@lobehub/chat 1.65.2 → 1.66.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/package.json +1 -1
- package/src/app/[variants]/(main)/settings/llm/ProviderList/Bedrock/index.tsx +1 -1
- package/src/app/[variants]/(main)/settings/provider/(detail)/bedrock/page.tsx +1 -1
- package/src/config/aiModels/ai360.ts +4 -0
- package/src/config/aiModels/baichuan.ts +16 -0
- package/src/config/aiModels/hunyuan.ts +40 -0
- package/src/config/aiModels/moonshot.ts +32 -0
- package/src/config/aiModels/spark.ts +30 -0
- package/src/config/aiModels/stepfun.ts +44 -0
- package/src/config/aiModels/zhipu.ts +36 -0
- package/src/features/Conversation/Error/APIKeyForm/Bedrock.tsx +1 -1
- package/src/libs/agent-runtime/ai360/index.ts +15 -2
- package/src/libs/agent-runtime/baichuan/index.ts +14 -4
- package/src/libs/agent-runtime/hunyuan/index.ts +18 -0
- package/src/libs/agent-runtime/minimax/index.ts +2 -11
- package/src/libs/agent-runtime/moonshot/index.ts +13 -4
- package/src/libs/agent-runtime/qwen/index.ts +4 -0
- package/src/libs/agent-runtime/stepfun/index.ts +15 -2
- package/src/libs/agent-runtime/zhipu/index.ts +19 -7
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,56 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.66.1](https://github.com/lobehub/lobe-chat/compare/v1.66.0...v1.66.1)
|
6
|
+
|
7
|
+
<sup>Released on **2025-02-27**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Added eu-central-1 region for bedrock.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Added eu-central-1 region for bedrock, closes [#6555](https://github.com/lobehub/lobe-chat/issues/6555) ([6f1e599](https://github.com/lobehub/lobe-chat/commit/6f1e599))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
## [Version 1.66.0](https://github.com/lobehub/lobe-chat/compare/v1.65.2...v1.66.0)
|
31
|
+
|
32
|
+
<sup>Released on **2025-02-27**</sup>
|
33
|
+
|
34
|
+
#### ✨ Features
|
35
|
+
|
36
|
+
- **misc**: Add online search support for available providers.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### What's improved
|
44
|
+
|
45
|
+
- **misc**: Add online search support for available providers, closes [#6475](https://github.com/lobehub/lobe-chat/issues/6475) ([cb0a3bc](https://github.com/lobehub/lobe-chat/commit/cb0a3bc))
|
46
|
+
|
47
|
+
</details>
|
48
|
+
|
49
|
+
<div align="right">
|
50
|
+
|
51
|
+
[](#readme-top)
|
52
|
+
|
53
|
+
</div>
|
54
|
+
|
5
55
|
### [Version 1.65.2](https://github.com/lobehub/lobe-chat/compare/v1.65.1...v1.65.2)
|
6
56
|
|
7
57
|
<sup>Released on **2025-02-27**</sup>
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Added eu-central-1 region for bedrock."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-02-27",
|
9
|
+
"version": "1.66.1"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"features": [
|
14
|
+
"Add online search support for available providers."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-02-27",
|
18
|
+
"version": "1.66.0"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"improvements": [
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.
|
3
|
+
"version": "1.66.1",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -54,7 +54,7 @@ export const useBedrockProvider = (): ProviderItem => {
|
|
54
54
|
children: (
|
55
55
|
<Select
|
56
56
|
allowClear
|
57
|
-
options={['us-east-1', 'us-west-2', 'ap-southeast-1'].map((i) => ({
|
57
|
+
options={['us-east-1', 'us-west-2', 'ap-southeast-1', 'eu-central-1'].map((i) => ({
|
58
58
|
label: i,
|
59
59
|
value: i,
|
60
60
|
}))}
|
@@ -68,7 +68,7 @@ const useBedrockCard = (): ProviderItem => {
|
|
68
68
|
) : (
|
69
69
|
<Select
|
70
70
|
allowClear
|
71
|
-
options={['us-east-1', 'us-west-2', 'ap-southeast-1'].map((i) => ({
|
71
|
+
options={['us-east-1', 'us-west-2', 'ap-southeast-1', 'eu-central-1'].map((i) => ({
|
72
72
|
label: i,
|
73
73
|
value: i,
|
74
74
|
}))}
|
@@ -52,6 +52,7 @@ const ai360ChatModels: AIChatModelCard[] = [
|
|
52
52
|
{
|
53
53
|
abilities: {
|
54
54
|
functionCall: true,
|
55
|
+
search: true,
|
55
56
|
},
|
56
57
|
contextWindowTokens: 8000,
|
57
58
|
description:
|
@@ -64,6 +65,9 @@ const ai360ChatModels: AIChatModelCard[] = [
|
|
64
65
|
input: 2,
|
65
66
|
output: 5,
|
66
67
|
},
|
68
|
+
settings: {
|
69
|
+
searchImpl: 'params',
|
70
|
+
},
|
67
71
|
type: 'chat',
|
68
72
|
},
|
69
73
|
{
|
@@ -4,6 +4,7 @@ const baichuanChatModels: AIChatModelCard[] = [
|
|
4
4
|
{
|
5
5
|
abilities: {
|
6
6
|
functionCall: true,
|
7
|
+
search: true,
|
7
8
|
},
|
8
9
|
contextWindowTokens: 32_768,
|
9
10
|
description:
|
@@ -17,11 +18,15 @@ const baichuanChatModels: AIChatModelCard[] = [
|
|
17
18
|
input: 100,
|
18
19
|
output: 100,
|
19
20
|
},
|
21
|
+
settings: {
|
22
|
+
searchImpl: 'params',
|
23
|
+
},
|
20
24
|
type: 'chat',
|
21
25
|
},
|
22
26
|
{
|
23
27
|
abilities: {
|
24
28
|
functionCall: true,
|
29
|
+
search: true,
|
25
30
|
},
|
26
31
|
contextWindowTokens: 32_768,
|
27
32
|
description:
|
@@ -35,11 +40,15 @@ const baichuanChatModels: AIChatModelCard[] = [
|
|
35
40
|
input: 15,
|
36
41
|
output: 15,
|
37
42
|
},
|
43
|
+
settings: {
|
44
|
+
searchImpl: 'params',
|
45
|
+
},
|
38
46
|
type: 'chat',
|
39
47
|
},
|
40
48
|
{
|
41
49
|
abilities: {
|
42
50
|
functionCall: true,
|
51
|
+
search: true,
|
43
52
|
},
|
44
53
|
contextWindowTokens: 32_768,
|
45
54
|
description:
|
@@ -53,11 +62,15 @@ const baichuanChatModels: AIChatModelCard[] = [
|
|
53
62
|
input: 0.98,
|
54
63
|
output: 0.98,
|
55
64
|
},
|
65
|
+
settings: {
|
66
|
+
searchImpl: 'params',
|
67
|
+
},
|
56
68
|
type: 'chat',
|
57
69
|
},
|
58
70
|
{
|
59
71
|
abilities: {
|
60
72
|
functionCall: true,
|
73
|
+
search: true,
|
61
74
|
},
|
62
75
|
contextWindowTokens: 32_768,
|
63
76
|
description:
|
@@ -70,6 +83,9 @@ const baichuanChatModels: AIChatModelCard[] = [
|
|
70
83
|
input: 12,
|
71
84
|
output: 12,
|
72
85
|
},
|
86
|
+
settings: {
|
87
|
+
searchImpl: 'params',
|
88
|
+
},
|
73
89
|
type: 'chat',
|
74
90
|
},
|
75
91
|
{
|
@@ -20,6 +20,9 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
20
20
|
type: 'chat',
|
21
21
|
},
|
22
22
|
{
|
23
|
+
abilities: {
|
24
|
+
search: true,
|
25
|
+
},
|
23
26
|
contextWindowTokens: 32_000,
|
24
27
|
description:
|
25
28
|
'采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-32K 性价比相对更高,在平衡效果、价格的同时,可对实现对长文本输入的处理。',
|
@@ -33,9 +36,15 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
33
36
|
output: 2,
|
34
37
|
},
|
35
38
|
releasedAt: '2025-02-10',
|
39
|
+
settings: {
|
40
|
+
searchImpl: 'params',
|
41
|
+
},
|
36
42
|
type: 'chat',
|
37
43
|
},
|
38
44
|
{
|
45
|
+
abilities: {
|
46
|
+
search: true,
|
47
|
+
},
|
39
48
|
contextWindowTokens: 256_000,
|
40
49
|
description:
|
41
50
|
'采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-256K 在长度和效果上进一步突破,极大的扩展了可输入长度。',
|
@@ -49,11 +58,15 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
49
58
|
output: 2,
|
50
59
|
},
|
51
60
|
releasedAt: '2025-02-10',
|
61
|
+
settings: {
|
62
|
+
searchImpl: 'params',
|
63
|
+
},
|
52
64
|
type: 'chat',
|
53
65
|
},
|
54
66
|
{
|
55
67
|
abilities: {
|
56
68
|
functionCall: true,
|
69
|
+
search: true,
|
57
70
|
},
|
58
71
|
contextWindowTokens: 32_000,
|
59
72
|
description:
|
@@ -68,11 +81,15 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
68
81
|
output: 50,
|
69
82
|
},
|
70
83
|
releasedAt: '2025-01-10',
|
84
|
+
settings: {
|
85
|
+
searchImpl: 'params',
|
86
|
+
},
|
71
87
|
type: 'chat',
|
72
88
|
},
|
73
89
|
{
|
74
90
|
abilities: {
|
75
91
|
functionCall: true,
|
92
|
+
search: true,
|
76
93
|
},
|
77
94
|
contextWindowTokens: 32_000,
|
78
95
|
description:
|
@@ -86,11 +103,15 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
86
103
|
output: 50,
|
87
104
|
},
|
88
105
|
releasedAt: '2025-01-10',
|
106
|
+
settings: {
|
107
|
+
searchImpl: 'params',
|
108
|
+
},
|
89
109
|
type: 'chat',
|
90
110
|
},
|
91
111
|
{
|
92
112
|
abilities: {
|
93
113
|
functionCall: true,
|
114
|
+
search: true,
|
94
115
|
},
|
95
116
|
contextWindowTokens: 32_000,
|
96
117
|
description:
|
@@ -104,11 +125,15 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
104
125
|
output: 50,
|
105
126
|
},
|
106
127
|
releasedAt: '2025-01-10',
|
128
|
+
settings: {
|
129
|
+
searchImpl: 'params',
|
130
|
+
},
|
107
131
|
type: 'chat',
|
108
132
|
},
|
109
133
|
{
|
110
134
|
abilities: {
|
111
135
|
functionCall: true,
|
136
|
+
search: true,
|
112
137
|
},
|
113
138
|
contextWindowTokens: 32_000,
|
114
139
|
description:
|
@@ -122,9 +147,15 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
122
147
|
output: 50,
|
123
148
|
},
|
124
149
|
releasedAt: '2024-11-20',
|
150
|
+
settings: {
|
151
|
+
searchImpl: 'params',
|
152
|
+
},
|
125
153
|
type: 'chat',
|
126
154
|
},
|
127
155
|
{
|
156
|
+
abilities: {
|
157
|
+
search: true,
|
158
|
+
},
|
128
159
|
contextWindowTokens: 32_000,
|
129
160
|
description:
|
130
161
|
'Hunyuan-large 模型总参数量约 389B,激活参数量约 52B,是当前业界参数规模最大、效果最好的 Transformer 架构的开源 MoE 模型。',
|
@@ -138,9 +169,15 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
138
169
|
output: 12,
|
139
170
|
},
|
140
171
|
releasedAt: '2025-02-10',
|
172
|
+
settings: {
|
173
|
+
searchImpl: 'params',
|
174
|
+
},
|
141
175
|
type: 'chat',
|
142
176
|
},
|
143
177
|
{
|
178
|
+
abilities: {
|
179
|
+
search: true,
|
180
|
+
},
|
144
181
|
contextWindowTokens: 134_000,
|
145
182
|
description:
|
146
183
|
'擅长处理长文任务如文档摘要和文档问答等,同时也具备处理通用文本生成任务的能力。在长文本的分析和生成上表现优异,能有效应对复杂和详尽的长文内容处理需求。',
|
@@ -154,6 +191,9 @@ const hunyuanChatModels: AIChatModelCard[] = [
|
|
154
191
|
output: 18,
|
155
192
|
},
|
156
193
|
releasedAt: '2024-12-18',
|
194
|
+
settings: {
|
195
|
+
searchImpl: 'params',
|
196
|
+
},
|
157
197
|
type: 'chat',
|
158
198
|
},
|
159
199
|
{
|
@@ -4,6 +4,7 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
4
4
|
{
|
5
5
|
abilities: {
|
6
6
|
functionCall: true,
|
7
|
+
search: true,
|
7
8
|
vision: true,
|
8
9
|
},
|
9
10
|
contextWindowTokens: 131_072,
|
@@ -19,11 +20,15 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
19
20
|
output: 60,
|
20
21
|
},
|
21
22
|
releasedAt: '2025-02-17',
|
23
|
+
settings: {
|
24
|
+
searchImpl: 'params',
|
25
|
+
},
|
22
26
|
type: 'chat',
|
23
27
|
},
|
24
28
|
{
|
25
29
|
abilities: {
|
26
30
|
functionCall: true,
|
31
|
+
search: true,
|
27
32
|
},
|
28
33
|
contextWindowTokens: 131_072,
|
29
34
|
description:
|
@@ -35,11 +40,15 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
35
40
|
input: 60,
|
36
41
|
output: 60,
|
37
42
|
},
|
43
|
+
settings: {
|
44
|
+
searchImpl: 'params',
|
45
|
+
},
|
38
46
|
type: 'chat',
|
39
47
|
},
|
40
48
|
{
|
41
49
|
abilities: {
|
42
50
|
functionCall: true,
|
51
|
+
search: true,
|
43
52
|
},
|
44
53
|
contextWindowTokens: 8192,
|
45
54
|
description:
|
@@ -51,11 +60,15 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
51
60
|
input: 12,
|
52
61
|
output: 12,
|
53
62
|
},
|
63
|
+
settings: {
|
64
|
+
searchImpl: 'params',
|
65
|
+
},
|
54
66
|
type: 'chat',
|
55
67
|
},
|
56
68
|
{
|
57
69
|
abilities: {
|
58
70
|
functionCall: true,
|
71
|
+
search: true,
|
59
72
|
},
|
60
73
|
contextWindowTokens: 32_768,
|
61
74
|
description:
|
@@ -67,11 +80,15 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
67
80
|
input: 24,
|
68
81
|
output: 24,
|
69
82
|
},
|
83
|
+
settings: {
|
84
|
+
searchImpl: 'params',
|
85
|
+
},
|
70
86
|
type: 'chat',
|
71
87
|
},
|
72
88
|
{
|
73
89
|
abilities: {
|
74
90
|
functionCall: true,
|
91
|
+
search: true,
|
75
92
|
},
|
76
93
|
contextWindowTokens: 131_072,
|
77
94
|
description:
|
@@ -83,11 +100,15 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
83
100
|
input: 60,
|
84
101
|
output: 60,
|
85
102
|
},
|
103
|
+
settings: {
|
104
|
+
searchImpl: 'params',
|
105
|
+
},
|
86
106
|
type: 'chat',
|
87
107
|
},
|
88
108
|
{
|
89
109
|
abilities: {
|
90
110
|
functionCall: true,
|
111
|
+
search: true,
|
91
112
|
vision: true,
|
92
113
|
},
|
93
114
|
contextWindowTokens: 8192,
|
@@ -101,11 +122,15 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
101
122
|
output: 12,
|
102
123
|
},
|
103
124
|
releasedAt: '2025-01-14',
|
125
|
+
settings: {
|
126
|
+
searchImpl: 'params',
|
127
|
+
},
|
104
128
|
type: 'chat',
|
105
129
|
},
|
106
130
|
{
|
107
131
|
abilities: {
|
108
132
|
functionCall: true,
|
133
|
+
search: true,
|
109
134
|
vision: true,
|
110
135
|
},
|
111
136
|
contextWindowTokens: 32_768,
|
@@ -119,11 +144,15 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
119
144
|
output: 24,
|
120
145
|
},
|
121
146
|
releasedAt: '2025-01-14',
|
147
|
+
settings: {
|
148
|
+
searchImpl: 'params',
|
149
|
+
},
|
122
150
|
type: 'chat',
|
123
151
|
},
|
124
152
|
{
|
125
153
|
abilities: {
|
126
154
|
functionCall: true,
|
155
|
+
search: true,
|
127
156
|
vision: true,
|
128
157
|
},
|
129
158
|
contextWindowTokens: 131_072,
|
@@ -137,6 +166,9 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
137
166
|
output: 60,
|
138
167
|
},
|
139
168
|
releasedAt: '2025-01-14',
|
169
|
+
settings: {
|
170
|
+
searchImpl: 'params',
|
171
|
+
},
|
140
172
|
type: 'chat',
|
141
173
|
},
|
142
174
|
];
|
@@ -2,6 +2,9 @@ import { AIChatModelCard } from '@/types/aiModel';
|
|
2
2
|
|
3
3
|
const sparkChatModels: AIChatModelCard[] = [
|
4
4
|
{
|
5
|
+
abilities: {
|
6
|
+
search: true,
|
7
|
+
},
|
5
8
|
contextWindowTokens: 8192,
|
6
9
|
description:
|
7
10
|
'Spark Lite 是一款轻量级大语言模型,具备极低的延迟与高效的处理能力,完全免费开放,支持实时在线搜索功能。其快速响应的特性使其在低算力设备上的推理应用和模型微调中表现出色,为用户带来出色的成本效益和智能体验,尤其在知识问答、内容生成及搜索场景下表现不俗。',
|
@@ -9,9 +12,15 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
9
12
|
enabled: true,
|
10
13
|
id: 'lite',
|
11
14
|
maxOutput: 4096,
|
15
|
+
settings: {
|
16
|
+
searchImpl: 'internal',
|
17
|
+
},
|
12
18
|
type: 'chat',
|
13
19
|
},
|
14
20
|
{
|
21
|
+
abilities: {
|
22
|
+
search: true,
|
23
|
+
},
|
15
24
|
contextWindowTokens: 8192,
|
16
25
|
description:
|
17
26
|
'Spark Pro 是一款为专业领域优化的高性能大语言模型,专注数学、编程、医疗、教育等多个领域,并支持联网搜索及内置天气、日期等插件。其优化后模型在复杂知识问答、语言理解及高层次文本创作中展现出色表现和高效性能,是适合专业应用场景的理想选择。',
|
@@ -19,9 +28,15 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
19
28
|
enabled: true,
|
20
29
|
id: 'generalv3',
|
21
30
|
maxOutput: 8192,
|
31
|
+
settings: {
|
32
|
+
searchImpl: 'internal',
|
33
|
+
},
|
22
34
|
type: 'chat',
|
23
35
|
},
|
24
36
|
{
|
37
|
+
abilities: {
|
38
|
+
search: true,
|
39
|
+
},
|
25
40
|
contextWindowTokens: 131_072,
|
26
41
|
description:
|
27
42
|
'Spark Pro 128K 配置了特大上下文处理能力,能够处理多达128K的上下文信息,特别适合需通篇分析和长期逻辑关联处理的长文内容,可在复杂文本沟通中提供流畅一致的逻辑与多样的引用支持。',
|
@@ -29,11 +44,15 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
29
44
|
enabled: true,
|
30
45
|
id: 'pro-128k',
|
31
46
|
maxOutput: 4096,
|
47
|
+
settings: {
|
48
|
+
searchImpl: 'internal',
|
49
|
+
},
|
32
50
|
type: 'chat',
|
33
51
|
},
|
34
52
|
{
|
35
53
|
abilities: {
|
36
54
|
functionCall: true,
|
55
|
+
search: true,
|
37
56
|
},
|
38
57
|
contextWindowTokens: 8192,
|
39
58
|
description:
|
@@ -42,11 +61,15 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
42
61
|
enabled: true,
|
43
62
|
id: 'generalv3.5',
|
44
63
|
maxOutput: 8192,
|
64
|
+
settings: {
|
65
|
+
searchImpl: 'internal',
|
66
|
+
},
|
45
67
|
type: 'chat',
|
46
68
|
},
|
47
69
|
{
|
48
70
|
abilities: {
|
49
71
|
functionCall: true,
|
72
|
+
search: true,
|
50
73
|
},
|
51
74
|
contextWindowTokens: 32_768,
|
52
75
|
description:
|
@@ -55,11 +78,15 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
55
78
|
enabled: true,
|
56
79
|
id: 'max-32k',
|
57
80
|
maxOutput: 8192,
|
81
|
+
settings: {
|
82
|
+
searchImpl: 'internal',
|
83
|
+
},
|
58
84
|
type: 'chat',
|
59
85
|
},
|
60
86
|
{
|
61
87
|
abilities: {
|
62
88
|
functionCall: true,
|
89
|
+
search: true,
|
63
90
|
},
|
64
91
|
contextWindowTokens: 8192,
|
65
92
|
description:
|
@@ -68,6 +95,9 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
68
95
|
enabled: true,
|
69
96
|
id: '4.0Ultra',
|
70
97
|
maxOutput: 8192,
|
98
|
+
settings: {
|
99
|
+
searchImpl: 'internal',
|
100
|
+
},
|
71
101
|
type: 'chat',
|
72
102
|
},
|
73
103
|
];
|
@@ -6,6 +6,7 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
6
6
|
{
|
7
7
|
abilities: {
|
8
8
|
functionCall: true,
|
9
|
+
search: true,
|
9
10
|
},
|
10
11
|
contextWindowTokens: 8000,
|
11
12
|
description: '高速模型,适合实时对话。',
|
@@ -17,11 +18,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
17
18
|
input: 1,
|
18
19
|
output: 4,
|
19
20
|
},
|
21
|
+
settings: {
|
22
|
+
searchImpl: 'params',
|
23
|
+
},
|
20
24
|
type: 'chat',
|
21
25
|
},
|
22
26
|
{
|
23
27
|
abilities: {
|
24
28
|
functionCall: true,
|
29
|
+
search: true,
|
25
30
|
},
|
26
31
|
contextWindowTokens: 8000,
|
27
32
|
description: '小型模型,适合轻量级任务。',
|
@@ -33,11 +38,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
33
38
|
input: 5,
|
34
39
|
output: 20,
|
35
40
|
},
|
41
|
+
settings: {
|
42
|
+
searchImpl: 'params',
|
43
|
+
},
|
36
44
|
type: 'chat',
|
37
45
|
},
|
38
46
|
{
|
39
47
|
abilities: {
|
40
48
|
functionCall: true,
|
49
|
+
search: true,
|
41
50
|
},
|
42
51
|
contextWindowTokens: 32_000,
|
43
52
|
description: '支持中等长度的对话,适用于多种应用场景。',
|
@@ -49,11 +58,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
49
58
|
input: 15,
|
50
59
|
output: 70,
|
51
60
|
},
|
61
|
+
settings: {
|
62
|
+
searchImpl: 'params',
|
63
|
+
},
|
52
64
|
type: 'chat',
|
53
65
|
},
|
54
66
|
{
|
55
67
|
abilities: {
|
56
68
|
functionCall: true,
|
69
|
+
search: true,
|
57
70
|
},
|
58
71
|
contextWindowTokens: 128_000,
|
59
72
|
description: '平衡性能与成本,适合一般场景。',
|
@@ -65,11 +78,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
65
78
|
input: 40,
|
66
79
|
output: 200,
|
67
80
|
},
|
81
|
+
settings: {
|
82
|
+
searchImpl: 'params',
|
83
|
+
},
|
68
84
|
type: 'chat',
|
69
85
|
},
|
70
86
|
{
|
71
87
|
abilities: {
|
72
88
|
functionCall: true,
|
89
|
+
search: true,
|
73
90
|
},
|
74
91
|
contextWindowTokens: 256_000,
|
75
92
|
description: '具备超长上下文处理能力,尤其适合长文档分析。',
|
@@ -80,11 +97,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
80
97
|
input: 95,
|
81
98
|
output: 300,
|
82
99
|
},
|
100
|
+
settings: {
|
101
|
+
searchImpl: 'params',
|
102
|
+
},
|
83
103
|
type: 'chat',
|
84
104
|
},
|
85
105
|
{
|
86
106
|
abilities: {
|
87
107
|
functionCall: true,
|
108
|
+
search: true,
|
88
109
|
},
|
89
110
|
contextWindowTokens: 16_000,
|
90
111
|
description: '支持大规模上下文交互,适合复杂对话场景。',
|
@@ -96,11 +117,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
96
117
|
input: 38,
|
97
118
|
output: 120,
|
98
119
|
},
|
120
|
+
settings: {
|
121
|
+
searchImpl: 'params',
|
122
|
+
},
|
99
123
|
type: 'chat',
|
100
124
|
},
|
101
125
|
{
|
102
126
|
abilities: {
|
103
127
|
functionCall: true,
|
128
|
+
search: true,
|
104
129
|
},
|
105
130
|
contextWindowTokens: 8000,
|
106
131
|
description:
|
@@ -114,11 +139,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
114
139
|
output: 2,
|
115
140
|
},
|
116
141
|
releasedAt: '2025-01-14',
|
142
|
+
settings: {
|
143
|
+
searchImpl: 'params',
|
144
|
+
},
|
117
145
|
type: 'chat',
|
118
146
|
},
|
119
147
|
{
|
120
148
|
abilities: {
|
121
149
|
functionCall: true,
|
150
|
+
search: true,
|
122
151
|
},
|
123
152
|
contextWindowTokens: 16_000,
|
124
153
|
description: 'step-2模型的实验版本,包含最新的特性,滚动更新中。不推荐在正式生产环境使用。',
|
@@ -131,11 +160,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
131
160
|
output: 120,
|
132
161
|
},
|
133
162
|
releasedAt: '2025-01-15',
|
163
|
+
settings: {
|
164
|
+
searchImpl: 'params',
|
165
|
+
},
|
134
166
|
type: 'chat',
|
135
167
|
},
|
136
168
|
{
|
137
169
|
abilities: {
|
138
170
|
functionCall: true,
|
171
|
+
search: true,
|
139
172
|
vision: true,
|
140
173
|
},
|
141
174
|
contextWindowTokens: 8000,
|
@@ -148,11 +181,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
148
181
|
input: 5,
|
149
182
|
output: 20,
|
150
183
|
},
|
184
|
+
settings: {
|
185
|
+
searchImpl: 'params',
|
186
|
+
},
|
151
187
|
type: 'chat',
|
152
188
|
},
|
153
189
|
{
|
154
190
|
abilities: {
|
155
191
|
functionCall: true,
|
192
|
+
search: true,
|
156
193
|
vision: true,
|
157
194
|
},
|
158
195
|
contextWindowTokens: 32_000,
|
@@ -164,11 +201,15 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
164
201
|
input: 15,
|
165
202
|
output: 70,
|
166
203
|
},
|
204
|
+
settings: {
|
205
|
+
searchImpl: 'params',
|
206
|
+
},
|
167
207
|
type: 'chat',
|
168
208
|
},
|
169
209
|
{
|
170
210
|
abilities: {
|
171
211
|
functionCall: true,
|
212
|
+
search: true,
|
172
213
|
vision: true,
|
173
214
|
},
|
174
215
|
contextWindowTokens: 32_000,
|
@@ -182,6 +223,9 @@ const stepfunChatModels: AIChatModelCard[] = [
|
|
182
223
|
output: 70,
|
183
224
|
},
|
184
225
|
releasedAt: '2025-01-22',
|
226
|
+
settings: {
|
227
|
+
searchImpl: 'params',
|
228
|
+
},
|
185
229
|
type: 'chat',
|
186
230
|
},
|
187
231
|
{
|
@@ -20,6 +20,7 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
20
20
|
{
|
21
21
|
abilities: {
|
22
22
|
functionCall: true,
|
23
|
+
search: true,
|
23
24
|
},
|
24
25
|
contextWindowTokens: 128_000,
|
25
26
|
description: 'GLM-4-Flash 是处理简单任务的理想选择,速度最快且免费。',
|
@@ -31,11 +32,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
31
32
|
input: 0,
|
32
33
|
output: 0,
|
33
34
|
},
|
35
|
+
settings: {
|
36
|
+
searchImpl: 'params',
|
37
|
+
},
|
34
38
|
type: 'chat',
|
35
39
|
},
|
36
40
|
{
|
37
41
|
abilities: {
|
38
42
|
functionCall: true,
|
43
|
+
search: true,
|
39
44
|
},
|
40
45
|
contextWindowTokens: 128_000,
|
41
46
|
description: 'GLM-4-FlashX 是Flash的增强版本,超快推理速度。',
|
@@ -47,11 +52,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
47
52
|
input: 0.1,
|
48
53
|
output: 0.1,
|
49
54
|
},
|
55
|
+
settings: {
|
56
|
+
searchImpl: 'params',
|
57
|
+
},
|
50
58
|
type: 'chat',
|
51
59
|
},
|
52
60
|
{
|
53
61
|
abilities: {
|
54
62
|
functionCall: true,
|
63
|
+
search: true,
|
55
64
|
},
|
56
65
|
contextWindowTokens: 1_024_000,
|
57
66
|
description: 'GLM-4-Long 支持超长文本输入,适合记忆型任务与大规模文档处理。',
|
@@ -62,11 +71,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
62
71
|
input: 1,
|
63
72
|
output: 1,
|
64
73
|
},
|
74
|
+
settings: {
|
75
|
+
searchImpl: 'params',
|
76
|
+
},
|
65
77
|
type: 'chat',
|
66
78
|
},
|
67
79
|
{
|
68
80
|
abilities: {
|
69
81
|
functionCall: true,
|
82
|
+
search: true,
|
70
83
|
},
|
71
84
|
contextWindowTokens: 128_000,
|
72
85
|
description: 'GLM-4-Air 是性价比高的版本,性能接近GLM-4,提供快速度和实惠的价格。',
|
@@ -78,11 +91,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
78
91
|
input: 1,
|
79
92
|
output: 1,
|
80
93
|
},
|
94
|
+
settings: {
|
95
|
+
searchImpl: 'params',
|
96
|
+
},
|
81
97
|
type: 'chat',
|
82
98
|
},
|
83
99
|
{
|
84
100
|
abilities: {
|
85
101
|
functionCall: true,
|
102
|
+
search: true,
|
86
103
|
},
|
87
104
|
contextWindowTokens: 8192,
|
88
105
|
description: 'GLM-4-AirX 提供 GLM-4-Air 的高效版本,推理速度可达其2.6倍。',
|
@@ -94,11 +111,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
94
111
|
input: 10,
|
95
112
|
output: 10,
|
96
113
|
},
|
114
|
+
settings: {
|
115
|
+
searchImpl: 'params',
|
116
|
+
},
|
97
117
|
type: 'chat',
|
98
118
|
},
|
99
119
|
{
|
100
120
|
abilities: {
|
101
121
|
functionCall: true,
|
122
|
+
search: true,
|
102
123
|
},
|
103
124
|
contextWindowTokens: 128_000,
|
104
125
|
description:
|
@@ -110,11 +131,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
110
131
|
input: 100,
|
111
132
|
output: 100,
|
112
133
|
},
|
134
|
+
settings: {
|
135
|
+
searchImpl: 'params',
|
136
|
+
},
|
113
137
|
type: 'chat',
|
114
138
|
},
|
115
139
|
{
|
116
140
|
abilities: {
|
117
141
|
functionCall: true,
|
142
|
+
search: true,
|
118
143
|
},
|
119
144
|
contextWindowTokens: 128_000,
|
120
145
|
description: 'GLM-4-Plus 作为高智能旗舰,具备强大的处理长文本和复杂任务的能力,性能全面提升。',
|
@@ -126,11 +151,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
126
151
|
input: 50,
|
127
152
|
output: 50,
|
128
153
|
},
|
154
|
+
settings: {
|
155
|
+
searchImpl: 'params',
|
156
|
+
},
|
129
157
|
type: 'chat',
|
130
158
|
},
|
131
159
|
{
|
132
160
|
abilities: {
|
133
161
|
functionCall: true,
|
162
|
+
search: true,
|
134
163
|
},
|
135
164
|
contextWindowTokens: 128_000,
|
136
165
|
description: 'GLM-4-0520 是最新模型版本,专为高度复杂和多样化任务设计,表现卓越。',
|
@@ -141,11 +170,15 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
141
170
|
input: 100,
|
142
171
|
output: 100,
|
143
172
|
},
|
173
|
+
settings: {
|
174
|
+
searchImpl: 'params',
|
175
|
+
},
|
144
176
|
type: 'chat',
|
145
177
|
},
|
146
178
|
{
|
147
179
|
abilities: {
|
148
180
|
functionCall: true,
|
181
|
+
search: true,
|
149
182
|
},
|
150
183
|
contextWindowTokens: 128_000,
|
151
184
|
description: 'GLM-4 是发布于2024年1月的旧旗舰版本,目前已被更强的 GLM-4-0520 取代。',
|
@@ -156,6 +189,9 @@ const zhipuChatModels: AIChatModelCard[] = [
|
|
156
189
|
input: 100,
|
157
190
|
output: 100,
|
158
191
|
},
|
192
|
+
settings: {
|
193
|
+
searchImpl: 'params',
|
194
|
+
},
|
159
195
|
type: 'chat',
|
160
196
|
},
|
161
197
|
{
|
@@ -77,7 +77,7 @@ const BedrockForm = memo(() => {
|
|
77
77
|
onChange={(region) => {
|
78
78
|
setConfig('bedrock', { region });
|
79
79
|
}}
|
80
|
-
options={['us-east-1', 'us-west-2', 'ap-southeast-1'].map((i) => ({
|
80
|
+
options={['us-east-1', 'us-west-2', 'ap-southeast-1', 'eu-central-1'].map((i) => ({
|
81
81
|
label: i,
|
82
82
|
value: i,
|
83
83
|
}))}
|
@@ -13,9 +13,22 @@ export const LobeAi360AI = LobeOpenAICompatibleFactory({
|
|
13
13
|
baseURL: 'https://api.360.cn/v1',
|
14
14
|
chatCompletion: {
|
15
15
|
handlePayload: (payload) => {
|
16
|
+
const { enabledSearch, tools, ...rest } = payload;
|
17
|
+
|
18
|
+
const ai360Tools = enabledSearch ? [
|
19
|
+
...(tools || []),
|
20
|
+
{
|
21
|
+
type: "web_search",
|
22
|
+
web_search: {
|
23
|
+
search_mode: "auto",
|
24
|
+
},
|
25
|
+
}
|
26
|
+
] : tools;
|
27
|
+
|
16
28
|
return {
|
17
|
-
...
|
18
|
-
stream: !
|
29
|
+
...rest,
|
30
|
+
stream: !ai360Tools,
|
31
|
+
tools: ai360Tools,
|
19
32
|
} as any;
|
20
33
|
},
|
21
34
|
},
|
@@ -1,5 +1,3 @@
|
|
1
|
-
import OpenAI from 'openai';
|
2
|
-
|
3
1
|
import { ChatStreamPayload, ModelProvider } from '../types';
|
4
2
|
import { LobeOpenAICompatibleFactory } from '../utils/openaiCompatibleFactory';
|
5
3
|
|
@@ -17,14 +15,26 @@ export const LobeBaichuanAI = LobeOpenAICompatibleFactory({
|
|
17
15
|
baseURL: 'https://api.baichuan-ai.com/v1',
|
18
16
|
chatCompletion: {
|
19
17
|
handlePayload: (payload: ChatStreamPayload) => {
|
20
|
-
const { temperature, ...rest } = payload;
|
18
|
+
const { enabledSearch, temperature, tools, ...rest } = payload;
|
19
|
+
|
20
|
+
const baichuanTools = enabledSearch ? [
|
21
|
+
...(tools || []),
|
22
|
+
{
|
23
|
+
type: "web_search",
|
24
|
+
web_search: {
|
25
|
+
enable: true,
|
26
|
+
search_mode: process.env.BAICHUAN_SEARCH_MODE || "performance_first", // performance_first or quality_first
|
27
|
+
},
|
28
|
+
}
|
29
|
+
] : tools;
|
21
30
|
|
22
31
|
return {
|
23
32
|
...rest,
|
24
33
|
// [baichuan] frequency_penalty must be between 1 and 2.
|
25
34
|
frequency_penalty: undefined,
|
26
35
|
temperature: temperature !== undefined ? temperature / 2 : undefined,
|
27
|
-
|
36
|
+
tools: baichuanTools,
|
37
|
+
} as any;
|
28
38
|
},
|
29
39
|
},
|
30
40
|
debug: {
|
@@ -9,6 +9,24 @@ export interface HunyuanModelCard {
|
|
9
9
|
|
10
10
|
export const LobeHunyuanAI = LobeOpenAICompatibleFactory({
|
11
11
|
baseURL: 'https://api.hunyuan.cloud.tencent.com/v1',
|
12
|
+
chatCompletion: {
|
13
|
+
handlePayload: (payload) => {
|
14
|
+
const { enabledSearch, ...rest } = payload;
|
15
|
+
|
16
|
+
return {
|
17
|
+
...rest,
|
18
|
+
...(enabledSearch && {
|
19
|
+
/*
|
20
|
+
citation: true,
|
21
|
+
enable_multimedia: true,
|
22
|
+
search_info: true
|
23
|
+
*/
|
24
|
+
enable_enhancement: true,
|
25
|
+
enable_speed_search: process.env.HUNYUAN_ENABLE_SPEED_SEARCH === '1',
|
26
|
+
}),
|
27
|
+
} as any;
|
28
|
+
},
|
29
|
+
},
|
12
30
|
debug: {
|
13
31
|
chatCompletion: () => process.env.DEBUG_HUNYUAN_CHAT_COMPLETION === '1',
|
14
32
|
},
|
@@ -12,23 +12,14 @@ export const LobeMinimaxAI = LobeOpenAICompatibleFactory({
|
|
12
12
|
baseURL: 'https://api.minimax.chat/v1',
|
13
13
|
chatCompletion: {
|
14
14
|
handlePayload: (payload) => {
|
15
|
-
const { temperature, top_p, ...params } = payload;
|
15
|
+
const { max_tokens, temperature, top_p, ...params } = payload;
|
16
16
|
|
17
17
|
return {
|
18
18
|
...params,
|
19
19
|
frequency_penalty: undefined,
|
20
|
-
max_tokens:
|
20
|
+
max_tokens: max_tokens !== undefined ? max_tokens : getMinimaxMaxOutputs(payload.model),
|
21
21
|
presence_penalty: undefined,
|
22
|
-
stream: true,
|
23
22
|
temperature: temperature === undefined || temperature <= 0 ? undefined : temperature / 2,
|
24
|
-
tools: params.tools?.map((tool) => ({
|
25
|
-
function: {
|
26
|
-
description: tool.function.description,
|
27
|
-
name: tool.function.name,
|
28
|
-
parameters: JSON.stringify(tool.function.parameters),
|
29
|
-
},
|
30
|
-
type: 'function',
|
31
|
-
})),
|
32
23
|
top_p: top_p !== undefined && top_p > 0 && top_p <= 1 ? top_p : undefined,
|
33
24
|
} as any;
|
34
25
|
},
|
@@ -1,5 +1,3 @@
|
|
1
|
-
import OpenAI from 'openai';
|
2
|
-
|
3
1
|
import { ChatStreamPayload, ModelProvider } from '../types';
|
4
2
|
import { LobeOpenAICompatibleFactory } from '../utils/openaiCompatibleFactory';
|
5
3
|
|
@@ -13,12 +11,23 @@ export const LobeMoonshotAI = LobeOpenAICompatibleFactory({
|
|
13
11
|
baseURL: 'https://api.moonshot.cn/v1',
|
14
12
|
chatCompletion: {
|
15
13
|
handlePayload: (payload: ChatStreamPayload) => {
|
16
|
-
const { temperature, ...rest } = payload;
|
14
|
+
const { enabledSearch, temperature, tools, ...rest } = payload;
|
15
|
+
|
16
|
+
const moonshotTools = enabledSearch ? [
|
17
|
+
...(tools || []),
|
18
|
+
{
|
19
|
+
function: {
|
20
|
+
name: "$web_search",
|
21
|
+
},
|
22
|
+
type: "builtin_function",
|
23
|
+
}
|
24
|
+
] : tools;
|
17
25
|
|
18
26
|
return {
|
19
27
|
...rest,
|
20
28
|
temperature: temperature !== undefined ? temperature / 2 : undefined,
|
21
|
-
|
29
|
+
tools: moonshotTools,
|
30
|
+
} as any;
|
22
31
|
},
|
23
32
|
},
|
24
33
|
debug: {
|
@@ -50,6 +50,10 @@ export const LobeQwenAI = LobeOpenAICompatibleFactory({
|
|
50
50
|
...(enabledSearch && {
|
51
51
|
enable_search: enabledSearch,
|
52
52
|
search_options: {
|
53
|
+
/*
|
54
|
+
enable_citation: true,
|
55
|
+
enable_source: true,
|
56
|
+
*/
|
53
57
|
search_strategy: process.env.QWEN_SEARCH_STRATEGY || 'standard', // standard or pro
|
54
58
|
},
|
55
59
|
}),
|
@@ -11,9 +11,22 @@ export const LobeStepfunAI = LobeOpenAICompatibleFactory({
|
|
11
11
|
baseURL: 'https://api.stepfun.com/v1',
|
12
12
|
chatCompletion: {
|
13
13
|
handlePayload: (payload) => {
|
14
|
+
const { enabledSearch, tools, ...rest } = payload;
|
15
|
+
|
16
|
+
const stepfunTools = enabledSearch ? [
|
17
|
+
...(tools || []),
|
18
|
+
{
|
19
|
+
function: {
|
20
|
+
description: "use web_search to search information on the internet",
|
21
|
+
},
|
22
|
+
type: "web_search",
|
23
|
+
}
|
24
|
+
] : tools;
|
25
|
+
|
14
26
|
return {
|
15
|
-
...
|
16
|
-
stream: !
|
27
|
+
...rest,
|
28
|
+
stream: !stepfunTools,
|
29
|
+
tools: stepfunTools,
|
17
30
|
} as any;
|
18
31
|
},
|
19
32
|
},
|
@@ -1,6 +1,4 @@
|
|
1
|
-
import
|
2
|
-
|
3
|
-
import { ChatStreamPayload, ModelProvider } from '../types';
|
1
|
+
import { ModelProvider } from '../types';
|
4
2
|
import { LobeOpenAICompatibleFactory } from '../utils/openaiCompatibleFactory';
|
5
3
|
|
6
4
|
import type { ChatModelCard } from '@/types/llm';
|
@@ -14,9 +12,21 @@ export interface ZhipuModelCard {
|
|
14
12
|
export const LobeZhipuAI = LobeOpenAICompatibleFactory({
|
15
13
|
baseURL: 'https://open.bigmodel.cn/api/paas/v4',
|
16
14
|
chatCompletion: {
|
17
|
-
handlePayload: (
|
18
|
-
|
19
|
-
|
15
|
+
handlePayload: (payload) => {
|
16
|
+
const { enabledSearch, max_tokens, model, temperature, tools, top_p, ...rest } = payload;
|
17
|
+
|
18
|
+
const zhipuTools = enabledSearch ? [
|
19
|
+
...(tools || []),
|
20
|
+
{
|
21
|
+
type: "web_search",
|
22
|
+
web_search: {
|
23
|
+
enable: true,
|
24
|
+
},
|
25
|
+
}
|
26
|
+
] : tools;
|
27
|
+
|
28
|
+
return {
|
29
|
+
...rest,
|
20
30
|
max_tokens:
|
21
31
|
max_tokens === undefined ? undefined :
|
22
32
|
(model.includes('glm-4v') && Math.min(max_tokens, 1024)) ||
|
@@ -24,6 +34,7 @@ export const LobeZhipuAI = LobeOpenAICompatibleFactory({
|
|
24
34
|
max_tokens,
|
25
35
|
model,
|
26
36
|
stream: true,
|
37
|
+
tools: zhipuTools,
|
27
38
|
...(model === 'glm-4-alltools'
|
28
39
|
? {
|
29
40
|
temperature:
|
@@ -36,7 +47,8 @@ export const LobeZhipuAI = LobeOpenAICompatibleFactory({
|
|
36
47
|
temperature: temperature !== undefined ? temperature / 2 : undefined,
|
37
48
|
top_p,
|
38
49
|
}),
|
39
|
-
}
|
50
|
+
} as any;
|
51
|
+
},
|
40
52
|
},
|
41
53
|
constructorOptions: {
|
42
54
|
defaultHeaders: {
|