@lobehub/chat 1.74.1 → 1.74.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +59 -0
- package/README.md +2 -2
- package/README.zh-CN.md +2 -2
- package/changelog/v1.json +18 -0
- package/docs/developer/database-schema.dbml +54 -2
- package/docs/self-hosting/environment-variables/model-provider.mdx +9 -7
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +9 -7
- package/locales/ar/common.json +51 -0
- package/locales/ar/models.json +69 -3
- package/locales/ar/providers.json +6 -0
- package/locales/bg-BG/common.json +51 -0
- package/locales/bg-BG/models.json +69 -3
- package/locales/bg-BG/providers.json +6 -0
- package/locales/de-DE/common.json +51 -0
- package/locales/de-DE/models.json +69 -3
- package/locales/de-DE/providers.json +6 -0
- package/locales/en-US/common.json +51 -0
- package/locales/en-US/models.json +69 -3
- package/locales/en-US/providers.json +6 -3
- package/locales/es-ES/common.json +51 -0
- package/locales/es-ES/models.json +69 -3
- package/locales/es-ES/providers.json +6 -0
- package/locales/fa-IR/common.json +51 -0
- package/locales/fa-IR/models.json +69 -3
- package/locales/fa-IR/providers.json +6 -0
- package/locales/fr-FR/common.json +51 -0
- package/locales/fr-FR/models.json +69 -3
- package/locales/fr-FR/providers.json +6 -0
- package/locales/it-IT/common.json +51 -0
- package/locales/it-IT/models.json +69 -3
- package/locales/it-IT/providers.json +6 -0
- package/locales/ja-JP/common.json +51 -0
- package/locales/ja-JP/models.json +78 -4
- package/locales/ja-JP/providers.json +6 -0
- package/locales/ko-KR/common.json +51 -0
- package/locales/ko-KR/models.json +69 -3
- package/locales/ko-KR/providers.json +6 -0
- package/locales/nl-NL/common.json +51 -0
- package/locales/nl-NL/models.json +69 -3
- package/locales/nl-NL/providers.json +6 -0
- package/locales/pl-PL/common.json +51 -0
- package/locales/pl-PL/models.json +69 -3
- package/locales/pl-PL/providers.json +6 -0
- package/locales/pt-BR/common.json +51 -0
- package/locales/pt-BR/models.json +69 -3
- package/locales/pt-BR/providers.json +6 -0
- package/locales/ru-RU/common.json +51 -0
- package/locales/ru-RU/models.json +69 -3
- package/locales/ru-RU/providers.json +6 -0
- package/locales/tr-TR/common.json +51 -0
- package/locales/tr-TR/models.json +69 -3
- package/locales/tr-TR/providers.json +6 -0
- package/locales/vi-VN/common.json +51 -0
- package/locales/vi-VN/models.json +69 -3
- package/locales/vi-VN/providers.json +6 -0
- package/locales/zh-CN/common.json +53 -2
- package/locales/zh-CN/models.json +79 -13
- package/locales/zh-CN/providers.json +6 -4
- package/locales/zh-TW/common.json +51 -0
- package/locales/zh-TW/models.json +81 -4
- package/locales/zh-TW/providers.json +6 -0
- package/package.json +1 -1
- package/packages/web-crawler/src/utils/__tests__/withTimeout.test.ts +0 -1
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/Checker.tsx +9 -1
- package/src/config/aiModels/qwen.ts +4 -4
- package/src/config/aiModels/volcengine.ts +2 -2
- package/src/database/client/db.ts +102 -11
- package/src/database/client/migrations.json +38 -8
- package/src/database/migrations/0018_add_client_id_for_entities.sql +32 -0
- package/src/database/migrations/meta/0018_snapshot.json +4212 -0
- package/src/database/migrations/meta/_journal.json +7 -0
- package/src/database/models/drizzleMigration.ts +23 -0
- package/src/database/schemas/agent.ts +48 -31
- package/src/database/schemas/file.ts +32 -16
- package/src/database/schemas/message.ts +91 -54
- package/src/database/schemas/rag.ts +65 -32
- package/src/database/schemas/session.ts +6 -3
- package/src/database/schemas/topic.ts +31 -24
- package/src/features/InitClientDB/ErrorResult.tsx +53 -32
- package/src/features/InitClientDB/features/DatabaseRepair/Backup.tsx +77 -0
- package/src/features/InitClientDB/features/DatabaseRepair/Diagnosis.tsx +98 -0
- package/src/features/InitClientDB/features/DatabaseRepair/Repair.tsx +220 -0
- package/src/features/InitClientDB/features/DatabaseRepair/index.tsx +85 -0
- package/src/features/ModelSwitchPanel/index.tsx +13 -7
- package/src/locales/default/common.ts +53 -1
- package/src/store/global/actions/clientDb.ts +19 -3
- package/src/store/global/initialState.ts +6 -1
- package/src/store/global/selectors/clientDB.ts +43 -0
- package/src/store/global/selectors/index.ts +1 -0
- package/src/store/user/slices/settings/selectors/general.test.ts +90 -0
- package/src/types/clientDB.ts +13 -0
@@ -518,6 +518,18 @@
|
|
518
518
|
"baichuan/baichuan2-13b-chat": {
|
519
519
|
"description": "Baichuan-13B est un modèle de langage open source et commercialisable développé par Baichuan Intelligence, contenant 13 milliards de paramètres, qui a obtenu les meilleurs résultats dans des benchmarks chinois et anglais de référence."
|
520
520
|
},
|
521
|
+
"c4ai-aya-expanse-32b": {
|
522
|
+
"description": "Aya Expanse est un modèle multilingue haute performance de 32B, conçu pour défier les performances des modèles monolingues grâce à des innovations en matière d'optimisation par instructions, d'arbitrage de données, d'entraînement de préférences et de fusion de modèles. Il prend en charge 23 langues."
|
523
|
+
},
|
524
|
+
"c4ai-aya-expanse-8b": {
|
525
|
+
"description": "Aya Expanse est un modèle multilingue haute performance de 8B, conçu pour défier les performances des modèles monolingues grâce à des innovations en matière d'optimisation par instructions, d'arbitrage de données, d'entraînement de préférences et de fusion de modèles. Il prend en charge 23 langues."
|
526
|
+
},
|
527
|
+
"c4ai-aya-vision-32b": {
|
528
|
+
"description": "Aya Vision est un modèle multimodal de pointe, offrant d'excellentes performances sur plusieurs benchmarks clés en matière de langage, de texte et d'image. Cette version de 32 milliards de paramètres se concentre sur des performances multilingues de pointe."
|
529
|
+
},
|
530
|
+
"c4ai-aya-vision-8b": {
|
531
|
+
"description": "Aya Vision est un modèle multimodal de pointe, offrant d'excellentes performances sur plusieurs benchmarks clés en matière de langage, de texte et d'image. Cette version de 8 milliards de paramètres se concentre sur une faible latence et des performances optimales."
|
532
|
+
},
|
521
533
|
"charglm-3": {
|
522
534
|
"description": "CharGLM-3 est conçu pour le jeu de rôle et l'accompagnement émotionnel, prenant en charge une mémoire multi-tours ultra-longue et des dialogues personnalisés, avec des applications variées."
|
523
535
|
},
|
@@ -602,12 +614,39 @@
|
|
602
614
|
"cohere-command-r-plus": {
|
603
615
|
"description": "Command R+ est un modèle optimisé RAG de pointe conçu pour traiter des charges de travail de niveau entreprise."
|
604
616
|
},
|
617
|
+
"command": {
|
618
|
+
"description": "Un modèle de dialogue qui suit des instructions, offrant une haute qualité et une fiabilité accrue dans les tâches linguistiques, avec une longueur de contexte plus longue que notre modèle de génération de base."
|
619
|
+
},
|
620
|
+
"command-a-03-2025": {
|
621
|
+
"description": "Command A est notre modèle le plus performant à ce jour, offrant d'excellentes performances dans l'utilisation d'outils, l'agent, la génération augmentée par récupération (RAG) et les applications multilingues. Command A a une longueur de contexte de 256K, nécessite seulement deux GPU pour fonctionner, et a amélioré le débit de 150 % par rapport à Command R+ 08-2024."
|
622
|
+
},
|
623
|
+
"command-light": {
|
624
|
+
"description": "Une version plus petite et plus rapide de Command, presque aussi puissante, mais plus rapide."
|
625
|
+
},
|
626
|
+
"command-light-nightly": {
|
627
|
+
"description": "Pour réduire l'intervalle de temps entre les versions majeures, nous avons lancé une version nocturne du modèle Command. Pour la série command-light, cette version est appelée command-light-nightly. Veuillez noter que command-light-nightly est la version la plus récente, la plus expérimentale et (potentiellement) instable. Les versions nocturnes sont mises à jour régulièrement sans préavis, il n'est donc pas recommandé de les utiliser en production."
|
628
|
+
},
|
629
|
+
"command-nightly": {
|
630
|
+
"description": "Pour réduire l'intervalle de temps entre les versions majeures, nous avons lancé une version nocturne du modèle Command. Pour la série Command, cette version est appelée command-cightly. Veuillez noter que command-nightly est la version la plus récente, la plus expérimentale et (potentiellement) instable. Les versions nocturnes sont mises à jour régulièrement sans préavis, il n'est donc pas recommandé de les utiliser en production."
|
631
|
+
},
|
605
632
|
"command-r": {
|
606
633
|
"description": "Command R est un LLM optimisé pour les tâches de dialogue et de long contexte, particulièrement adapté à l'interaction dynamique et à la gestion des connaissances."
|
607
634
|
},
|
635
|
+
"command-r-03-2024": {
|
636
|
+
"description": "Command R est un modèle de dialogue qui suit des instructions, offrant une qualité supérieure et une fiabilité accrue dans les tâches linguistiques, avec une longueur de contexte plus longue que les modèles précédents. Il peut être utilisé pour des flux de travail complexes tels que la génération de code, la génération augmentée par récupération (RAG), l'utilisation d'outils et l'agent."
|
637
|
+
},
|
638
|
+
"command-r-08-2024": {
|
639
|
+
"description": "command-r-08-2024 est une version mise à jour du modèle Command R, publiée en août 2024."
|
640
|
+
},
|
608
641
|
"command-r-plus": {
|
609
642
|
"description": "Command R+ est un modèle de langage de grande taille à haute performance, conçu pour des scénarios d'entreprise réels et des applications complexes."
|
610
643
|
},
|
644
|
+
"command-r-plus-04-2024": {
|
645
|
+
"description": "Command R+ est un modèle de dialogue qui suit des instructions, offrant une qualité supérieure et une fiabilité accrue dans les tâches linguistiques, avec une longueur de contexte plus longue que les modèles précédents. Il est particulièrement adapté aux flux de travail RAG complexes et à l'utilisation d'outils en plusieurs étapes."
|
646
|
+
},
|
647
|
+
"command-r7b-12-2024": {
|
648
|
+
"description": "command-r7b-12-2024 est une version mise à jour, petite et efficace, publiée en décembre 2024. Il excelle dans les tâches nécessitant un raisonnement complexe et un traitement en plusieurs étapes, comme RAG, l'utilisation d'outils et l'agent."
|
649
|
+
},
|
611
650
|
"dall-e-2": {
|
612
651
|
"description": "Le deuxième modèle DALL·E, prenant en charge la génération d'images plus réalistes et précises, avec une résolution quatre fois supérieure à celle de la première génération."
|
613
652
|
},
|
@@ -668,12 +707,24 @@
|
|
668
707
|
"deepseek-r1": {
|
669
708
|
"description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
|
670
709
|
},
|
710
|
+
"deepseek-r1-70b-fast-online": {
|
711
|
+
"description": "DeepSeek R1 70B version rapide, prenant en charge la recherche en ligne en temps réel, offrant une vitesse de réponse plus rapide tout en maintenant les performances du modèle."
|
712
|
+
},
|
713
|
+
"deepseek-r1-70b-online": {
|
714
|
+
"description": "DeepSeek R1 70B version standard, prenant en charge la recherche en ligne en temps réel, adaptée aux tâches de dialogue et de traitement de texte nécessitant des informations à jour."
|
715
|
+
},
|
671
716
|
"deepseek-r1-distill-llama-70b": {
|
672
717
|
"description": "DeepSeek R1 — le modèle plus grand et plus intelligent de la suite DeepSeek — a été distillé dans l'architecture Llama 70B. Basé sur des tests de référence et des évaluations humaines, ce modèle est plus intelligent que le Llama 70B d'origine, en particulier dans les tâches nécessitant précision mathématique et factuelle."
|
673
718
|
},
|
674
719
|
"deepseek-r1-distill-llama-8b": {
|
675
720
|
"description": "Le modèle de la série DeepSeek-R1-Distill est obtenu par la technique de distillation des connaissances, en ajustant les échantillons générés par DeepSeek-R1 sur des modèles open source tels que Qwen et Llama."
|
676
721
|
},
|
722
|
+
"deepseek-r1-distill-qianfan-llama-70b": {
|
723
|
+
"description": "Publié pour la première fois le 14 février 2025, distillé par l'équipe de développement du modèle Qianfan à partir du modèle de base Llama3_70B (construit avec Meta Llama), avec des données de distillation ajoutées provenant des corpus de Qianfan."
|
724
|
+
},
|
725
|
+
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
|
+
"description": "Publié pour la première fois le 14 février 2025, distillé par l'équipe de développement du modèle Qianfan à partir du modèle de base Llama3_8B (construit avec Meta Llama), avec des données de distillation ajoutées provenant des corpus de Qianfan."
|
727
|
+
},
|
677
728
|
"deepseek-r1-distill-qwen-1.5b": {
|
678
729
|
"description": "Le modèle de la série DeepSeek-R1-Distill est obtenu par la technique de distillation des connaissances, en ajustant les échantillons générés par DeepSeek-R1 sur des modèles open source tels que Qwen et Llama."
|
679
730
|
},
|
@@ -686,6 +737,12 @@
|
|
686
737
|
"deepseek-r1-distill-qwen-7b": {
|
687
738
|
"description": "Le modèle de la série DeepSeek-R1-Distill est obtenu par la technique de distillation des connaissances, en ajustant les échantillons générés par DeepSeek-R1 sur des modèles open source tels que Qwen et Llama."
|
688
739
|
},
|
740
|
+
"deepseek-r1-fast-online": {
|
741
|
+
"description": "DeepSeek R1 version rapide complète, prenant en charge la recherche en ligne en temps réel, combinant la puissance des 671B de paramètres avec une vitesse de réponse plus rapide."
|
742
|
+
},
|
743
|
+
"deepseek-r1-online": {
|
744
|
+
"description": "DeepSeek R1 version complète, avec 671B de paramètres, prenant en charge la recherche en ligne en temps réel, offrant des capacités de compréhension et de génération plus puissantes."
|
745
|
+
},
|
689
746
|
"deepseek-reasoner": {
|
690
747
|
"description": "Modèle d'inférence proposé par DeepSeek. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
691
748
|
},
|
@@ -764,6 +821,9 @@
|
|
764
821
|
"ernie-4.0-turbo-8k-preview": {
|
765
822
|
"description": "Le modèle de langage de très grande taille phare développé par Baidu, avec d'excellentes performances globales, largement applicable à des scénarios de tâches complexes dans divers domaines ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse. Par rapport à ERNIE 4.0, il offre de meilleures performances."
|
766
823
|
},
|
824
|
+
"ernie-4.5-8k-preview": {
|
825
|
+
"description": "Le modèle ERNIE 4.5 est un nouveau modèle de base multimodal natif développé par Baidu, réalisant une optimisation collaborative grâce à la modélisation conjointe de plusieurs modalités, avec d'excellentes capacités de compréhension multimodale ; il possède des capacités linguistiques améliorées, avec des améliorations significatives dans la compréhension, la génération, la logique et la mémoire, ainsi qu'une réduction des hallucinations et une amélioration des capacités de raisonnement logique et de codage."
|
826
|
+
},
|
767
827
|
"ernie-char-8k": {
|
768
828
|
"description": "Le modèle de langage pour des scénarios verticaux développé par Baidu, adapté aux dialogues de NPC de jeux, aux dialogues de service client, aux jeux de rôle, avec un style de personnage plus distinct et cohérent, une meilleure capacité de suivi des instructions et des performances d'inférence supérieures."
|
769
829
|
},
|
@@ -1097,9 +1157,6 @@
|
|
1097
1157
|
"hunyuan-turbo": {
|
1098
1158
|
"description": "Version préliminaire du nouveau modèle de langage de génération Hunyuan, utilisant une nouvelle structure de modèle d'experts mixtes (MoE), offrant une efficacité d'inférence plus rapide et de meilleures performances par rapport à Hunyuan-Pro."
|
1099
1159
|
},
|
1100
|
-
"hunyuan-turbo-20241120": {
|
1101
|
-
"description": "Version fixe de hunyuan-turbo du 20 novembre 2024, une version intermédiaire entre hunyuan-turbo et hunyuan-turbo-latest."
|
1102
|
-
},
|
1103
1160
|
"hunyuan-turbo-20241223": {
|
1104
1161
|
"description": "Optimisations de cette version : mise à l'échelle des instructions de données, augmentation significative de la capacité de généralisation du modèle ; amélioration significative des capacités en mathématiques, en code et en raisonnement logique ; optimisation des capacités de compréhension des mots dans le texte ; optimisation de la qualité de génération de contenu dans la création de texte."
|
1105
1162
|
},
|
@@ -1109,6 +1166,15 @@
|
|
1109
1166
|
"hunyuan-turbo-vision": {
|
1110
1167
|
"description": "Le nouveau modèle phare de langage visuel de Hunyuan de nouvelle génération, utilisant une toute nouvelle structure de modèle d'experts hybrides (MoE), avec des améliorations complètes par rapport à la génération précédente dans les capacités de reconnaissance de base, de création de contenu, de questions-réponses, et d'analyse et de raisonnement liés à la compréhension d'images et de textes."
|
1111
1168
|
},
|
1169
|
+
"hunyuan-turbos-20250226": {
|
1170
|
+
"description": "hunyuan-TurboS pv2.1.2 version fixe, mise à niveau des tokens d'entraînement de la base pré-entraînée ; amélioration des capacités de réflexion en mathématiques/logique/code ; amélioration de l'expérience générale en chinois et en anglais, y compris la création de texte, la compréhension de texte, les questions-réponses de connaissances, les discussions, etc."
|
1171
|
+
},
|
1172
|
+
"hunyuan-turbos-20250313": {
|
1173
|
+
"description": "Uniformisation du style des étapes de résolution mathématique, renforcement des questions-réponses mathématiques en plusieurs tours. Optimisation du style de réponse pour la création de texte, élimination du goût AI, ajout de l'éloquence."
|
1174
|
+
},
|
1175
|
+
"hunyuan-turbos-latest": {
|
1176
|
+
"description": "hunyuan-TurboS est la dernière version du modèle phare Hunyuan, offrant une capacité de réflexion améliorée et une expérience utilisateur optimisée."
|
1177
|
+
},
|
1112
1178
|
"hunyuan-vision": {
|
1113
1179
|
"description": "Dernier modèle multimodal Hunyuan, prenant en charge l'entrée d'images et de textes pour générer du contenu textuel."
|
1114
1180
|
},
|
@@ -23,6 +23,9 @@
|
|
23
23
|
"cloudflare": {
|
24
24
|
"description": "Exécutez des modèles d'apprentissage automatique alimentés par GPU sans serveur sur le réseau mondial de Cloudflare."
|
25
25
|
},
|
26
|
+
"cohere": {
|
27
|
+
"description": "Cohere vous apporte les modèles multilingues les plus avancés, des fonctionnalités de recherche sophistiquées et un espace de travail AI sur mesure pour les entreprises modernes - le tout intégré dans une plateforme sécurisée."
|
28
|
+
},
|
26
29
|
"deepseek": {
|
27
30
|
"description": "DeepSeek est une entreprise spécialisée dans la recherche et l'application des technologies d'intelligence artificielle, dont le dernier modèle, DeepSeek-V2.5, combine des capacités de dialogue général et de traitement de code, réalisant des améliorations significatives dans l'alignement des préférences humaines, les tâches d'écriture et le suivi des instructions."
|
28
31
|
},
|
@@ -101,6 +104,9 @@
|
|
101
104
|
"sambanova": {
|
102
105
|
"description": "SambaNova Cloud permet aux développeurs d'utiliser facilement les meilleurs modèles open source et de bénéficier de la vitesse d'inférence la plus rapide."
|
103
106
|
},
|
107
|
+
"search1api": {
|
108
|
+
"description": "Search1API offre un accès à la série de modèles DeepSeek pouvant se connecter à Internet selon les besoins, y compris les versions standard et rapide, avec un choix de modèles de différentes tailles de paramètres."
|
109
|
+
},
|
104
110
|
"sensenova": {
|
105
111
|
"description": "SenseNova, soutenue par la puissante infrastructure de SenseTime, offre des services de modèles de grande taille complets, efficaces et faciles à utiliser."
|
106
112
|
},
|
@@ -41,7 +41,10 @@
|
|
41
41
|
"error": {
|
42
42
|
"desc": "Ci scusiamo, si è verificato un errore durante il processo di inizializzazione del database Pglite. Clicca sul pulsante per riprovare. Se l'errore persiste dopo vari tentativi, per favore <1>invia un problema</1> e noi ci occuperemo di risolverlo il prima possibile",
|
43
43
|
"detail": "Motivo dell'errore: [{{type}}] {{message}}. Dettagli come segue:",
|
44
|
+
"detailTitle": "Motivo dell'errore",
|
45
|
+
"report": "Segnala un problema",
|
44
46
|
"retry": "Riprova",
|
47
|
+
"selfSolve": "Risoluzione autonoma",
|
45
48
|
"title": "Inizializzazione del database fallita"
|
46
49
|
},
|
47
50
|
"initing": {
|
@@ -80,6 +83,54 @@
|
|
80
83
|
"button": "Usa ora",
|
81
84
|
"desc": "Inizia subito",
|
82
85
|
"title": "Database PGlite pronto"
|
86
|
+
},
|
87
|
+
"solve": {
|
88
|
+
"backup": {
|
89
|
+
"backup": "Backup",
|
90
|
+
"backupSuccess": "Backup riuscito",
|
91
|
+
"desc": "Esporta i dati chiave dal database attuale",
|
92
|
+
"export": "Esporta tutti i dati",
|
93
|
+
"exportDesc": "I dati esportati verranno salvati in formato JSON, utilizzabili per un successivo ripristino o analisi.",
|
94
|
+
"reset": {
|
95
|
+
"alert": "Attenzione",
|
96
|
+
"alertDesc": "Le seguenti operazioni potrebbero causare la perdita di dati. Assicurati di aver eseguito il backup dei dati importanti prima di continuare.",
|
97
|
+
"button": "Ripristina completamente il database (elimina tutti i dati)",
|
98
|
+
"confirm": {
|
99
|
+
"desc": "Questa operazione eliminerà tutti i dati e non sarà annullabile, sei sicuro di voler continuare?",
|
100
|
+
"title": "Conferma ripristino del database"
|
101
|
+
},
|
102
|
+
"desc": "Ripristina il database in caso di migrazione non recuperabile",
|
103
|
+
"title": "Ripristino del database"
|
104
|
+
},
|
105
|
+
"restore": "Ripristina",
|
106
|
+
"restoreSuccess": "Ripristino riuscito",
|
107
|
+
"title": "Backup dei dati"
|
108
|
+
},
|
109
|
+
"diagnosis": {
|
110
|
+
"createdAt": "Data di creazione",
|
111
|
+
"migratedAt": "Data di completamento della migrazione",
|
112
|
+
"sql": "SQL di migrazione",
|
113
|
+
"title": "Stato della migrazione"
|
114
|
+
},
|
115
|
+
"repair": {
|
116
|
+
"desc": "Gestisci manualmente lo stato della migrazione",
|
117
|
+
"runSQL": "Esecuzione personalizzata",
|
118
|
+
"sql": {
|
119
|
+
"clear": "Svuota",
|
120
|
+
"desc": "Esegui istruzioni SQL personalizzate per risolvere i problemi del database",
|
121
|
+
"markFinished": "Contrassegna come completato",
|
122
|
+
"placeholder": "Inserisci istruzioni SQL...",
|
123
|
+
"result": "Risultato dell'esecuzione",
|
124
|
+
"run": "Esegui",
|
125
|
+
"title": "Esecutore SQL"
|
126
|
+
},
|
127
|
+
"title": "Controllo della migrazione"
|
128
|
+
},
|
129
|
+
"tabs": {
|
130
|
+
"backup": "Backup e ripristino",
|
131
|
+
"diagnosis": "Diagnosi",
|
132
|
+
"repair": "Riparazione"
|
133
|
+
}
|
83
134
|
}
|
84
135
|
},
|
85
136
|
"close": "Chiudi",
|
@@ -518,6 +518,18 @@
|
|
518
518
|
"baichuan/baichuan2-13b-chat": {
|
519
519
|
"description": "Baichuan-13B è un modello di linguaggio open source sviluppato da Baichuan Intelligence, con 13 miliardi di parametri, che ha ottenuto i migliori risultati nella sua categoria in benchmark autorevoli sia in cinese che in inglese."
|
520
520
|
},
|
521
|
+
"c4ai-aya-expanse-32b": {
|
522
|
+
"description": "Aya Expanse è un modello multilingue ad alte prestazioni da 32B, progettato per sfidare le prestazioni dei modelli monolingue attraverso innovazioni in ottimizzazione delle istruzioni, arbitraggio dei dati, addestramento delle preferenze e fusione dei modelli. Supporta 23 lingue."
|
523
|
+
},
|
524
|
+
"c4ai-aya-expanse-8b": {
|
525
|
+
"description": "Aya Expanse è un modello multilingue ad alte prestazioni da 8B, progettato per sfidare le prestazioni dei modelli monolingue attraverso innovazioni in ottimizzazione delle istruzioni, arbitraggio dei dati, addestramento delle preferenze e fusione dei modelli. Supporta 23 lingue."
|
526
|
+
},
|
527
|
+
"c4ai-aya-vision-32b": {
|
528
|
+
"description": "Aya Vision è un modello multimodale all'avanguardia, eccellente in diversi benchmark chiave per capacità linguistiche, testuali e visive. Supporta 23 lingue. Questa versione da 32 miliardi di parametri si concentra sulle prestazioni multilingue all'avanguardia."
|
529
|
+
},
|
530
|
+
"c4ai-aya-vision-8b": {
|
531
|
+
"description": "Aya Vision è un modello multimodale all'avanguardia, eccellente in diversi benchmark chiave per capacità linguistiche, testuali e visive. Questa versione da 8 miliardi di parametri si concentra su bassa latenza e prestazioni ottimali."
|
532
|
+
},
|
521
533
|
"charglm-3": {
|
522
534
|
"description": "CharGLM-3 è progettato per il gioco di ruolo e la compagnia emotiva, supporta una memoria multi-turno ultra-lunga e dialoghi personalizzati, con ampie applicazioni."
|
523
535
|
},
|
@@ -602,12 +614,39 @@
|
|
602
614
|
"cohere-command-r-plus": {
|
603
615
|
"description": "Command R+ è un modello ottimizzato per RAG all'avanguardia progettato per affrontare carichi di lavoro di livello aziendale."
|
604
616
|
},
|
617
|
+
"command": {
|
618
|
+
"description": "Un modello di dialogo che segue le istruzioni, con alta qualità e maggiore affidabilità nelle attività linguistiche, e una lunghezza di contesto più lunga rispetto ai nostri modelli generativi di base."
|
619
|
+
},
|
620
|
+
"command-a-03-2025": {
|
621
|
+
"description": "Command A è il nostro modello più potente fino ad oggi, eccellente nell'uso degli strumenti, nell'agenzia, nella generazione aumentata da recupero (RAG) e in scenari applicativi multilingue. Command A ha una lunghezza di contesto di 256K, può essere eseguito con solo due GPU e ha un throughput aumentato del 150% rispetto a Command R+ 08-2024."
|
622
|
+
},
|
623
|
+
"command-light": {
|
624
|
+
"description": "Una versione Command più piccola e veloce, quasi altrettanto potente, ma più rapida."
|
625
|
+
},
|
626
|
+
"command-light-nightly": {
|
627
|
+
"description": "Per ridurre l'intervallo di tempo tra i rilasci delle versioni principali, abbiamo lanciato una versione notturna del modello Command. Per la serie command-light, questa versione è chiamata command-light-nightly. Si prega di notare che command-light-nightly è l'ultima, la più sperimentale e (potenzialmente) instabile versione. Le versioni notturne vengono aggiornate regolarmente senza preavviso, quindi non si consiglia di utilizzarle in ambienti di produzione."
|
628
|
+
},
|
629
|
+
"command-nightly": {
|
630
|
+
"description": "Per ridurre l'intervallo di tempo tra i rilasci delle versioni principali, abbiamo lanciato una versione notturna del modello Command. Per la serie Command, questa versione è chiamata command-cightly. Si prega di notare che command-nightly è l'ultima, la più sperimentale e (potenzialmente) instabile versione. Le versioni notturne vengono aggiornate regolarmente senza preavviso, quindi non si consiglia di utilizzarle in ambienti di produzione."
|
631
|
+
},
|
605
632
|
"command-r": {
|
606
633
|
"description": "Command R è un LLM ottimizzato per compiti di dialogo e contesti lunghi, particolarmente adatto per interazioni dinamiche e gestione della conoscenza."
|
607
634
|
},
|
635
|
+
"command-r-03-2024": {
|
636
|
+
"description": "Command R è un modello di dialogo che segue le istruzioni, con una qualità superiore e una maggiore affidabilità nelle attività linguistiche, e una lunghezza di contesto più lunga rispetto ai modelli precedenti. Può essere utilizzato per flussi di lavoro complessi, come generazione di codice, generazione aumentata da recupero (RAG), uso di strumenti e agenzia."
|
637
|
+
},
|
638
|
+
"command-r-08-2024": {
|
639
|
+
"description": "command-r-08-2024 è una versione aggiornata del modello Command R, rilasciata nell'agosto 2024."
|
640
|
+
},
|
608
641
|
"command-r-plus": {
|
609
642
|
"description": "Command R+ è un modello di linguaggio di grandi dimensioni ad alte prestazioni, progettato per scenari aziendali reali e applicazioni complesse."
|
610
643
|
},
|
644
|
+
"command-r-plus-04-2024": {
|
645
|
+
"description": "Command R+ è un modello di dialogo che segue le istruzioni, con una qualità superiore e una maggiore affidabilità nelle attività linguistiche, e una lunghezza di contesto più lunga rispetto ai modelli precedenti. È particolarmente adatto per flussi di lavoro complessi RAG e per l'uso di strumenti in più passaggi."
|
646
|
+
},
|
647
|
+
"command-r7b-12-2024": {
|
648
|
+
"description": "command-r7b-12-2024 è una versione aggiornata, piccola ed efficiente, rilasciata nel dicembre 2024. Eccelle in compiti che richiedono ragionamento complesso e elaborazione in più passaggi, come RAG, uso di strumenti e agenzia."
|
649
|
+
},
|
611
650
|
"dall-e-2": {
|
612
651
|
"description": "Seconda generazione del modello DALL·E, supporta la generazione di immagini più realistiche e accurate, con una risoluzione quattro volte superiore rispetto alla prima generazione."
|
613
652
|
},
|
@@ -668,12 +707,24 @@
|
|
668
707
|
"deepseek-r1": {
|
669
708
|
"description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
|
670
709
|
},
|
710
|
+
"deepseek-r1-70b-fast-online": {
|
711
|
+
"description": "DeepSeek R1 70B versione veloce, supporta la ricerca online in tempo reale, fornendo una velocità di risposta più rapida mantenendo le prestazioni del modello."
|
712
|
+
},
|
713
|
+
"deepseek-r1-70b-online": {
|
714
|
+
"description": "DeepSeek R1 70B versione standard, supporta la ricerca online in tempo reale, adatta per conversazioni e compiti di elaborazione del testo che richiedono informazioni aggiornate."
|
715
|
+
},
|
671
716
|
"deepseek-r1-distill-llama-70b": {
|
672
717
|
"description": "DeepSeek R1 - il modello più grande e intelligente del pacchetto DeepSeek - è stato distillato nell'architettura Llama 70B. Basato su test di benchmark e valutazioni umane, questo modello è più intelligente del Llama 70B originale, mostrando prestazioni eccezionali in compiti che richiedono precisione matematica e fattuale."
|
673
718
|
},
|
674
719
|
"deepseek-r1-distill-llama-8b": {
|
675
720
|
"description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
|
676
721
|
},
|
722
|
+
"deepseek-r1-distill-qianfan-llama-70b": {
|
723
|
+
"description": "Rilasciato per la prima volta il 14 febbraio 2025, distillato dal team di ricerca del grande modello Qianfan utilizzando Llama3_70B come modello base (costruito con Meta Llama), con l'aggiunta di dati di Qianfan nel set di dati di distillazione."
|
724
|
+
},
|
725
|
+
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
|
+
"description": "Rilasciato per la prima volta il 14 febbraio 2025, distillato dal team di ricerca del grande modello Qianfan utilizzando Llama3_8B come modello base (costruito con Meta Llama), con l'aggiunta di dati di Qianfan nel set di dati di distillazione."
|
727
|
+
},
|
677
728
|
"deepseek-r1-distill-qwen-1.5b": {
|
678
729
|
"description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
|
679
730
|
},
|
@@ -686,6 +737,12 @@
|
|
686
737
|
"deepseek-r1-distill-qwen-7b": {
|
687
738
|
"description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
|
688
739
|
},
|
740
|
+
"deepseek-r1-fast-online": {
|
741
|
+
"description": "DeepSeek R1 versione veloce completa, supporta la ricerca online in tempo reale, combinando la potenza dei 671B parametri con una velocità di risposta più rapida."
|
742
|
+
},
|
743
|
+
"deepseek-r1-online": {
|
744
|
+
"description": "DeepSeek R1 versione completa, con 671B parametri, supporta la ricerca online in tempo reale, con capacità di comprensione e generazione più potenti."
|
745
|
+
},
|
689
746
|
"deepseek-reasoner": {
|
690
747
|
"description": "Modello di ragionamento lanciato da DeepSeek. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
|
691
748
|
},
|
@@ -764,6 +821,9 @@
|
|
764
821
|
"ernie-4.0-turbo-8k-preview": {
|
765
822
|
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni migliori."
|
766
823
|
},
|
824
|
+
"ernie-4.5-8k-preview": {
|
825
|
+
"description": "Il modello di grandi dimensioni Wenxin 4.5 è una nuova generazione di modello di base multimodale sviluppato autonomamente da Baidu, realizzato attraverso la modellazione congiunta di più modalità per ottenere un'ottimizzazione collaborativa, con eccellenti capacità di comprensione multimodale; presenta capacità linguistiche più avanzate, con miglioramenti significativi nella comprensione, generazione, logica e memoria, riducendo le illusioni e migliorando il ragionamento logico e le capacità di codifica."
|
826
|
+
},
|
767
827
|
"ernie-char-8k": {
|
768
828
|
"description": "Un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, adatto per scenari di applicazione come NPC nei giochi, dialoghi di assistenza clienti e interpretazione di ruoli nei dialoghi, con uno stile di personaggio più distintivo e coerente, capacità di seguire istruzioni più forti e prestazioni di inferenza migliori."
|
769
829
|
},
|
@@ -1097,9 +1157,6 @@
|
|
1097
1157
|
"hunyuan-turbo": {
|
1098
1158
|
"description": "Anteprima della nuova generazione di modelli di linguaggio di Hunyuan, utilizza una nuova struttura di modello ibrido di esperti (MoE), con una maggiore efficienza di inferenza e prestazioni superiori rispetto a hunyuan-pro."
|
1099
1159
|
},
|
1100
|
-
"hunyuan-turbo-20241120": {
|
1101
|
-
"description": "Versione fissa di hunyuan-turbo del 20 novembre 2024, una versione intermedia tra hunyuan-turbo e hunyuan-turbo-latest."
|
1102
|
-
},
|
1103
1160
|
"hunyuan-turbo-20241223": {
|
1104
1161
|
"description": "Ottimizzazione di questa versione: scaling delle istruzioni sui dati, notevole aumento della capacità di generalizzazione del modello; notevole miglioramento delle capacità matematiche, di codifica e di ragionamento logico; ottimizzazione delle capacità di comprensione del testo e delle parole; ottimizzazione della qualità della generazione dei contenuti di creazione del testo."
|
1105
1162
|
},
|
@@ -1109,6 +1166,15 @@
|
|
1109
1166
|
"hunyuan-turbo-vision": {
|
1110
1167
|
"description": "Il nuovo modello di punta di linguaggio visivo di Hunyuan, adotta una nuova struttura di modello esperto misto (MoE), con miglioramenti complessivi nelle capacità di riconoscimento di base, creazione di contenuti, domande e risposte, analisi e ragionamento rispetto alla generazione precedente."
|
1111
1168
|
},
|
1169
|
+
"hunyuan-turbos-20250226": {
|
1170
|
+
"description": "hunyuan-TurboS pv2.1.2 versione fissa, aggiornamento del token di addestramento della base pre-addestrata; miglioramento delle capacità di pensiero in matematica/logica/codice; miglioramento dell'esperienza generale in cinese e inglese, inclusi creazione di testi, comprensione del testo, domande e risposte di conoscenza, conversazione casuale, ecc."
|
1171
|
+
},
|
1172
|
+
"hunyuan-turbos-20250313": {
|
1173
|
+
"description": "Uniformare lo stile dei passaggi di risoluzione dei problemi matematici, rafforzare le domande e risposte matematiche in più turni. Ottimizzare lo stile delle risposte nella creazione di testi, rimuovendo il sapore AI e aumentando la letterarietà."
|
1174
|
+
},
|
1175
|
+
"hunyuan-turbos-latest": {
|
1176
|
+
"description": "hunyuan-TurboS è l'ultima versione del modello di punta Hunyuan, con capacità di pensiero più forti e un'esperienza utente migliore."
|
1177
|
+
},
|
1112
1178
|
"hunyuan-vision": {
|
1113
1179
|
"description": "Ultimo modello multimodale di Hunyuan, supporta l'input di immagini e testo per generare contenuti testuali."
|
1114
1180
|
},
|
@@ -23,6 +23,9 @@
|
|
23
23
|
"cloudflare": {
|
24
24
|
"description": "Esegui modelli di machine learning alimentati da GPU serverless sulla rete globale di Cloudflare."
|
25
25
|
},
|
26
|
+
"cohere": {
|
27
|
+
"description": "Cohere ti offre i modelli multilingue più all'avanguardia, funzionalità di ricerca avanzate e uno spazio di lavoro AI su misura per le moderne imprese - il tutto integrato in una piattaforma sicura."
|
28
|
+
},
|
26
29
|
"deepseek": {
|
27
30
|
"description": "DeepSeek è un'azienda focalizzata sulla ricerca e applicazione della tecnologia AI, il cui ultimo modello DeepSeek-V2.5 combina capacità di dialogo generico e elaborazione del codice, realizzando miglioramenti significativi nell'allineamento delle preferenze umane, nei compiti di scrittura e nel rispetto delle istruzioni."
|
28
31
|
},
|
@@ -101,6 +104,9 @@
|
|
101
104
|
"sambanova": {
|
102
105
|
"description": "SambaNova Cloud consente agli sviluppatori di utilizzare facilmente i migliori modelli open source e di godere della velocità di inferenza più rapida."
|
103
106
|
},
|
107
|
+
"search1api": {
|
108
|
+
"description": "Search1API fornisce accesso alla serie di modelli DeepSeek che possono connettersi autonomamente, inclusa la versione standard e quella rapida, supportando la scelta di modelli con diverse dimensioni di parametri."
|
109
|
+
},
|
104
110
|
"sensenova": {
|
105
111
|
"description": "SenseTime offre servizi di modelli di grandi dimensioni full-stack, supportati dalla potente infrastruttura di SenseTime."
|
106
112
|
},
|
@@ -41,7 +41,10 @@
|
|
41
41
|
"error": {
|
42
42
|
"desc": "申し訳ありませんが、Pglite データベースの初期化中にエラーが発生しました。ボタンをクリックして再試行してください。それでも何度もエラーが発生する場合は、<1>問題を報告</1>してください。すぐに調査いたします。",
|
43
43
|
"detail": "エラーの原因:[{{type}}] {{message}}、詳細は以下の通りです:",
|
44
|
+
"detailTitle": "エラーの理由",
|
45
|
+
"report": "問題を報告",
|
44
46
|
"retry": "再試行",
|
47
|
+
"selfSolve": "自己解決",
|
45
48
|
"title": "データベースの初期化に失敗しました"
|
46
49
|
},
|
47
50
|
"initing": {
|
@@ -80,6 +83,54 @@
|
|
80
83
|
"button": "今すぐ使用",
|
81
84
|
"desc": "すぐに使用したい",
|
82
85
|
"title": "PGlite データベースは準備完了です"
|
86
|
+
},
|
87
|
+
"solve": {
|
88
|
+
"backup": {
|
89
|
+
"backup": "バックアップ",
|
90
|
+
"backupSuccess": "バックアップ成功",
|
91
|
+
"desc": "現在のデータベースから重要なデータをエクスポート",
|
92
|
+
"export": "すべてのデータをエクスポート",
|
93
|
+
"exportDesc": "エクスポートされたデータはJSON形式で保存され、後の復元や分析に使用できます。",
|
94
|
+
"reset": {
|
95
|
+
"alert": "警告",
|
96
|
+
"alertDesc": "以下の操作はデータ損失を引き起こす可能性があります。重要なデータをバックアップしたことを確認してから続行してください。",
|
97
|
+
"button": "データベースを完全にリセット(すべてのデータを削除)",
|
98
|
+
"confirm": {
|
99
|
+
"desc": "この操作はすべてのデータを削除し、元に戻すことはできません。続行してもよろしいですか?",
|
100
|
+
"title": "データベースリセットの確認"
|
101
|
+
},
|
102
|
+
"desc": "復元できない場合にデータベースをリセット",
|
103
|
+
"title": "データベースリセット"
|
104
|
+
},
|
105
|
+
"restore": "復元",
|
106
|
+
"restoreSuccess": "復元成功",
|
107
|
+
"title": "データバックアップ"
|
108
|
+
},
|
109
|
+
"diagnosis": {
|
110
|
+
"createdAt": "作成日時",
|
111
|
+
"migratedAt": "移行完了日時",
|
112
|
+
"sql": "移行SQL",
|
113
|
+
"title": "移行状況"
|
114
|
+
},
|
115
|
+
"repair": {
|
116
|
+
"desc": "移行状況を手動で管理",
|
117
|
+
"runSQL": "カスタム実行",
|
118
|
+
"sql": {
|
119
|
+
"clear": "クリア",
|
120
|
+
"desc": "カスタムSQL文を実行してデータベースの問題を修正",
|
121
|
+
"markFinished": "完了としてマーク",
|
122
|
+
"placeholder": "SQL文を入力...",
|
123
|
+
"result": "実行結果",
|
124
|
+
"run": "実行",
|
125
|
+
"title": "SQL実行ツール"
|
126
|
+
},
|
127
|
+
"title": "移行管理"
|
128
|
+
},
|
129
|
+
"tabs": {
|
130
|
+
"backup": "バックアップと復元",
|
131
|
+
"diagnosis": "診断",
|
132
|
+
"repair": "修正"
|
133
|
+
}
|
83
134
|
}
|
84
135
|
},
|
85
136
|
"close": "閉じる",
|
@@ -1,5 +1,4 @@
|
|
1
1
|
{
|
2
|
-
"0": "{",
|
3
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
4
3
|
"description": "Yi-1.5 34Bは豊富な訓練サンプルを用いて業界アプリケーションで優れたパフォーマンスを提供します。"
|
5
4
|
},
|
@@ -519,6 +518,18 @@
|
|
519
518
|
"baichuan/baichuan2-13b-chat": {
|
520
519
|
"description": "Baichuan-13Bは百川智能が開発した130億パラメータを持つオープンソースの商用大規模言語モデルで、権威ある中国語と英語のベンチマークで同サイズの中で最良の結果を達成しています。"
|
521
520
|
},
|
521
|
+
"c4ai-aya-expanse-32b": {
|
522
|
+
"description": "Aya Expanseは、高性能な32B多言語モデルで、指示調整、データアービトラージ、好みのトレーニング、モデル統合の革新を通じて、単一言語モデルのパフォーマンスに挑戦します。23の言語をサポートしています。"
|
523
|
+
},
|
524
|
+
"c4ai-aya-expanse-8b": {
|
525
|
+
"description": "Aya Expanseは、高性能な8B多言語モデルで、指示調整、データアービトラージ、好みのトレーニング、モデル統合の革新を通じて、単一言語モデルのパフォーマンスに挑戦します。23の言語をサポートしています。"
|
526
|
+
},
|
527
|
+
"c4ai-aya-vision-32b": {
|
528
|
+
"description": "Aya Visionは、最先端のマルチモーダルモデルで、言語、テキスト、画像能力の複数の重要なベンチマークで優れたパフォーマンスを発揮します。23の言語をサポートしています。この320億パラメータのバージョンは、最先端の多言語パフォーマンスに焦点を当てています。"
|
529
|
+
},
|
530
|
+
"c4ai-aya-vision-8b": {
|
531
|
+
"description": "Aya Visionは、最先端のマルチモーダルモデルで、言語、テキスト、画像能力の複数の重要なベンチマークで優れたパフォーマンスを発揮します。この80億パラメータのバージョンは、低遅延と最適なパフォーマンスに焦点を当てています。"
|
532
|
+
},
|
522
533
|
"charglm-3": {
|
523
534
|
"description": "CharGLM-3はキャラクター演技と感情的な伴侶のために設計されており、超長期の多段階記憶と個別化された対話をサポートし、幅広い用途に適しています。"
|
524
535
|
},
|
@@ -603,12 +614,39 @@
|
|
603
614
|
"cohere-command-r-plus": {
|
604
615
|
"description": "Command R+は、企業グレードのワークロードに対応するために設計された最先端のRAG最適化モデルです。"
|
605
616
|
},
|
617
|
+
"command": {
|
618
|
+
"description": "指示に従う対話モデルで、言語タスクにおいて高品質で信頼性が高く、私たちの基本生成モデルよりも長いコンテキスト長を持っています。"
|
619
|
+
},
|
620
|
+
"command-a-03-2025": {
|
621
|
+
"description": "Command Aは、ツールの使用、エージェント、検索強化生成(RAG)、および多言語アプリケーションシナリオにおいて優れたパフォーマンスを発揮する、これまでで最も強力なモデルです。Command Aは256Kのコンテキスト長を持ち、2つのGPUで動作し、Command R+ 08-2024と比較してスループットが150%向上しています。"
|
622
|
+
},
|
623
|
+
"command-light": {
|
624
|
+
"description": "より小型で高速なCommandバージョンで、ほぼ同じ強力さを持ちながら、より速い速度を提供します。"
|
625
|
+
},
|
626
|
+
"command-light-nightly": {
|
627
|
+
"description": "主要なバージョンリリース間の時間間隔を短縮するために、Commandモデルのナイトリーバージョンをリリースしました。command-lightシリーズでは、このバージョンはcommand-light-nightlyと呼ばれます。command-light-nightlyは最新で最も実験的であり(おそらく)不安定なバージョンです。ナイトリーバージョンは定期的に更新され、事前通知なしにリリースされるため、プロダクション環境での使用は推奨されません。"
|
628
|
+
},
|
629
|
+
"command-nightly": {
|
630
|
+
"description": "主要なバージョンリリース間の時間間隔を短縮するために、Commandモデルのナイトリーバージョンをリリースしました。Commandシリーズでは、このバージョンはcommand-cightlyと呼ばれます。command-nightlyは最新で最も実験的であり(おそらく)不安定なバージョンです。ナイトリーバージョンは定期的に更新され、事前通知なしにリリースされるため、プロダクション環境での使用は推奨されません。"
|
631
|
+
},
|
606
632
|
"command-r": {
|
607
633
|
"description": "Command Rは、対話と長いコンテキストタスクに最適化されたLLMであり、特に動的なインタラクションと知識管理に適しています。"
|
608
634
|
},
|
635
|
+
"command-r-03-2024": {
|
636
|
+
"description": "Command Rは、指示に従う対話モデルで、言語タスクにおいてより高い品質と信頼性を提供し、従来のモデルよりも長いコンテキスト長を持っています。コード生成、検索強化生成(RAG)、ツール使用、エージェントなどの複雑なワークフローに使用できます。"
|
637
|
+
},
|
638
|
+
"command-r-08-2024": {
|
639
|
+
"description": "command-r-08-2024はCommand Rモデルの更新版で、2024年8月にリリースされました。"
|
640
|
+
},
|
609
641
|
"command-r-plus": {
|
610
642
|
"description": "Command R+は、リアルな企業シーンと複雑なアプリケーションのために設計された高性能な大規模言語モデルです。"
|
611
643
|
},
|
644
|
+
"command-r-plus-04-2024": {
|
645
|
+
"description": "Command R+は、指示に従う対話モデルで、言語タスクにおいてより高い品質と信頼性を提供し、従来のモデルよりも長いコンテキスト長を持っています。複雑なRAGワークフローや多段階ツール使用に最適です。"
|
646
|
+
},
|
647
|
+
"command-r7b-12-2024": {
|
648
|
+
"description": "command-r7b-12-2024は、小型で効率的な更新版で、2024年12月にリリースされました。RAG、ツール使用、エージェントなど、複雑な推論と多段階処理を必要とするタスクで優れたパフォーマンスを発揮します。"
|
649
|
+
},
|
612
650
|
"dall-e-2": {
|
613
651
|
"description": "第二世代DALL·Eモデル、よりリアルで正確な画像生成をサポートし、解像度は第一世代の4倍です"
|
614
652
|
},
|
@@ -669,12 +707,24 @@
|
|
669
707
|
"deepseek-r1": {
|
670
708
|
"description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
|
671
709
|
},
|
710
|
+
"deepseek-r1-70b-fast-online": {
|
711
|
+
"description": "DeepSeek R1 70Bファスト版で、リアルタイムのオンライン検索をサポートし、モデルのパフォーマンスを維持しながら、より速い応答速度を提供します。"
|
712
|
+
},
|
713
|
+
"deepseek-r1-70b-online": {
|
714
|
+
"description": "DeepSeek R1 70Bスタンダード版で、リアルタイムのオンライン検索をサポートし、最新情報が必要な対話やテキスト処理タスクに適しています。"
|
715
|
+
},
|
672
716
|
"deepseek-r1-distill-llama-70b": {
|
673
717
|
"description": "DeepSeek R1——DeepSeekスイートの中でより大きく、より賢いモデル——がLlama 70Bアーキテクチャに蒸留されました。ベンチマークテストと人間評価に基づき、このモデルは元のLlama 70Bよりも賢く、特に数学と事実の正確性が求められるタスクで優れたパフォーマンスを示します。"
|
674
718
|
},
|
675
719
|
"deepseek-r1-distill-llama-8b": {
|
676
720
|
"description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
|
677
721
|
},
|
722
|
+
"deepseek-r1-distill-qianfan-llama-70b": {
|
723
|
+
"description": "2025年2月14日に初めてリリースされ、千帆大モデル開発チームがLlama3_70Bをベースモデル(Built with Meta Llama)として蒸留したもので、蒸留データには千帆のコーパスも追加されています。"
|
724
|
+
},
|
725
|
+
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
|
+
"description": "2025年2月14日に初めてリリースされ、千帆大モデル開発チームがLlama3_8Bをベースモデル(Built with Meta Llama)として蒸留したもので、蒸留データには千帆のコーパスも追加されています。"
|
727
|
+
},
|
678
728
|
"deepseek-r1-distill-qwen-1.5b": {
|
679
729
|
"description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
|
680
730
|
},
|
@@ -687,6 +737,12 @@
|
|
687
737
|
"deepseek-r1-distill-qwen-7b": {
|
688
738
|
"description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
|
689
739
|
},
|
740
|
+
"deepseek-r1-fast-online": {
|
741
|
+
"description": "DeepSeek R1フルファスト版で、リアルタイムのオンライン検索をサポートし、671Bパラメータの強力な能力とより速い応答速度を組み合わせています。"
|
742
|
+
},
|
743
|
+
"deepseek-r1-online": {
|
744
|
+
"description": "DeepSeek R1フルバージョンで、671Bパラメータを持ち、リアルタイムのオンライン検索をサポートし、より強力な理解と生成能力を備えています。"
|
745
|
+
},
|
690
746
|
"deepseek-reasoner": {
|
691
747
|
"description": "DeepSeekが提供する推論モデルです。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を高めます。"
|
692
748
|
},
|
@@ -765,6 +821,9 @@
|
|
765
821
|
"ernie-4.0-turbo-8k-preview": {
|
766
822
|
"description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
|
767
823
|
},
|
824
|
+
"ernie-4.5-8k-preview": {
|
825
|
+
"description": "文心大モデル4.5は、百度が独自に開発した次世代のネイティブマルチモーダル基盤大モデルで、複数のモーダルを共同でモデル化することで協調最適化を実現し、優れたマルチモーダル理解能力を持っています。言語能力がさらに向上し、理解、生成、論理、記憶能力が全面的に向上し、幻覚の排除、論理推論、コード能力が顕著に向上しています。"
|
826
|
+
},
|
768
827
|
"ernie-char-8k": {
|
769
828
|
"description": "百度が独自に開発した垂直シーン向けの大規模言語モデルで、ゲームのNPC、カスタマーサービスの対話、対話キャラクターの役割演技などのアプリケーションシーンに適しており、キャラクターのスタイルがより鮮明で一貫しており、指示に従う能力が強く、推論性能が優れています。"
|
770
829
|
},
|
@@ -1098,9 +1157,6 @@
|
|
1098
1157
|
"hunyuan-turbo": {
|
1099
1158
|
"description": "混元の新世代大規模言語モデルのプレビュー版で、全く新しい混合専門家モデル(MoE)構造を採用し、hunyuan-proに比べて推論効率が向上し、パフォーマンスも強化されています。"
|
1100
1159
|
},
|
1101
|
-
"hunyuan-turbo-20241120": {
|
1102
|
-
"description": "hunyuan-turbo 2024年11月20日の固定バージョンで、hunyuan-turboとhunyuan-turbo-latestの間に位置するバージョン。"
|
1103
|
-
},
|
1104
1160
|
"hunyuan-turbo-20241223": {
|
1105
1161
|
"description": "このバージョンの最適化:データ指令のスケーリングにより、モデルの汎用的な一般化能力を大幅に向上;数学、コード、論理推論能力を大幅に向上;テキスト理解と語彙理解に関連する能力を最適化;テキスト作成の内容生成の質を最適化。"
|
1106
1162
|
},
|
@@ -1110,6 +1166,15 @@
|
|
1110
1166
|
"hunyuan-turbo-vision": {
|
1111
1167
|
"description": "混元の次世代視覚言語フラッグシップ大モデルで、全く新しい混合専門家モデル(MoE)構造を採用し、画像とテキストの理解に関連する基礎認識、コンテンツ作成、知識問答、分析推論などの能力が前世代モデルに比べて全面的に向上。"
|
1112
1168
|
},
|
1169
|
+
"hunyuan-turbos-20250226": {
|
1170
|
+
"description": "hunyuan-TurboS pv2.1.2固定バージョンの事前トレーニングベースのトークン数がアップグレードされました。数学、論理、コードなどの思考能力が向上し、中国語と英語の一般的な体験効果が向上しました。テキスト作成、テキスト理解、知識質問、雑談などが含まれます。"
|
1171
|
+
},
|
1172
|
+
"hunyuan-turbos-20250313": {
|
1173
|
+
"description": "統一された数学問題解決手順のスタイルを強化し、数学の多段階質問応答を強化します。テキスト作成の回答スタイルを最適化し、AIの特徴を排除し、文才を増加させます。"
|
1174
|
+
},
|
1175
|
+
"hunyuan-turbos-latest": {
|
1176
|
+
"description": "hunyuan-TurboS混元フラッグシップ大モデルの最新バージョンで、より強力な思考能力と優れた体験効果を備えています。"
|
1177
|
+
},
|
1113
1178
|
"hunyuan-vision": {
|
1114
1179
|
"description": "混元の最新のマルチモーダルモデルで、画像とテキストの入力をサポートし、テキストコンテンツを生成します。"
|
1115
1180
|
},
|
@@ -1140,6 +1205,9 @@
|
|
1140
1205
|
"lite": {
|
1141
1206
|
"description": "Spark Liteは軽量な大規模言語モデルで、非常に低い遅延と高い処理能力を備えています。完全に無料でオープンであり、リアルタイムのオンライン検索機能をサポートしています。その迅速な応答特性により、低算力デバイスでの推論アプリケーションやモデルの微調整において優れたパフォーマンスを発揮し、特に知識問答、コンテンツ生成、検索シーンにおいて優れたコストパフォーマンスとインテリジェントな体験を提供します。"
|
1142
1207
|
},
|
1208
|
+
"llama-2-7b-chat": {
|
1209
|
+
"description": "Llama2は、Metaによって開発され、オープンソースの大型言語モデル(LLM)シリーズで、70億から700億パラメータの異なるスケールの生成テキストモデルです。アーキテクチャの面では、LLama2は最適化されたトランスフォーマーアーキテクチャを使用した自己回帰型言語モデルです。調整されたバージョンは、監視付き微調整(SFT)と人間のフィードバックを伴う強化学習(RLHF)を使用して、人間の有用性と安全性の好みに合わせています。Llama2は、Llamaシリーズに比べて多くの学術データセットで優れたパフォーマンスを示し、多くの他のモデルに設計と開発のアイデアを提供しています。"
|
1210
|
+
},
|
1143
1211
|
"llama-3.1-70b-versatile": {
|
1144
1212
|
"description": "Llama 3.1 70Bは、より強力なAI推論能力を提供し、複雑なアプリケーションに適しており、非常に多くの計算処理をサポートし、高効率と精度を保証します。"
|
1145
1213
|
},
|
@@ -1605,6 +1673,12 @@
|
|
1605
1673
|
"qwen2": {
|
1606
1674
|
"description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
|
1607
1675
|
},
|
1676
|
+
"qwen2-72b-instruct": {
|
1677
|
+
"description": "Qwen2は、Qwenチームが発表した次世代の大型言語モデルシリーズです。これは、Transformerアーキテクチャに基づいており、SwiGLU活性化関数、注意QKVバイアス、グループクエリ注意、スライディングウィンドウ注意と全注意の混合などの技術を採用しています。さらに、Qwenチームは、さまざまな自然言語とコードに適応するトークナイザーを改善しました。"
|
1678
|
+
},
|
1679
|
+
"qwen2-7b-instruct": {
|
1680
|
+
"description": "Qwen2は、Qwenチームが発表した次世代の大型言語モデルシリーズです。これは、Transformerアーキテクチャに基づいており、SwiGLU活性化関数、注意QKVバイアス、グループクエリ注意、スライディングウィンドウ注意と全注意の混合などの技術を採用しています。さらに、Qwenチームは、さまざまな自然言語とコードに適応するトークナイザーを改善しました。"
|
1681
|
+
},
|
1608
1682
|
"qwen2.5": {
|
1609
1683
|
"description": "Qwen2.5はAlibabaの次世代大規模言語モデルで、優れた性能を持ち、多様なアプリケーションのニーズをサポートします。"
|
1610
1684
|
},
|