@lobehub/chat 1.60.5 → 1.60.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +51 -0
- package/README.md +2 -2
- package/README.zh-CN.md +2 -2
- package/changelog/v1.json +18 -0
- package/docs/usage/start.mdx +45 -16
- package/docs/usage/start.zh-CN.mdx +42 -4
- package/locales/ar/models.json +30 -3
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +30 -3
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +30 -3
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +30 -3
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +30 -3
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +30 -3
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +30 -3
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +30 -3
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +30 -3
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +30 -3
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +30 -3
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +30 -3
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +30 -3
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +30 -3
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +30 -3
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +30 -3
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +33 -6
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +30 -3
- package/locales/zh-TW/providers.json +3 -0
- package/next.config.ts +6 -5
- package/package.json +1 -1
- package/src/config/aiModels/google.ts +1 -108
- package/src/config/aiModels/minimax.ts +10 -73
- package/src/config/aiModels/openai.ts +1 -0
- package/src/config/modelProviders/google.ts +72 -151
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,57 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.60.7](https://github.com/lobehub/lobe-chat/compare/v1.60.6...v1.60.7)
|
6
|
+
|
7
|
+
<sup>Released on **2025-02-17**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Remove deprecated gemini models, update MiniMax models.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Remove deprecated gemini models, closes [#6269](https://github.com/lobehub/lobe-chat/issues/6269) ([45977c3](https://github.com/lobehub/lobe-chat/commit/45977c3))
|
21
|
+
- **misc**: Update MiniMax models, closes [#6270](https://github.com/lobehub/lobe-chat/issues/6270) ([2d7803a](https://github.com/lobehub/lobe-chat/commit/2d7803a))
|
22
|
+
|
23
|
+
</details>
|
24
|
+
|
25
|
+
<div align="right">
|
26
|
+
|
27
|
+
[](#readme-top)
|
28
|
+
|
29
|
+
</div>
|
30
|
+
|
31
|
+
### [Version 1.60.6](https://github.com/lobehub/lobe-chat/compare/v1.60.5...v1.60.6)
|
32
|
+
|
33
|
+
<sup>Released on **2025-02-17**</sup>
|
34
|
+
|
35
|
+
#### 💄 Styles
|
36
|
+
|
37
|
+
- **misc**: Add o1 vision metadata.
|
38
|
+
|
39
|
+
<br/>
|
40
|
+
|
41
|
+
<details>
|
42
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
43
|
+
|
44
|
+
#### Styles
|
45
|
+
|
46
|
+
- **misc**: Add o1 vision metadata, closes [#6263](https://github.com/lobehub/lobe-chat/issues/6263) ([261d068](https://github.com/lobehub/lobe-chat/commit/261d068))
|
47
|
+
|
48
|
+
</details>
|
49
|
+
|
50
|
+
<div align="right">
|
51
|
+
|
52
|
+
[](#readme-top)
|
53
|
+
|
54
|
+
</div>
|
55
|
+
|
5
56
|
### [Version 1.60.5](https://github.com/lobehub/lobe-chat/compare/v1.60.4...v1.60.5)
|
6
57
|
|
7
58
|
<sup>Released on **2025-02-17**</sup>
|
package/README.md
CHANGED
@@ -41,7 +41,7 @@ One-click **FREE** deployment of your private OpenAI ChatGPT/Claude/Gemini/Groq/
|
|
41
41
|
|
42
42
|
[![][github-trending-shield]][github-trending-url]
|
43
43
|
|
44
|
-
|
44
|
+
![][image-overview]
|
45
45
|
|
46
46
|
</div>
|
47
47
|
|
@@ -866,7 +866,7 @@ This project is [Apache 2.0](./LICENSE) licensed.
|
|
866
866
|
[image-feat-theme]: https://github.com/user-attachments/assets/b47c39f1-806f-492b-8fcb-b0fa973937c1
|
867
867
|
[image-feat-tts]: https://github.com/user-attachments/assets/50189597-2cc3-4002-b4c8-756a52ad5c0a
|
868
868
|
[image-feat-vision]: https://github.com/user-attachments/assets/18574a1f-46c2-4cbc-af2c-35a86e128a07
|
869
|
-
[image-overview]: https://github.com/
|
869
|
+
[image-overview]: https://github.com/user-attachments/assets/dbfaa84a-2c82-4dd9-815c-5be616f264a4
|
870
870
|
[image-star]: https://github.com/user-attachments/assets/c3b482e7-cef5-4e94-bef9-226900ecfaab
|
871
871
|
[issues-link]: https://img.shields.io/github/issues/lobehub/lobe-chat.svg?style=flat
|
872
872
|
[lobe-chat-plugins]: https://github.com/lobehub/lobe-chat-plugins
|
package/README.zh-CN.md
CHANGED
@@ -41,7 +41,7 @@
|
|
41
41
|
[![][github-trending-shield]][github-trending-url]
|
42
42
|
[![][github-hello-shield]][github-hello-url]
|
43
43
|
|
44
|
-
|
44
|
+
![][image-overview]
|
45
45
|
|
46
46
|
</div>
|
47
47
|
|
@@ -888,7 +888,7 @@ This project is [Apache 2.0](./LICENSE) licensed.
|
|
888
888
|
[image-feat-theme]: https://github.com/user-attachments/assets/b47c39f1-806f-492b-8fcb-b0fa973937c1
|
889
889
|
[image-feat-tts]: https://github.com/user-attachments/assets/50189597-2cc3-4002-b4c8-756a52ad5c0a
|
890
890
|
[image-feat-vision]: https://github.com/user-attachments/assets/18574a1f-46c2-4cbc-af2c-35a86e128a07
|
891
|
-
[image-overview]: https://github.com/
|
891
|
+
[image-overview]: https://github.com/user-attachments/assets/dbfaa84a-2c82-4dd9-815c-5be616f264a4
|
892
892
|
[image-star]: https://github.com/user-attachments/assets/c3b482e7-cef5-4e94-bef9-226900ecfaab
|
893
893
|
[issues-link]: https://img.shields.io/github/issues/lobehub/lobe-chat.svg?style=flat
|
894
894
|
[lobe-chat-plugins]: https://github.com/lobehub/lobe-chat-plugins
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Remove deprecated gemini models, update MiniMax models."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-02-17",
|
9
|
+
"version": "1.60.7"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"improvements": [
|
14
|
+
"Add o1 vision metadata."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-02-17",
|
18
|
+
"version": "1.60.6"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"fixes": [
|
package/docs/usage/start.mdx
CHANGED
@@ -16,19 +16,48 @@ tags:
|
|
16
16
|
|
17
17
|
# ✨ Feature Overview
|
18
18
|
|
19
|
-
|
20
|
-
|
21
|
-
'
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
/>
|
29
|
-
|
30
|
-
<
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
<
|
19
|
+
## 2024 Overview
|
20
|
+
|
21
|
+
<Image alt={'LobeChat 2024 Overview'} src={'https://github.com/user-attachments/assets/2428a136-38bf-488c-8033-d9f261d67f3d'} />
|
22
|
+
|
23
|
+
<Cards>
|
24
|
+
<Card href="/docs/usage/features/cot" title="Chain of Thought" />
|
25
|
+
|
26
|
+
<Card href="/docs/usage/features/branching-conversations" title="Branching Conversations" />
|
27
|
+
|
28
|
+
<Card href="/docs/usage/features/artifacts" title="Artifacts" />
|
29
|
+
|
30
|
+
<Card href="/docs/usage/features/knowledge-base" title="File Upload / Knowledge Base" />
|
31
|
+
|
32
|
+
<Card href="/docs/usage/features/database" title="Local / Remote Database" />
|
33
|
+
|
34
|
+
<Card href="/docs/usage/features/auth" title="Multi-User Management" />
|
35
|
+
</Cards>
|
36
|
+
|
37
|
+
<br />
|
38
|
+
|
39
|
+
## 2023 Overview
|
40
|
+
|
41
|
+
<Image alt={'LobeChat 2023 Overview'} src={'https://github.com/user-attachments/assets/625cf558-4c32-4489-970a-2723ebadbc23'} />
|
42
|
+
|
43
|
+
<Cards>
|
44
|
+
<Card href="/docs/usage/features/multi-ai-providers" title="Multi AI Providers" />
|
45
|
+
|
46
|
+
<Card href="/docs/usage/features/local-llm" title="Local LLM Support" />
|
47
|
+
|
48
|
+
<Card href="/docs/usage/features/vision" title="Vision Recognition" />
|
49
|
+
|
50
|
+
<Card href="/docs/usage/features/tts" title="TTS & STT" />
|
51
|
+
|
52
|
+
<Card href="/docs/usage/features/text-to-image" title="Text to Image Creation" />
|
53
|
+
|
54
|
+
<Card href="/docs/usage/features/plugin-system" title="Tool Calling / Plugin System" />
|
55
|
+
|
56
|
+
<Card href="/docs/usage/features/agent-market" title="Assistant Market" />
|
57
|
+
|
58
|
+
<Card href="/docs/usage/features/pwa" title="Progressive Web App" />
|
59
|
+
|
60
|
+
<Card href="/docs/usage/features/mobile" title="Mobile Device Adaptation" />
|
61
|
+
|
62
|
+
<Card href="/docs/usage/features/theme" title="Custom Themes" />
|
63
|
+
</Cards>
|
@@ -14,10 +14,48 @@ tags:
|
|
14
14
|
|
15
15
|
# ✨ LobeChat 功能特性一览
|
16
16
|
|
17
|
-
|
17
|
+
## 2024 特性一览
|
18
18
|
|
19
|
-
<
|
19
|
+
<Image alt={'LobeChat 2024 特性一览'} src={'https://github.com/user-attachments/assets/2428a136-38bf-488c-8033-d9f261d67f3d'} />
|
20
20
|
|
21
|
-
|
21
|
+
<Cards>
|
22
|
+
<Card href="/docs/usage/features/cot" title="思维链 CoT" />
|
22
23
|
|
23
|
-
<
|
24
|
+
<Card href="/docs/usage/features/branching-conversations" title="分支对话" />
|
25
|
+
|
26
|
+
<Card href="/docs/usage/features/artifacts" title="白板 Artifacts" />
|
27
|
+
|
28
|
+
<Card href="/docs/usage/features/knowledge-base" title="文件上传 / 知识库" />
|
29
|
+
|
30
|
+
<Card href="/docs/usage/features/database" title="本地 / 云端数据存储" />
|
31
|
+
|
32
|
+
<Card href="/docs/usage/features/auth" title="身份验证系统 / 多用户管理支持" />
|
33
|
+
</Cards>
|
34
|
+
|
35
|
+
<br />
|
36
|
+
|
37
|
+
## 2023 特性一览
|
38
|
+
|
39
|
+
<Image alt={'LobeChat 2023 特性一览'} src={'https://github.com/user-attachments/assets/625cf558-4c32-4489-970a-2723ebadbc23'} />
|
40
|
+
|
41
|
+
<Cards>
|
42
|
+
<Card href="/docs/usage/features/multi-ai-providers" title="多模型服务商支持" />
|
43
|
+
|
44
|
+
<Card href="/docs/usage/features/local-llm" title="支持本地大语言模型" />
|
45
|
+
|
46
|
+
<Card href="/docs/usage/features/vision" title="模型视觉识别" />
|
47
|
+
|
48
|
+
<Card href="/docs/usage/features/tts" title="语音会话 TTS & STT" />
|
49
|
+
|
50
|
+
<Card href="/docs/usage/features/text-to-image" title="文生图 Text to Image" />
|
51
|
+
|
52
|
+
<Card href="/docs/usage/features/plugin-system" title="插件系统 Tool Calling" />
|
53
|
+
|
54
|
+
<Card href="/docs/usage/features/agent-market" title="助手市场 GPTs" />
|
55
|
+
|
56
|
+
<Card href="/docs/usage/features/pwa" title="渐进式网页应用 PWA" />
|
57
|
+
|
58
|
+
<Card href="/docs/usage/features/mobile" title="移动设备适配" />
|
59
|
+
|
60
|
+
<Card href="/docs/usage/features/theme" title="自定义主题" />
|
61
|
+
</Cards>
|
package/locales/ar/models.json
CHANGED
@@ -47,6 +47,12 @@
|
|
47
47
|
"Baichuan4-Turbo": {
|
48
48
|
"description": "النموذج الأول محليًا، يتفوق على النماذج الرئيسية الأجنبية في المهام الصينية مثل المعرفة الموسوعية، النصوص الطويلة، والإبداع. كما يتمتع بقدرات متعددة الوسائط الرائدة في الصناعة، ويظهر أداءً ممتازًا في العديد من معايير التقييم الموثوقة."
|
49
49
|
},
|
50
|
+
"DeepSeek-R1": {
|
51
|
+
"description": "نموذج LLM المتقدم والفعال، بارع في الاستدلال والرياضيات والبرمجة."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Llama-70B": {
|
54
|
+
"description": "DeepSeek R1 - النموذج الأكبر والأذكى في مجموعة DeepSeek - تم تقطيره إلى هيكل Llama 70B. بناءً على اختبارات الأداء والتقييمات البشرية، فإن هذا النموذج أكثر ذكاءً من Llama 70B الأصلي، خاصة في المهام التي تتطلب الدقة الرياضية والحقائق."
|
55
|
+
},
|
50
56
|
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
57
|
"description": "نموذج التقطير DeepSeek-R1 المستند إلى Qwen2.5-Math-1.5B، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
52
58
|
},
|
@@ -119,12 +125,36 @@
|
|
119
125
|
"InternVL2.5-26B": {
|
120
126
|
"description": "InternVL2.5-26B هو نموذج قوي للغة البصرية، يدعم المعالجة متعددة الوسائط للصورة والنص، قادر على التعرف بدقة على محتوى الصورة وتوليد أوصاف أو إجابات ذات صلة."
|
121
127
|
},
|
128
|
+
"Llama-3.2-11B-Vision-Instruct": {
|
129
|
+
"description": "قدرات استدلال الصور الممتازة على الصور عالية الدقة، مناسبة لتطبيقات الفهم البصري."
|
130
|
+
},
|
131
|
+
"Llama-3.2-90B-Vision-Instruct\t": {
|
132
|
+
"description": "قدرات استدلال الصور المتقدمة المناسبة لتطبيقات الوكلاء في الفهم البصري."
|
133
|
+
},
|
122
134
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
123
135
|
"description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
124
136
|
},
|
125
137
|
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
126
138
|
"description": "Qwen2.5-7B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
127
139
|
},
|
140
|
+
"Meta-Llama-3.1-405B-Instruct": {
|
141
|
+
"description": "نموذج نصي تم تعديله تحت الإشراف من Llama 3.1، تم تحسينه لحالات الحوار متعددة اللغات، حيث يتفوق في العديد من نماذج الدردشة مفتوحة ومغلقة المصدر المتاحة في المعايير الصناعية الشائعة."
|
142
|
+
},
|
143
|
+
"Meta-Llama-3.1-70B-Instruct": {
|
144
|
+
"description": "نموذج نصي تم تعديله تحت الإشراف من Llama 3.1، تم تحسينه لحالات الحوار متعددة اللغات، حيث يتفوق في العديد من نماذج الدردشة مفتوحة ومغلقة المصدر المتاحة في المعايير الصناعية الشائعة."
|
145
|
+
},
|
146
|
+
"Meta-Llama-3.1-8B-Instruct": {
|
147
|
+
"description": "نموذج نصي تم تعديله تحت الإشراف من Llama 3.1، تم تحسينه لحالات الحوار متعددة اللغات، حيث يتفوق في العديد من نماذج الدردشة مفتوحة ومغلقة المصدر المتاحة في المعايير الصناعية الشائعة."
|
148
|
+
},
|
149
|
+
"Meta-Llama-3.2-1B-Instruct": {
|
150
|
+
"description": "نموذج لغوي صغير متقدم وحديث، يتمتع بفهم اللغة وقدرات استدلال ممتازة وقدرة على توليد النصوص."
|
151
|
+
},
|
152
|
+
"Meta-Llama-3.2-3B-Instruct": {
|
153
|
+
"description": "نموذج لغوي صغير متقدم وحديث، يتمتع بفهم اللغة وقدرات استدلال ممتازة وقدرة على توليد النصوص."
|
154
|
+
},
|
155
|
+
"Meta-Llama-3.3-70B-Instruct": {
|
156
|
+
"description": "Llama 3.3 هو النموذج اللغوي مفتوح المصدر متعدد اللغات الأكثر تقدمًا في سلسلة Llama، حيث يقدم تجربة تنافس أداء نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسين فائدته وأمانه من خلال التعديل الدقيق تحت الإشراف (SFT) والتعلم المعزز من خلال ردود الفعل البشرية (RLHF). تم تحسين إصدار التعديل الخاص به ليكون مثاليًا للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة مفتوحة ومغلقة المصدر. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
157
|
+
},
|
128
158
|
"MiniMax-Text-01": {
|
129
159
|
"description": "في سلسلة نماذج MiniMax-01، قمنا بإجراء ابتكارات جريئة: تم تنفيذ آلية الانتباه الخطي على نطاق واسع لأول مرة، لم يعد هيكل Transformer التقليدي هو الخيار الوحيد. يصل عدد معلمات هذا النموذج إلى 456 مليار، مع تنشيط واحد يصل إلى 45.9 مليار. الأداء الشامل للنموذج يتساوى مع النماذج الرائدة في الخارج، بينما يمكنه معالجة سياقات تصل إلى 4 ملايين توكن، وهو 32 مرة من GPT-4o و20 مرة من Claude-3.5-Sonnet."
|
130
160
|
},
|
@@ -860,9 +890,6 @@
|
|
860
890
|
"gpt-3.5-turbo-1106": {
|
861
891
|
"description": "نموذج GPT 3.5 Turbo، مناسب لمجموعة متنوعة من مهام توليد وفهم النصوص، يشير حاليًا إلى gpt-3.5-turbo-0125."
|
862
892
|
},
|
863
|
-
"gpt-3.5-turbo-16k": {
|
864
|
-
"description": "نموذج GPT 3.5 Turbo 16k، نموذج توليد نصوص عالي السعة، مناسب للمهام المعقدة."
|
865
|
-
},
|
866
893
|
"gpt-3.5-turbo-instruct": {
|
867
894
|
"description": "نموذج GPT 3.5 Turbo، مناسب لمجموعة متنوعة من مهام توليد وفهم النصوص، يشير حاليًا إلى gpt-3.5-turbo-0125."
|
868
895
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"qwen": {
|
93
93
|
"description": "Qwen هو نموذج لغة ضخم تم تطويره ذاتيًا بواسطة Alibaba Cloud، يتمتع بقدرات قوية في فهم وتوليد اللغة الطبيعية. يمكنه الإجابة على مجموعة متنوعة من الأسئلة، وكتابة المحتوى، والتعبير عن الآراء، وكتابة الشيفرات، ويؤدي دورًا في مجالات متعددة."
|
94
94
|
},
|
95
|
+
"sambanova": {
|
96
|
+
"description": "تتيح لك سحابة SambaNova استخدام أفضل النماذج مفتوحة المصدر بسهولة، والاستمتاع بأسرع سرعة استدلال."
|
97
|
+
},
|
95
98
|
"sensenova": {
|
96
99
|
"description": "تقدم شركة SenseTime خدمات نماذج كبيرة شاملة وسهلة الاستخدام، مدعومة بقوة من البنية التحتية الكبيرة لشركة SenseTime."
|
97
100
|
},
|
@@ -47,6 +47,12 @@
|
|
47
47
|
"Baichuan4-Turbo": {
|
48
48
|
"description": "Моделът е лидер в страната по способности, надминавайки чуждестранните основни модели в задачи на китайски език, като знания, дълги текстове и генериране на творби. Също така притежава водещи в индустрията мултимодални способности и отлични резултати в множество авторитетни оценки."
|
49
49
|
},
|
50
|
+
"DeepSeek-R1": {
|
51
|
+
"description": "Най-напредналият ефективен LLM, специализиран в разсъждения, математика и програмиране."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Llama-70B": {
|
54
|
+
"description": "DeepSeek R1 - по-голям и по-умен модел в комплекта DeepSeek - е дестилиран в архитектурата Llama 70B. На базата на бенчмаркове и човешка оценка, този модел е по-умен от оригиналния Llama 70B, особено в задачи, изискващи математическа и фактическа точност."
|
55
|
+
},
|
50
56
|
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
57
|
"description": "DeepSeek-R1 дестилиран модел, базиран на Qwen2.5-Math-1.5B, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
|
52
58
|
},
|
@@ -119,12 +125,36 @@
|
|
119
125
|
"InternVL2.5-26B": {
|
120
126
|
"description": "InternVL2.5-26B е мощен визуален езиков модел, който поддържа многомодално обработване на изображения и текст, способен да разпознава точно съдържанието на изображения и да генерира свързани описания или отговори."
|
121
127
|
},
|
128
|
+
"Llama-3.2-11B-Vision-Instruct": {
|
129
|
+
"description": "Изключителни способности за визуално разсъждение върху изображения с висока резолюция, подходящи за приложения за визуално разбиране."
|
130
|
+
},
|
131
|
+
"Llama-3.2-90B-Vision-Instruct\t": {
|
132
|
+
"description": "Напреднали способности за визуално разсъждение, подходящи за приложения на агенти за визуално разбиране."
|
133
|
+
},
|
122
134
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
123
135
|
"description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
|
124
136
|
},
|
125
137
|
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
126
138
|
"description": "Qwen2.5-7B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 7B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
|
127
139
|
},
|
140
|
+
"Meta-Llama-3.1-405B-Instruct": {
|
141
|
+
"description": "Текстов модел с оптимизация за инструкции на Llama 3.1, проектиран за многоезични диалогови случаи, който показва отлични резултати на много налични отворени и затворени чат модели на общи индустриални бенчмаркове."
|
142
|
+
},
|
143
|
+
"Meta-Llama-3.1-70B-Instruct": {
|
144
|
+
"description": "Текстов модел с оптимизация за инструкции на Llama 3.1, проектиран за многоезични диалогови случаи, който показва отлични резултати на много налични отворени и затворени чат модели на общи индустриални бенчмаркове."
|
145
|
+
},
|
146
|
+
"Meta-Llama-3.1-8B-Instruct": {
|
147
|
+
"description": "Текстов модел с оптимизация за инструкции на Llama 3.1, проектиран за многоезични диалогови случаи, който показва отлични резултати на много налични отворени и затворени чат модели на общи индустриални бенчмаркове."
|
148
|
+
},
|
149
|
+
"Meta-Llama-3.2-1B-Instruct": {
|
150
|
+
"description": "Напреднал, водещ малък езиков модел с разбиране на езика, изключителни способности за разсъждение и генериране на текст."
|
151
|
+
},
|
152
|
+
"Meta-Llama-3.2-3B-Instruct": {
|
153
|
+
"description": "Напреднал, водещ малък езиков модел с разбиране на езика, изключителни способности за разсъждение и генериране на текст."
|
154
|
+
},
|
155
|
+
"Meta-Llama-3.3-70B-Instruct": {
|
156
|
+
"description": "Llama 3.3 е най-напредналият многоезичен отворен голям езиков модел от серията Llama, който предлага производителност, сравнима с 405B моделите, на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия с оптимизация за инструкции е специално проектирана за многоезични диалози и показва по-добри резултати от много от наличните отворени и затворени чат модели на множество индустриални бенчмаркове. Краен срок за знанията е декември 2023 г."
|
157
|
+
},
|
128
158
|
"MiniMax-Text-01": {
|
129
159
|
"description": "В серията модели MiniMax-01 направихме смели иновации: за първи път реализирахме мащабно линейно внимание, традиционната архитектура на Transformer вече не е единственият избор. Параметрите на този модел достигат 4560 милиарда, с единична активация от 45.9 милиарда. Общата производителност на модела е на нивото на водещите модели в чужбина, като същевременно ефективно обработва глобалния контекст от 4 милиона токена, което е 32 пъти повече от GPT-4o и 20 пъти повече от Claude-3.5-Sonnet."
|
130
160
|
},
|
@@ -860,9 +890,6 @@
|
|
860
890
|
"gpt-3.5-turbo-1106": {
|
861
891
|
"description": "GPT 3.5 Turbo, подходящ за различни задачи по генериране и разбиране на текст, в момента сочи към gpt-3.5-turbo-0125."
|
862
892
|
},
|
863
|
-
"gpt-3.5-turbo-16k": {
|
864
|
-
"description": "GPT 3.5 Turbo 16k, модел за генериране на текст с висока капацитет, подходящ за сложни задачи."
|
865
|
-
},
|
866
893
|
"gpt-3.5-turbo-instruct": {
|
867
894
|
"description": "GPT 3.5 Turbo, подходящ за различни задачи по генериране и разбиране на текст, в момента сочи към gpt-3.5-turbo-0125."
|
868
895
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"qwen": {
|
93
93
|
"description": "Qwen е самостоятелно разработен свръхголям езиков модел на Alibaba Cloud, с мощни способности за разбиране и генериране на естествен език. Може да отговаря на различни въпроси, да създава текстово съдържание, да изразява мнения и да пише код, играейки роля в множество области."
|
94
94
|
},
|
95
|
+
"sambanova": {
|
96
|
+
"description": "SambaNova Cloud позволява на разработчиците лесно да използват най-добрите отворени модели и да се наслаждават на най-бързата скорост на извеждане."
|
97
|
+
},
|
95
98
|
"sensenova": {
|
96
99
|
"description": "SenseNova, с мощната основа на SenseTime, предлага ефективни и лесни за използване услуги за големи модели с пълен стек."
|
97
100
|
},
|
@@ -47,6 +47,12 @@
|
|
47
47
|
"Baichuan4-Turbo": {
|
48
48
|
"description": "Das Modell hat die höchste Leistungsfähigkeit im Inland und übertrifft ausländische Mainstream-Modelle in Aufgaben wie Wissensdatenbanken, langen Texten und kreativen Generierungen auf Chinesisch. Es verfügt auch über branchenführende multimodale Fähigkeiten und zeigt in mehreren anerkannten Bewertungsbenchmarks hervorragende Leistungen."
|
49
49
|
},
|
50
|
+
"DeepSeek-R1": {
|
51
|
+
"description": "Ein hochmodernes, effizientes LLM, das sich auf Schlussfolgerungen, Mathematik und Programmierung spezialisiert hat."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Llama-70B": {
|
54
|
+
"description": "DeepSeek R1 – das größere und intelligentere Modell im DeepSeek-Paket – wurde in die Llama 70B-Architektur destilliert. Basierend auf Benchmark-Tests und menschlicher Bewertung ist dieses Modell intelligenter als das ursprüngliche Llama 70B, insbesondere bei Aufgaben, die mathematische und faktische Genauigkeit erfordern."
|
55
|
+
},
|
50
56
|
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
57
|
"description": "Das DeepSeek-R1-Distill-Modell basiert auf Qwen2.5-Math-1.5B und optimiert die Inferenzleistung durch verstärkendes Lernen und Kaltstartdaten. Das Open-Source-Modell setzt neue Maßstäbe für Multitasking."
|
52
58
|
},
|
@@ -119,12 +125,36 @@
|
|
119
125
|
"InternVL2.5-26B": {
|
120
126
|
"description": "InternVL2.5-26B ist ein leistungsstarkes visuelles Sprachmodell, das multimodale Verarbeitung von Bildern und Text unterstützt und in der Lage ist, Bildinhalte präzise zu erkennen und relevante Beschreibungen oder Antworten zu generieren."
|
121
127
|
},
|
128
|
+
"Llama-3.2-11B-Vision-Instruct": {
|
129
|
+
"description": "Hervorragende Bildschlussfolgerungsfähigkeiten auf hochauflösenden Bildern, geeignet für Anwendungen im Bereich der visuellen Verständigung."
|
130
|
+
},
|
131
|
+
"Llama-3.2-90B-Vision-Instruct\t": {
|
132
|
+
"description": "Fortgeschrittene Bildschlussfolgerungsfähigkeiten für Anwendungen im Bereich der visuellen Verständigung."
|
133
|
+
},
|
122
134
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
123
135
|
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
124
136
|
},
|
125
137
|
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
126
138
|
"description": "Qwen2.5-7B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 7B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
127
139
|
},
|
140
|
+
"Meta-Llama-3.1-405B-Instruct": {
|
141
|
+
"description": "Das auf Anweisungen optimierte Textmodell Llama 3.1 wurde für mehrsprachige Dialoganwendungen optimiert und zeigt in vielen verfügbaren Open-Source- und geschlossenen Chat-Modellen in gängigen Branchenbenchmarks hervorragende Leistungen."
|
142
|
+
},
|
143
|
+
"Meta-Llama-3.1-70B-Instruct": {
|
144
|
+
"description": "Das auf Anweisungen optimierte Textmodell Llama 3.1 wurde für mehrsprachige Dialoganwendungen optimiert und zeigt in vielen verfügbaren Open-Source- und geschlossenen Chat-Modellen in gängigen Branchenbenchmarks hervorragende Leistungen."
|
145
|
+
},
|
146
|
+
"Meta-Llama-3.1-8B-Instruct": {
|
147
|
+
"description": "Das auf Anweisungen optimierte Textmodell Llama 3.1 wurde für mehrsprachige Dialoganwendungen optimiert und zeigt in vielen verfügbaren Open-Source- und geschlossenen Chat-Modellen in gängigen Branchenbenchmarks hervorragende Leistungen."
|
148
|
+
},
|
149
|
+
"Meta-Llama-3.2-1B-Instruct": {
|
150
|
+
"description": "Ein fortschrittliches, hochmodernes kleines Sprachmodell mit Sprachverständnis, hervorragenden Schlussfolgerungsfähigkeiten und Textgenerierungsfähigkeiten."
|
151
|
+
},
|
152
|
+
"Meta-Llama-3.2-3B-Instruct": {
|
153
|
+
"description": "Ein fortschrittliches, hochmodernes kleines Sprachmodell mit Sprachverständnis, hervorragenden Schlussfolgerungsfähigkeiten und Textgenerierungsfähigkeiten."
|
154
|
+
},
|
155
|
+
"Meta-Llama-3.3-70B-Instruct": {
|
156
|
+
"description": "Llama 3.3 ist das fortschrittlichste mehrsprachige Open-Source-Sprachmodell der Llama-Serie, das eine Leistung bietet, die mit einem 405B-Modell vergleichbar ist, und das zu extrem niedrigen Kosten. Es basiert auf der Transformer-Architektur und wurde durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF) in Bezug auf Nützlichkeit und Sicherheit verbessert. Die auf Anweisungen optimierte Version ist speziell für mehrsprachige Dialoge optimiert und übertrifft in mehreren Branchenbenchmarks viele verfügbare Open-Source- und geschlossene Chat-Modelle. Das Wissensdatum endet im Dezember 2023."
|
157
|
+
},
|
128
158
|
"MiniMax-Text-01": {
|
129
159
|
"description": "In der MiniMax-01-Serie haben wir mutige Innovationen vorgenommen: Erstmals wurde die lineare Aufmerksamkeitsmechanismus in großem Maßstab implementiert, sodass die traditionelle Transformer-Architektur nicht mehr die einzige Wahl ist. Dieses Modell hat eine Parameteranzahl von bis zu 456 Milliarden, wobei eine Aktivierung 45,9 Milliarden beträgt. Die Gesamtleistung des Modells kann mit den besten Modellen im Ausland mithalten und kann gleichzeitig effizient den weltweit längsten Kontext von 4 Millionen Tokens verarbeiten, was 32-mal so viel wie GPT-4o und 20-mal so viel wie Claude-3.5-Sonnet ist."
|
130
160
|
},
|
@@ -860,9 +890,6 @@
|
|
860
890
|
"gpt-3.5-turbo-1106": {
|
861
891
|
"description": "GPT 3.5 Turbo eignet sich für eine Vielzahl von Textgenerierungs- und Verständnisaufgaben. Derzeit verweist es auf gpt-3.5-turbo-0125."
|
862
892
|
},
|
863
|
-
"gpt-3.5-turbo-16k": {
|
864
|
-
"description": "GPT 3.5 Turbo 16k, ein leistungsstarkes Textgenerierungsmodell, geeignet für komplexe Aufgaben."
|
865
|
-
},
|
866
893
|
"gpt-3.5-turbo-instruct": {
|
867
894
|
"description": "GPT 3.5 Turbo eignet sich für eine Vielzahl von Textgenerierungs- und Verständnisaufgaben. Derzeit verweist es auf gpt-3.5-turbo-0125."
|
868
895
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"qwen": {
|
93
93
|
"description": "Tongyi Qianwen ist ein von Alibaba Cloud selbst entwickeltes, groß angelegtes Sprachmodell mit starken Fähigkeiten zur Verarbeitung und Generierung natürlicher Sprache. Es kann eine Vielzahl von Fragen beantworten, Texte erstellen, Meinungen äußern und Code schreiben und spielt in mehreren Bereichen eine Rolle."
|
94
94
|
},
|
95
|
+
"sambanova": {
|
96
|
+
"description": "SambaNova Cloud ermöglicht es Entwicklern, die besten Open-Source-Modelle einfach zu nutzen und von der schnellsten Inferenzgeschwindigkeit zu profitieren."
|
97
|
+
},
|
95
98
|
"sensenova": {
|
96
99
|
"description": "SenseTime bietet mit der starken Basisunterstützung von SenseTimes großem Gerät effiziente und benutzerfreundliche Full-Stack-Modelldienste."
|
97
100
|
},
|
@@ -47,6 +47,12 @@
|
|
47
47
|
"Baichuan4-Turbo": {
|
48
48
|
"description": "The leading model in the country, surpassing mainstream foreign models in Chinese tasks such as knowledge encyclopedias, long texts, and creative generation. It also possesses industry-leading multimodal capabilities, excelling in multiple authoritative evaluation benchmarks."
|
49
49
|
},
|
50
|
+
"DeepSeek-R1": {
|
51
|
+
"description": "A state-of-the-art efficient LLM, skilled in reasoning, mathematics, and programming."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Llama-70B": {
|
54
|
+
"description": "DeepSeek R1— the larger and smarter model in the DeepSeek suite— distilled into the Llama 70B architecture. Based on benchmark testing and human evaluation, this model is smarter than the original Llama 70B, particularly excelling in tasks requiring mathematical and factual accuracy."
|
55
|
+
},
|
50
56
|
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
57
|
"description": "The DeepSeek-R1 distillation model based on Qwen2.5-Math-1.5B optimizes inference performance through reinforcement learning and cold-start data, refreshing the benchmark for open-source models across multiple tasks."
|
52
58
|
},
|
@@ -119,12 +125,36 @@
|
|
119
125
|
"InternVL2.5-26B": {
|
120
126
|
"description": "InternVL2.5-26B is a powerful visual language model that supports multimodal processing of images and text, capable of accurately recognizing image content and generating relevant descriptions or answers."
|
121
127
|
},
|
128
|
+
"Llama-3.2-11B-Vision-Instruct": {
|
129
|
+
"description": "Exhibits outstanding image reasoning capabilities on high-resolution images, suitable for visual understanding applications."
|
130
|
+
},
|
131
|
+
"Llama-3.2-90B-Vision-Instruct\t": {
|
132
|
+
"description": "Advanced image reasoning capabilities suitable for visual understanding agent applications."
|
133
|
+
},
|
122
134
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
123
135
|
"description": "Qwen2.5-72B-Instruct is one of the latest large language models released by Alibaba Cloud. This 72B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
124
136
|
},
|
125
137
|
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
126
138
|
"description": "Qwen2.5-7B-Instruct is one of the latest large language models released by Alibaba Cloud. This 7B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
127
139
|
},
|
140
|
+
"Meta-Llama-3.1-405B-Instruct": {
|
141
|
+
"description": "Llama 3.1 instruction-tuned text model optimized for multilingual dialogue use cases, performing excellently on common industry benchmarks among many available open-source and closed chat models."
|
142
|
+
},
|
143
|
+
"Meta-Llama-3.1-70B-Instruct": {
|
144
|
+
"description": "Llama 3.1 instruction-tuned text model optimized for multilingual dialogue use cases, performing excellently on common industry benchmarks among many available open-source and closed chat models."
|
145
|
+
},
|
146
|
+
"Meta-Llama-3.1-8B-Instruct": {
|
147
|
+
"description": "Llama 3.1 instruction-tuned text model optimized for multilingual dialogue use cases, performing excellently on common industry benchmarks among many available open-source and closed chat models."
|
148
|
+
},
|
149
|
+
"Meta-Llama-3.2-1B-Instruct": {
|
150
|
+
"description": "An advanced cutting-edge small language model with language understanding, excellent reasoning capabilities, and text generation abilities."
|
151
|
+
},
|
152
|
+
"Meta-Llama-3.2-3B-Instruct": {
|
153
|
+
"description": "An advanced cutting-edge small language model with language understanding, excellent reasoning capabilities, and text generation abilities."
|
154
|
+
},
|
155
|
+
"Meta-Llama-3.3-70B-Instruct": {
|
156
|
+
"description": "Llama 3.3 is the most advanced multilingual open-source large language model in the Llama series, offering performance comparable to a 405B model at a very low cost. Based on the Transformer architecture, it enhances usability and safety through supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF). Its instruction-tuned version is optimized for multilingual dialogue and outperforms many open-source and closed chat models on various industry benchmarks. Knowledge cutoff date is December 2023."
|
157
|
+
},
|
128
158
|
"MiniMax-Text-01": {
|
129
159
|
"description": "In the MiniMax-01 series of models, we have made bold innovations: for the first time, we have implemented a linear attention mechanism on a large scale, making the traditional Transformer architecture no longer the only option. This model has a parameter count of up to 456 billion, with a single activation of 45.9 billion. Its overall performance rivals that of top overseas models while efficiently handling the world's longest context of 4 million tokens, which is 32 times that of GPT-4o and 20 times that of Claude-3.5-Sonnet."
|
130
160
|
},
|
@@ -860,9 +890,6 @@
|
|
860
890
|
"gpt-3.5-turbo-1106": {
|
861
891
|
"description": "GPT 3.5 Turbo is suitable for various text generation and understanding tasks. Currently points to gpt-3.5-turbo-0125."
|
862
892
|
},
|
863
|
-
"gpt-3.5-turbo-16k": {
|
864
|
-
"description": "GPT 3.5 Turbo 16k, a high-capacity text generation model suitable for complex tasks."
|
865
|
-
},
|
866
893
|
"gpt-3.5-turbo-instruct": {
|
867
894
|
"description": "GPT 3.5 Turbo is suitable for various text generation and understanding tasks. Currently points to gpt-3.5-turbo-0125."
|
868
895
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"qwen": {
|
93
93
|
"description": "Tongyi Qianwen is a large-scale language model independently developed by Alibaba Cloud, featuring strong natural language understanding and generation capabilities. It can answer various questions, create written content, express opinions, and write code, playing a role in multiple fields."
|
94
94
|
},
|
95
|
+
"sambanova": {
|
96
|
+
"description": "SambaNova Cloud allows developers to easily utilize the best open-source models and enjoy the fastest inference speeds."
|
97
|
+
},
|
95
98
|
"sensenova": {
|
96
99
|
"description": "SenseNova, backed by SenseTime's robust infrastructure, offers efficient and user-friendly full-stack large model services."
|
97
100
|
},
|
@@ -47,6 +47,12 @@
|
|
47
47
|
"Baichuan4-Turbo": {
|
48
48
|
"description": "El modelo más potente del país, superando a los modelos principales extranjeros en tareas en chino como enciclopedias, textos largos y creación generativa. También cuenta con capacidades multimodales líderes en la industria, destacándose en múltiples evaluaciones de referencia."
|
49
49
|
},
|
50
|
+
"DeepSeek-R1": {
|
51
|
+
"description": "LLM eficiente de última generación, experto en razonamiento, matemáticas y programación."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Llama-70B": {
|
54
|
+
"description": "DeepSeek R1, el modelo más grande e inteligente del conjunto DeepSeek, ha sido destilado en la arquitectura Llama 70B. Basado en pruebas de referencia y evaluaciones humanas, este modelo es más inteligente que el Llama 70B original, destacándose especialmente en tareas que requieren precisión matemática y factual."
|
55
|
+
},
|
50
56
|
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
57
|
"description": "El modelo de destilación DeepSeek-R1 basado en Qwen2.5-Math-1.5B optimiza el rendimiento de inferencia mediante aprendizaje por refuerzo y datos de arranque en frío, actualizando el estándar de múltiples tareas en modelos de código abierto."
|
52
58
|
},
|
@@ -119,12 +125,36 @@
|
|
119
125
|
"InternVL2.5-26B": {
|
120
126
|
"description": "InternVL2.5-26B es un potente modelo de lenguaje visual, que admite el procesamiento multimodal de imágenes y texto, capaz de identificar con precisión el contenido de las imágenes y generar descripciones o respuestas relacionadas."
|
121
127
|
},
|
128
|
+
"Llama-3.2-11B-Vision-Instruct": {
|
129
|
+
"description": "Capacidad de razonamiento de imágenes excepcional en imágenes de alta resolución, adecuada para aplicaciones de comprensión visual."
|
130
|
+
},
|
131
|
+
"Llama-3.2-90B-Vision-Instruct\t": {
|
132
|
+
"description": "Capacidad avanzada de razonamiento de imágenes para aplicaciones de agentes de comprensión visual."
|
133
|
+
},
|
122
134
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
123
135
|
"description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
|
124
136
|
},
|
125
137
|
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
126
138
|
"description": "Qwen2.5-7B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 7B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
|
127
139
|
},
|
140
|
+
"Meta-Llama-3.1-405B-Instruct": {
|
141
|
+
"description": "Modelo de texto ajustado por instrucciones de Llama 3.1, optimizado para casos de uso de diálogos multilingües, que se destaca en muchos modelos de chat de código abierto y cerrados en benchmarks de la industria comunes."
|
142
|
+
},
|
143
|
+
"Meta-Llama-3.1-70B-Instruct": {
|
144
|
+
"description": "Modelo de texto ajustado por instrucciones de Llama 3.1, optimizado para casos de uso de diálogos multilingües, que se destaca en muchos modelos de chat de código abierto y cerrados en benchmarks de la industria comunes."
|
145
|
+
},
|
146
|
+
"Meta-Llama-3.1-8B-Instruct": {
|
147
|
+
"description": "Modelo de texto ajustado por instrucciones de Llama 3.1, optimizado para casos de uso de diálogos multilingües, que se destaca en muchos modelos de chat de código abierto y cerrados en benchmarks de la industria comunes."
|
148
|
+
},
|
149
|
+
"Meta-Llama-3.2-1B-Instruct": {
|
150
|
+
"description": "Modelo de lenguaje pequeño de última generación, con comprensión del lenguaje, excelente capacidad de razonamiento y generación de texto."
|
151
|
+
},
|
152
|
+
"Meta-Llama-3.2-3B-Instruct": {
|
153
|
+
"description": "Modelo de lenguaje pequeño de última generación, con comprensión del lenguaje, excelente capacidad de razonamiento y generación de texto."
|
154
|
+
},
|
155
|
+
"Meta-Llama-3.3-70B-Instruct": {
|
156
|
+
"description": "Llama 3.3 es el modelo de lenguaje de código abierto multilingüe más avanzado de la serie Llama, que ofrece un rendimiento comparable al modelo de 405B a un costo extremadamente bajo. Basado en la estructura Transformer, y mejorado en utilidad y seguridad a través de ajuste fino supervisado (SFT) y aprendizaje por refuerzo con retroalimentación humana (RLHF). Su versión ajustada por instrucciones está optimizada para diálogos multilingües, superando a muchos modelos de chat de código abierto y cerrados en múltiples benchmarks de la industria. La fecha límite de conocimiento es diciembre de 2023."
|
157
|
+
},
|
128
158
|
"MiniMax-Text-01": {
|
129
159
|
"description": "En la serie de modelos MiniMax-01, hemos realizado una innovación audaz: la implementación a gran escala del mecanismo de atención lineal, donde la arquitectura Transformer tradicional ya no es la única opción. Este modelo tiene una cantidad de parámetros de hasta 456 mil millones, con 45.9 mil millones por activación. El rendimiento general del modelo es comparable a los mejores modelos internacionales, y puede manejar de manera eficiente contextos de hasta 4 millones de tokens, que es 32 veces más que GPT-4o y 20 veces más que Claude-3.5-Sonnet."
|
130
160
|
},
|
@@ -860,9 +890,6 @@
|
|
860
890
|
"gpt-3.5-turbo-1106": {
|
861
891
|
"description": "GPT 3.5 Turbo, adecuado para diversas tareas de generación y comprensión de texto, actualmente apunta a gpt-3.5-turbo-0125."
|
862
892
|
},
|
863
|
-
"gpt-3.5-turbo-16k": {
|
864
|
-
"description": "GPT 3.5 Turbo 16k, un modelo de generación de texto de alta capacidad, adecuado para tareas complejas."
|
865
|
-
},
|
866
893
|
"gpt-3.5-turbo-instruct": {
|
867
894
|
"description": "GPT 3.5 Turbo, adecuado para diversas tareas de generación y comprensión de texto, actualmente apunta a gpt-3.5-turbo-0125."
|
868
895
|
},
|
@@ -92,6 +92,9 @@
|
|
92
92
|
"qwen": {
|
93
93
|
"description": "Tongyi Qianwen es un modelo de lenguaje de gran escala desarrollado de forma independiente por Alibaba Cloud, con potentes capacidades de comprensión y generación de lenguaje natural. Puede responder a diversas preguntas, crear contenido escrito, expresar opiniones y redactar código, desempeñando un papel en múltiples campos."
|
94
94
|
},
|
95
|
+
"sambanova": {
|
96
|
+
"description": "SambaNova Cloud permite a los desarrolladores utilizar fácilmente los mejores modelos de código abierto y disfrutar de la velocidad de inferencia más rápida."
|
97
|
+
},
|
95
98
|
"sensenova": {
|
96
99
|
"description": "SenseTime ofrece servicios de modelos grandes de pila completa, aprovechando el sólido soporte de la gran infraestructura de SenseTime."
|
97
100
|
},
|