: true,
27
27
  },
28
28
  contextWindowTokens: 65_536,
29
29
  description:
30
30
  'DeepSeek-V3 是一款拥有 6710 亿参数的混合专家(MoE)语言模型,采用多头潜在注意力(MLA)和 DeepSeekMoE 架构,结合无辅助损失的负载平衡策略,优化推理和训练效率。通过在 14.8 万亿高质量tokens上预训练,并进行监督微调和强化学习,DeepSeek-V3 在性能上超越其他开源模型,接近领先闭源模型。',
31
31
  displayName: 'DeepSeek V3',
32
- enabled: true,
33
32
  id: 'deepseek-ai/DeepSeek-V3',
34
33
  pricing: {
35
34
  currency: 'CNY',
@@ -40,6 +39,7 @@ const siliconcloudChatModels: AIChatModelCard[] = [
40
39
  },
41
40
  {
42
41
  abilities: {
42
+ functionCall: true,
43
43
  reasoning: true,
44
44
  },
45
45
  contextWindowTokens: 65_536,
@@ -70,23 +70,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
70
70
  },
71
71
  type: 'chat',
72
72
  },
73
- {
74
- abilities: {
75
- reasoning: true
76
- },
77
- contextWindowTokens: 32_768,
78
- description:
79
- "DeepSeek-R1-Distill-Llama-70B 是基于 Llama-3.3-70B-Instruct 经过蒸馏训练得到的模型。该模型是 DeepSeek-R1 系列的一部分,通过使用 DeepSeek-R1 生成的样本进行微调,在数学、编程和推理等多个领域展现出优秀的性能。模型在 AIME 2024、MATH-500、GPQA Diamond 等多个基准测试中都取得了优异的成绩,显示出强大的推理能力。",
80
- displayName: "DeepSeek R1 Distill Llama 70B",
81
- enabled: true,
82
- id: "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
83
- pricing: {
84
- currency: "CNY",
85
- input: 4.13,
86
- output: 4.13
87
- },
88
- type: "chat"
89
- },
90
73
  {
91
74
  abilities: {
92
75
  reasoning: true
@@ -95,7 +78,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
95
78
  description:
96
79
  "DeepSeek-R1-Distill-Qwen-32B 是基于 Qwen2.5-32B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在数学、编程和推理等多个领域展现出卓越的性能。在 AIME 2024、MATH-500、GPQA Diamond 等多个基准测试中都取得了优异成绩,其中在 MATH-500 上达到了 94.3% 的准确率,展现出强大的数学推理能力。",
97
80
  displayName: "DeepSeek R1 Distill Qwen 32B",
98
- enabled: true,
99
81
  id: "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
100
82
  pricing: {
101
83
  currency: "CNY",
@@ -126,16 +108,15 @@ const siliconcloudChatModels: AIChatModelCard[] = [
126
108
  },
127
109
  contextWindowTokens: 32_768,
128
110
  description:
129
- "DeepSeek-R1-Distill-Llama-8B 是基于 Llama-3.1-8B 开发的蒸馏模型。该模型使用 DeepSeek-R1 生成的样本进行微调,展现出优秀的推理能力。在多个基准测试中表现不俗,其中在 MATH-500 上达到了 89.1% 的准确率,在 AIME 2024 上达到了 50.4% 的通过率,在 CodeForces 上获得了 1205 的评分,作为 8B 规模的模型展示了较强的数学和编程能力。",
130
- displayName: "DeepSeek R1 Distill Llama 8B (Free)",
131
- enabled: true,
132
- id: "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
111
+ "DeepSeek-R1-Distill-Qwen-7B 是基于 Qwen2.5-Math-7B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 92.8% 的准确率,在 AIME 2024 上达到了 55.5% 的通过率,在 CodeForces 上获得了 1189 的评分,作为 7B 规模的模型展示了较强的数学和编程能力。",
112
+ displayName: "DeepSeek R1 Distill Qwen 7B (Free)",
113
+ id: "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
133
114
  pricing: {
134
115
  currency: "CNY",
135
116
  input: 0,
136
117
  output: 0
137
118
  },
138
- type: "chat"
119
+ type: "chat",
139
120
  },
140
121
  {
141
122
  abilities: {
@@ -143,15 +124,30 @@ const siliconcloudChatModels: AIChatModelCard[] = [
143
124
  },
144
125
  contextWindowTokens: 32_768,
145
126
  description:
146
- "DeepSeek-R1-Distill-Qwen-7B 是基于 Qwen2.5-Math-7B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 92.8% 的准确率,在 AIME 2024 上达到了 55.5% 的通过率,在 CodeForces 上获得了 1189 的评分,作为 7B 规模的模型展示了较强的数学和编程能力。",
147
- displayName: "DeepSeek R1 Distill Qwen 7B (Free)",
148
- enabled: true,
149
- id: "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
127
+ "DeepSeek-R1-Distill-Qwen-1.5B 是基于 Qwen2.5-Math-1.5B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在多个基准测试中展现出不错的性能。作为一个轻量级模型,在 MATH-500 上达到了 83.9% 的准确率,在 AIME 2024 上达到了 28.9% 的通过率,在 CodeForces 上获得了 954 的评分,显示出超出其参数规模的推理能力。",
128
+ displayName: "DeepSeek-R1-Distill-Qwen-1.5B (Free)",
129
+ id: "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
150
130
  pricing: {
151
131
  currency: "CNY",
152
132
  input: 0,
153
133
  output: 0
154
134
  },
135
+ type: "chat"
136
+ },
137
+ {
138
+ abilities: {
139
+ reasoning: true
140
+ },
141
+ contextWindowTokens: 32_768,
142
+ description:
143
+ "DeepSeek-R1-Distill-Qwen-7B 是基于 Qwen2.5-Math-7B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 92.8% 的准确率,在 AIME 2024 上达到了 55.5% 的通过率,在 CodeForces 上获得了 1189 的评分,作为 7B 规模的模型展示了较强的数学和编程能力。",
144
+ displayName: "DeepSeek R1 Distill Qwen 7B (Pro)",
145
+ id: "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
146
+ pricing: {
147
+ currency: "CNY",
148
+ input: 0.35,
149
+ output: 0.35
150
+ },
155
151
  type: "chat",
156
152
  },
157
153
  {
@@ -161,12 +157,12 @@ const siliconcloudChatModels: AIChatModelCard[] = [
161
157
  contextWindowTokens: 32_768,
162
158
  description:
163
159
  "DeepSeek-R1-Distill-Qwen-1.5B 是基于 Qwen2.5-Math-1.5B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在多个基准测试中展现出不错的性能。作为一个轻量级模型,在 MATH-500 上达到了 83.9% 的准确率,在 AIME 2024 上达到了 28.9% 的通过率,在 CodeForces 上获得了 954 的评分,显示出超出其参数规模的推理能力。",
164
- displayName: "DeepSeek-R1-Distill-Qwen-1.5B (Free)",
165
- id: "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
160
+ displayName: "DeepSeek-R1-Distill-Qwen-1.5B (Pro)",
161
+ id: "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
166
162
  pricing: {
167
163
  currency: "CNY",
168
- input: 0,
169
- output: 0
164
+ input: 0.14,
165
+ output: 0.14
170
166
  },
171
167
  type: "chat"
172
168
  },
@@ -261,7 +257,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
261
257
  description:
262
258
  'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
263
259
  displayName: 'Qwen2.5 7B Instruct (Free)',
264
- enabled: true,
265
260
  id: 'Qwen/Qwen2.5-7B-Instruct',
266
261
  pricing: {
267
262
  currency: 'CNY',
@@ -270,19 +265,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
270
265
  },
271
266
  type: 'chat',
272
267
  },
273
- {
274
- contextWindowTokens: 32_768,
275
- description:
276
- 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
277
- displayName: 'Qwen2.5 7B Instruct (LoRA)',
278
- id: 'LoRA/Qwen/Qwen2.5-7B-Instruct',
279
- pricing: {
280
- currency: 'CNY',
281
- input: 0.53,
282
- output: 0.53,
283
- },
284
- type: 'chat',
285
- },
286
268
  {
287
269
  abilities: {
288
270
  functionCall: true,
@@ -347,19 +329,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
347
329
  },
348
330
  type: 'chat',
349
331
  },
350
- {
351
- contextWindowTokens: 32_768,
352
- description:
353
- 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
354
- displayName: 'Qwen2.5 72B Instruct (LoRA)',
355
- id: 'LoRA/Qwen/Qwen2.5-72B-Instruct',
356
- pricing: {
357
- currency: 'CNY',
358
- input: 6.2,
359
- output: 6.2,
360
- },
361
- type: 'chat',
362
- },
363
332
  {
364
333
  abilities: {
365
334
  functionCall: true,
@@ -508,7 +477,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
508
477
  description:
509
478
  'Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
510
479
  displayName: 'Qwen2 VL 72B Instruct',
511
- enabled: true,
512
480
  id: 'Qwen/Qwen2-VL-72B-Instruct',
513
481
  pricing: {
514
482
  currency: 'CNY',
@@ -519,61 +487,62 @@ const siliconcloudChatModels: AIChatModelCard[] = [
519
487
  },
520
488
  {
521
489
  abilities: {
522
- functionCall: true,
490
+ vision: true,
523
491
  },
524
492
  contextWindowTokens: 32_768,
525
493
  description:
526
- 'InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域',
527
- displayName: 'InternLM2.5 7B Chat (Free)',
528
- id: 'internlm/internlm2_5-7b-chat',
494
+ 'Qwen2.5-VL Qwen 系列的新成员,具备强大的视觉理解能力,能分析图像中的文本、图表和布局,并能理解长视频和捕捉事件,它可以进行推理、操作工具,支持多格式物体定位和生成结构化输出,优化了视频理解的动态分辨率与帧率训练,并提升了视觉编码器效率。',
495
+ displayName: 'Qwen2.5 VL 7B Instruct (Pro)',
496
+ id: 'Pro/Qwen/Qwen2.5-VL-7B-Instruct',
529
497
  pricing: {
530
498
  currency: 'CNY',
531
- input: 0,
532
- output: 0,
499
+ input: 0.35,
500
+ output: 0.35,
533
501
  },
534
502
  type: 'chat',
535
503
  },
536
504
  {
537
505
  abilities: {
538
- functionCall: true,
506
+ vision: true,
539
507
  },
540
508
  contextWindowTokens: 32_768,
541
509
  description:
542
- 'InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务',
543
- displayName: 'InternLM2.5 20B Chat',
544
- id: 'internlm/internlm2_5-20b-chat',
510
+ 'Qwen2.5-VL Qwen2.5 系列中的视觉语言模型。该模型在多方面有显著提升:具备更强的视觉理解能力,能够识别常见物体、分析文本、图表和布局;作为视觉代理能够推理并动态指导工具使用;支持理解超过 1 小时的长视频并捕捉关键事件;能够通过生成边界框或点准确定位图像中的物体;支持生成结构化输出,尤其适用于发票、表格等扫描数据。',
511
+ displayName: 'Qwen2.5 VL 72B Instruct',
512
+ enabled: true,
513
+ id: 'Qwen/Qwen2.5-VL-72B-Instruct',
545
514
  pricing: {
546
515
  currency: 'CNY',
547
- input: 1,
548
- output: 1,
516
+ input: 4.13,
517
+ output: 4.13,
549
518
  },
550
519
  type: 'chat',
551
520
  },
552
521
  {
553
522
  abilities: {
554
- vision: true,
523
+ functionCall: true,
555
524
  },
556
525
  contextWindowTokens: 32_768,
557
526
  description:
558
- 'InternVL2-8B InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
559
- displayName: 'InternVL2 8B (Pro)',
560
- id: 'Pro/OpenGVLab/InternVL2-8B',
527
+ 'InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域',
528
+ displayName: 'InternLM2.5 7B Chat (Free)',
529
+ id: 'internlm/internlm2_5-7b-chat',
561
530
  pricing: {
562
531
  currency: 'CNY',
563
- input: 0.35,
564
- output: 0.35,
532
+ input: 0,
533
+ output: 0,
565
534
  },
566
535
  type: 'chat',
567
536
  },
568
537
  {
569
538
  abilities: {
570
- vision: true,
539
+ functionCall: true,
571
540
  },
572
541
  contextWindowTokens: 32_768,
573
542
  description:
574
- 'InternVL2-26B InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
575
- displayName: 'InternVL2 26B',
576
- id: 'OpenGVLab/InternVL2-26B',
543
+ 'InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务',
544
+ displayName: 'InternLM2.5 20B Chat',
545
+ id: 'internlm/internlm2_5-20b-chat',
577
546
  pricing: {
578
547
  currency: 'CNY',
579
548
  input: 1,
@@ -626,160 +595,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
626
595
  },
627
596
  type: 'chat',
628
597
  },
629
- {
630
- contextWindowTokens: 4096,
631
- description:
632
- 'Yi-1.5-6B-Chat 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 和 32K 的上下文长度版本,预训练总量达到 3.6T 个 token',
633
- displayName: 'Yi-1.5 6B Chat (Free)',
634
- id: '01-ai/Yi-1.5-6B-Chat',
635
- pricing: {
636
- currency: 'CNY',
637
- input: 0,
638
- output: 0,
639
- },
640
- type: 'chat',
641
- },
642
- {
643
- contextWindowTokens: 16_384,
644
- description:
645
- 'Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳',
646
- displayName: 'Yi-1.5 9B Chat 16K (Free)',
647
- id: '01-ai/Yi-1.5-9B-Chat-16K',
648
- pricing: {
649
- currency: 'CNY',
650
- input: 0,
651
- output: 0,
652
- },
653
- type: 'chat',
654
- },
655
- {
656
- contextWindowTokens: 16_384,
657
- description:
658
- 'Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度',
659
- displayName: 'Yi-1.5 34B Chat 16K',
660
- id: '01-ai/Yi-1.5-34B-Chat-16K',
661
- pricing: {
662
- currency: 'CNY',
663
- input: 1.26,
664
- output: 1.26,
665
- },
666
- type: 'chat',
667
- },
668
- {
669
- contextWindowTokens: 8192,
670
- description:
671
- 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
672
- displayName: 'Gemma 2 9B (Free)',
673
- id: 'google/gemma-2-9b-it',
674
- pricing: {
675
- currency: 'CNY',
676
- input: 0,
677
- output: 0,
678
- },
679
- type: 'chat',
680
- },
681
- {
682
- contextWindowTokens: 8192,
683
- description:
684
- 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
685
- displayName: 'Gemma 2 9B (Pro)',
686
- id: 'Pro/google/gemma-2-9b-it',
687
- pricing: {
688
- currency: 'CNY',
689
- input: 0.6,
690
- output: 0.6,
691
- },
692
- type: 'chat',
693
- },
694
- {
695
- contextWindowTokens: 8192,
696
- description:
697
- 'Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新',
698
- displayName: 'Gemma 2 27B',
699
- id: 'google/gemma-2-27b-it',
700
- pricing: {
701
- currency: 'CNY',
702
- input: 1.26,
703
- output: 1.26,
704
- },
705
- type: 'chat',
706
- },
707
- {
708
- abilities: {
709
- functionCall: true,
710
- },
711
- contextWindowTokens: 32_768,
712
- description:
713
- 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
714
- displayName: 'Llama 3.1 8B Instruct (Free)',
715
- id: 'meta-llama/Meta-Llama-3.1-8B-Instruct',
716
- pricing: {
717
- currency: 'CNY',
718
- input: 0,
719
- output: 0,
720
- },
721
- type: 'chat',
722
- },
723
- {
724
- contextWindowTokens: 32_768,
725
- description:
726
- 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
727
- displayName: 'Llama 3.1 8B Instruct (Pro)',
728
- id: 'Pro/meta-llama/Meta-Llama-3.1-8B-Instruct',
729
- pricing: {
730
- currency: 'CNY',
731
- input: 0.42,
732
- output: 0.42,
733
- },
734
- type: 'chat',
735
- },
736
- {
737
- abilities: {
738
- functionCall: true,
739
- },
740
- contextWindowTokens: 32_768,
741
- description:
742
- 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 70B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
743
- displayName: 'Llama 3.1 70B Instruct',
744
- id: 'meta-llama/Meta-Llama-3.1-70B-Instruct',
745
- pricing: {
746
- currency: 'CNY',
747
- input: 4.13,
748
- output: 4.13,
749
- },
750
- type: 'chat',
751
- },
752
- {
753
- contextWindowTokens: 32_768,
754
- description:
755
- 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 405B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
756
- displayName: 'Llama 3.1 405B Instruct',
757
- enabled: true,
758
- id: 'meta-llama/Meta-Llama-3.1-405B-Instruct',
759
- pricing: {
760
- currency: 'CNY',
761
- input: 21,
762
- output: 21,
763
- },
764
- type: 'chat',
765
- },
766
- {
767
- abilities: {
768
- functionCall: true,
769
- },
770
- contextWindowTokens: 32_768,
771
- description:
772
- 'Llama 3.3 是 Llama 系列最先进的多语言开源大型语言模型,以极低成本体验媲美 405B 模型的性能。基于 Transformer 结构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)提升有用性和安全性。其指令调优版本专为多语言对话优化,在多项行业基准上表现优于众多开源和封闭聊天模型。知识截止日期为 2023 年 12 月',
773
- displayName: 'Llama 3.3 70B Instruct',
774
- enabled: true,
775
- id: 'meta-llama/Llama-3.3-70B-Instruct',
776
- pricing: {
777
- currency: 'CNY',
778
- input: 4.13,
779
- output: 4.13,
780
- },
781
- type: 'chat',
782
- },
783
598
  {
784
599
  contextWindowTokens: 8192,
785
600
  description:
@@ -793,22 +608,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
793
608
  },
794
609
  type: 'chat',
795
610
  },
796
- {
797
- abilities: {
798
- vision: true,
799
- },
800
- contextWindowTokens: 32_768,
801
- description:
802
- 'TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现',
803
- displayName: 'TeleMM',
804
- id: 'TeleAI/TeleMM',
805
- pricing: {
806
- currency: 'CNY',
807
- input: 1.33,
808
- output: 1.33,
809
- },
810
- type: 'chat',
811
- },
812
611
  ];
813
612
 
814
613
  export const allModels = [...siliconcloudChatModels];
@@ -6,6 +6,7 @@ import { AIChatModelCard } from '@/types/aiModel';
6
6
  const doubaoChatModels: AIChatModelCard[] = [
7
7
  {
8
8
  abilities: {
9
+ functionCall: true,
9
10
  reasoning: true,
10
11
  },
11
12
  config: {
@@ -17,7 +18,7 @@ const doubaoChatModels: AIChatModelCard[] = [
17
18
  displayName: 'DeepSeek R1',
18
19
  enabled: true,
19
20
  id: 'deepseek-r1',
20
- maxOutput: 8000,
21
+ maxOutput: 16_384,
21
22
  pricing: {
22
23
  currency: 'CNY',
23
24
  input: 4,
@@ -27,6 +28,7 @@ const doubaoChatModels: AIChatModelCard[] = [
27
28
  },
28
29
  {
29
30
  abilities: {
31
+ functionCall: true,
30
32
  reasoning: true,
31
33
  },
32
34
  config: {
@@ -37,7 +39,7 @@ const doubaoChatModels: AIChatModelCard[] = [
37
39
  'DeepSeek-R1-Distill 模型是在开源模型的基础上通过微调训练得到的,训练过程中使用了由 DeepSeek-R1 生成的样本数据。',
38
40
  displayName: 'DeepSeek R1 Distill Qwen 32B',
39
41
  id: 'deepseek-r1-distill-qwen-32b',
40
- maxOutput: 8000,
42
+ maxOutput: 8192,
41
43
  pricing: {
42
44
  currency: 'CNY',
43
45
  input: 1.5,
@@ -47,6 +49,7 @@ const doubaoChatModels: AIChatModelCard[] = [
47
49
  },
48
50
  {
49
51
  abilities: {
52
+ functionCall: true,
50
53
  reasoning: true,
51
54
  },
52
55
  config: {
@@ -57,7 +60,7 @@ const doubaoChatModels: AIChatModelCard[] = [
57
60
  'DeepSeek-R1-Distill 模型是在开源模型的基础上通过微调训练得到的,训练过程中使用了由 DeepSeek-R1 生成的样本数据。',
58
61
  displayName: 'DeepSeek R1 Distill Qwen 7B',
59
62
  id: 'deepseek-r1-distill-qwen-7b',
60
- maxOutput: 8000,
63
+ maxOutput: 8192,
61
64
  pricing: {
62
65
  currency: 'CNY',
63
66
  input: 0.6,
@@ -67,8 +70,7 @@ const doubaoChatModels: AIChatModelCard[] = [
67
70
  },
68
71
  {
69
72
  abilities: {
70
- // FC not supported yet, ref: https://www.volcengine.com/docs/82379/1262342#8c325d45
71
- functionCall: false,
73
+ functionCall: true,
72
74
  },
73
75
  config: {
74
76
  deploymentName: 'deepseek-v3-241226',
@@ -77,9 +79,8 @@ const doubaoChatModels: AIChatModelCard[] = [
77
79
  description:
78
80
  'DeepSeek-V3 是一款由深度求索公司自研的MoE模型。DeepSeek-V3 多项评测成绩超越了 Qwen2.5-72B 和 Llama-3.1-405B 等其他开源模型,并在性能上和世界顶尖的闭源模型 GPT-4o 以及 Claude-3.5-Sonnet 不分伯仲。',
79
81
  displayName: 'DeepSeek V3',
80
- enabled: true,
81
82
  id: 'deepseek-v3',
82
- maxOutput: 8000,
83
+ maxOutput: 16_384,
83
84
  pricing: {
84
85
  currency: 'CNY',
85
86
  input: 2,
@@ -100,7 +101,7 @@ const doubaoChatModels: AIChatModelCard[] = [
100
101
  displayName: 'Doubao 1.5 Pro 32k',
101
102
  enabled: true,
102
103
  id: 'doubao-1.5-pro-32k',
103
- maxOutput: 12_000,
104
+ maxOutput: 12_288,
104
105
  pricing: {
105
106
  currency: 'CNY',
106
107
  input: 0.8,
@@ -109,9 +110,6 @@ const doubaoChatModels: AIChatModelCard[] = [
109
110
  type: 'chat',
110
111
  },
111
112
  {
112
- abilities: {
113
- functionCall: true,
114
- },
115
113
  config: {
116
114
  deploymentName: 'doubao-1-5-pro-256k-250115',
117
115
  },
@@ -119,9 +117,8 @@ const doubaoChatModels: AIChatModelCard[] = [
119
117
  description:
120
118
  'Doubao-1.5-pro-256k 基于 Doubao-1.5-Pro 全面升级版,整体效果大幅提升 10%。支持 256k 上下文窗口的推理,输出长度支持最大 12k tokens。更高性能、更大窗口、超高性价比,适用于更广泛的应用场景。',
121
119
  displayName: 'Doubao 1.5 Pro 256k',
122
- enabled: true,
123
120
  id: 'doubao-1.5-pro-256k',
124
- maxOutput: 12_000,
121
+ maxOutput: 12_288,
125
122
  pricing: {
126
123
  currency: 'CNY',
127
124
  input: 5,
@@ -142,7 +139,7 @@ const doubaoChatModels: AIChatModelCard[] = [
142
139
  displayName: 'Doubao 1.5 Lite 32k',
143
140
  enabled: true,
144
141
  id: 'doubao-1.5-lite-32k',
145
- maxOutput: 12_000,
142
+ maxOutput: 12_288,
146
143
  pricing: {
147
144
  currency: 'CNY',
148
145
  input: 0.3,
@@ -163,7 +160,7 @@ const doubaoChatModels: AIChatModelCard[] = [
163
160
  displayName: 'Doubao 1.5 Vision Pro 32k',
164
161
  enabled: true,
165
162
  id: 'Doubao-1.5-vision-pro-32k',
166
- maxOutput: 12_000,
163
+ maxOutput: 12_288,
167
164
  pricing: {
168
165
  currency: 'CNY',
169
166
  input: 3,