@lobehub/chat 1.55.2 → 1.55.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -2,6 +2,31 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 1.55.3](https://github.com/lobehub/lobe-chat/compare/v1.55.2...v1.55.3)
6
+
7
+ <sup>Released on **2025-02-15**</sup>
8
+
9
+ #### 💄 Styles
10
+
11
+ - **misc**: Add deepseek r1 distill models for qwen series.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Styles
19
+
20
+ - **misc**: Add deepseek r1 distill models for qwen series, closes [#5850](https://github.com/lobehub/lobe-chat/issues/5850) ([4a96a05](https://github.com/lobehub/lobe-chat/commit/4a96a05))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
5
30
  ### [Version 1.55.2](https://github.com/lobehub/lobe-chat/compare/v1.55.1...v1.55.2)
6
31
 
7
32
  <sup>Released on **2025-02-15**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,13 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Add deepseek r1 distill models for qwen series."
6
+ ]
7
+ },
8
+ "date": "2025-02-15",
9
+ "version": "1.55.3"
10
+ },
2
11
  {
3
12
  "children": {
4
13
  "fixes": [
@@ -315,8 +315,7 @@ The script supports the following deployment modes; please choose the appropriat
315
315
 
316
316
  ## Custom Deployment
317
317
 
318
- This section mainly introduces the configurations that need to be modified to customize the deployment of the LobeChat service in different network environments.
319
- Before starting, you can download the [Docker Compose configuration file](https://raw.githubusercontent.com/lobehub/lobe-chat/HEAD/docker-compose/local/docker-compose.yml) and the [environment variable configuration file](https://raw.githubusercontent.com/lobehub/lobe-chat/HEAD/docker-compose/local/.env.en_US.example).
318
+ This section mainly introduces the configurations that need to be modified to customize the deployment of the LobeChat service in different network environments. Before starting, you can download the [Docker Compose configuration file](https://raw.githubusercontent.com/lobehub/lobe-chat/HEAD/docker-compose/local/docker-compose.yml) and the [environment variable configuration file](https://raw.githubusercontent.com/lobehub/lobe-chat/refs/heads/main/docker-compose/local/.env.example).
320
319
 
321
320
  ```sh
322
321
  curl -O https://raw.githubusercontent.com/lobehub/lobe-chat/HEAD/docker-compose/local/docker-compose.yml
@@ -696,7 +695,6 @@ MINIO_ROOT_PASSWORD=Crj1570768
696
695
  MINIO_LOBE_BUCKET=lobe
697
696
  S3_ACCESS_KEY_ID=dB6Uq9CYZPdWSZouPyEd
698
697
  S3_SECRET_ACCESS_KEY=aPBW8CVULkh8bw1GatlT0GjLihcXHLNwRml4pieS
699
-
700
698
  ```
701
699
 
702
700
  - `docker-compose.yml`
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.55.2",
3
+ "version": "1.55.3",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -376,7 +376,7 @@ const qwenChatModels: AIChatModelCard[] = [
376
376
  vision: true,
377
377
  },
378
378
  contextWindowTokens: 131_072,
379
- description:
379
+ description:
380
380
  '指令跟随、数学、解题、代码整体提升,万物识别能力提升,支持多样格式直接精准定位视觉元素,支持对长视频文件(最长10分钟)进行理解和秒级别的事件时刻定位,能理解时间先后和快慢,基于解析和定位能力支持操控OS或Mobile的Agent,关键信息抽取能力和Json格式输出能力强,此版本为72B版本,本系列能力最强的版本。',
381
381
  displayName: 'Qwen2.5 VL 72B',
382
382
  id: 'qwen2.5-vl-72b-instruct',
@@ -394,7 +394,7 @@ const qwenChatModels: AIChatModelCard[] = [
394
394
  vision: true,
395
395
  },
396
396
  contextWindowTokens: 131_072,
397
- description:
397
+ description:
398
398
  '指令跟随、数学、解题、代码整体提升,万物识别能力提升,支持多样格式直接精准定位视觉元素,支持对长视频文件(最长10分钟)进行理解和秒级别的事件时刻定位,能理解时间先后和快慢,基于解析和定位能力支持操控OS或Mobile的Agent,关键信息抽取能力和Json格式输出能力强,此版本为72B版本,本系列能力最强的版本。',
399
399
  displayName: 'Qwen2.5 VL 7B',
400
400
  id: 'qwen2.5-vl-7b-instruct',
@@ -412,8 +412,8 @@ const qwenChatModels: AIChatModelCard[] = [
412
412
  reasoning: true,
413
413
  },
414
414
  contextWindowTokens: 131_072,
415
- description:
416
- 'DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力,尤其在数学、代码、自然语言推理等任务上。',
415
+ description:
416
+ 'DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能较高,能力较强。',
417
417
  displayName: 'DeepSeek R1',
418
418
  enabled: true,
419
419
  id: 'deepseek-r1',
@@ -431,7 +431,7 @@ const qwenChatModels: AIChatModelCard[] = [
431
431
  functionCall: true,
432
432
  },
433
433
  contextWindowTokens: 131_072,
434
- description:
434
+ description:
435
435
  'DeepSeek-V3 为自研 MoE 模型,671B 参数,激活 37B,在 14.8T token 上进行了预训练,在长文本、代码、数学、百科、中文能力上表现优秀。',
436
436
  displayName: 'DeepSeek V3',
437
437
  enabled: true,
@@ -450,8 +450,8 @@ const qwenChatModels: AIChatModelCard[] = [
450
450
  reasoning: true,
451
451
  },
452
452
  contextWindowTokens: 131_072,
453
- description:
454
- 'DeepSeek-R1-Distill 系列模型通过知识蒸馏技术,将 DeepSeek-R1 生成的样本对 Qwen、Llama 等开源模型进行微调后得到。',
453
+ description:
454
+ 'DeepSeek-R1-Distill-Qwen-1.5B 是一个基于 Qwen2.5-Math-1.5B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。',
455
455
  displayName: 'DeepSeek R1 Distill Qwen 1.5B',
456
456
  id: 'deepseek-r1-distill-qwen-1.5b',
457
457
  maxOutput: 8192,
@@ -467,7 +467,7 @@ const qwenChatModels: AIChatModelCard[] = [
467
467
  reasoning: true
468
468
  },
469
469
  contextWindowTokens: 131_072,
470
- description: "DeepSeek-R1-Distill 系列模型通过知识蒸馏技术,将 DeepSeek-R1 生成的样本对 Qwen、Llama 等开源模型进行微调后得到。",
470
+ description: "DeepSeek-R1-Distill-Qwen-7B 是一个基于 Qwen2.5-Math-7B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。",
471
471
  displayName: "DeepSeek R1 Distill Qwen 7B",
472
472
  id: "deepseek-r1-distill-qwen-7b",
473
473
  maxOutput: 8192,
@@ -483,9 +483,9 @@ const qwenChatModels: AIChatModelCard[] = [
483
483
  reasoning: true
484
484
  },
485
485
  contextWindowTokens: 131_072,
486
- description: "DeepSeek-R1-Distill 系列模型通过知识蒸馏技术,将 DeepSeek-R1 生成的样本对 Qwen、Llama 等开源模型进行微调后得到。",
487
- displayName: "DeepSeek R1 Distill Llama 8B",
488
- id: "deepseek-r1-distill-llama-8b",
486
+ description: "DeepSeek-R1-Distill-Qwen-14B 是一个基于 Qwen2.5-14B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。",
487
+ displayName: "DeepSeek R1 Distill Qwen 14B",
488
+ id: "deepseek-r1-distill-qwen-14b",
489
489
  maxOutput: 8192,
490
490
  pricing: {
491
491
  currency: "CNY",
@@ -499,9 +499,9 @@ const qwenChatModels: AIChatModelCard[] = [
499
499
  reasoning: true
500
500
  },
501
501
  contextWindowTokens: 131_072,
502
- description: "DeepSeek-R1-Distill 系列模型通过知识蒸馏技术,将 DeepSeek-R1 生成的样本对 Qwen、Llama 等开源模型进行微调后得到。",
503
- displayName: "DeepSeek R1 Distill Qwen 14B",
504
- id: "deepseek-r1-distill-qwen-14b",
502
+ description: "DeepSeek-R1-Distill-Qwen-32B 是一个基于 Qwen2.5-32B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。",
503
+ displayName: "DeepSeek R1 Distill Qwen 32B",
504
+ id: "deepseek-r1-distill-qwen-32b",
505
505
  maxOutput: 8192,
506
506
  pricing: {
507
507
  currency: "CNY",
@@ -515,9 +515,9 @@ const qwenChatModels: AIChatModelCard[] = [
515
515
  reasoning: true
516
516
  },
517
517
  contextWindowTokens: 131_072,
518
- description: "DeepSeek-R1-Distill 系列模型通过知识蒸馏技术,将 DeepSeek-R1 生成的样本对 Qwen、Llama 等开源模型进行微调后得到。",
519
- displayName: "DeepSeek R1 Distill Qwen 32B",
520
- id: "deepseek-r1-distill-qwen-32b",
518
+ description: "DeepSeek-R1-Distill-Llama-8B 是一个基于 Llama-3.1-8B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。",
519
+ displayName: "DeepSeek R1 Distill Llama 8B",
520
+ id: "deepseek-r1-distill-llama-8b",
521
521
  maxOutput: 8192,
522
522
  pricing: {
523
523
  currency: "CNY",
@@ -531,7 +531,7 @@ const qwenChatModels: AIChatModelCard[] = [
531
531
  reasoning: true
532
532
  },
533
533
  contextWindowTokens: 131_072,
534
- description: "DeepSeek-R1-Distill 系列模型通过知识蒸馏技术,将 DeepSeek-R1 生成的样本对 Qwen、Llama 等开源模型进行微调后得到。",
534
+ description: "DeepSeek-R1-Distill-Llama-70B 是一个基于 Llama-3.3-70B-Instruct 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。",
535
535
  displayName: "DeepSeek R1 Distill Llama 70B",
536
536
  id: "deepseek-r1-distill-llama-70b",
537
537
  maxOutput: 8192,
@@ -294,7 +294,7 @@ const Qwen: ModelProviderCard = {
294
294
  },
295
295
  {
296
296
  contextWindowTokens: 128_000,
297
- description:
297
+ description:
298
298
  '指令跟随、数学、解题、代码整体提升,万物识别能力提升,支持多样格式直接精准定位视觉元素,支持对长视频文件(最长10分钟)进行理解和秒级别的事件时刻定位,能理解时间先后和快慢,基于解析和定位能力支持操控OS或Mobile的Agent,关键信息抽取能力和Json格式输出能力强,此版本为72B版本,本系列能力最强的版本。',
299
299
  displayName: 'Qwen2.5 VL 72B',
300
300
  id: 'qwen2.5-vl-72b-instruct',
@@ -307,9 +307,9 @@ const Qwen: ModelProviderCard = {
307
307
  vision: true,
308
308
  },
309
309
  {
310
- contextWindowTokens: 65_536,
311
- description:
312
- 'DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力,尤其在数学、代码、自然语言推理等任务上。',
310
+ contextWindowTokens: 131_072,
311
+ description:
312
+ 'DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能较高,能力较强。',
313
313
  displayName: 'DeepSeek R1',
314
314
  id: 'deepseek-r1',
315
315
  pricing: {
@@ -320,8 +320,8 @@ const Qwen: ModelProviderCard = {
320
320
  releasedAt: '2025-01-27',
321
321
  },
322
322
  {
323
- contextWindowTokens: 65_536,
324
- description:
323
+ contextWindowTokens: 131_072,
324
+ description:
325
325
  'DeepSeek-V3 为自研 MoE 模型,671B 参数,激活 37B,在 14.8T token 上进行了预训练,在长文本、代码、数学、百科、中文能力上表现优秀。',
326
326
  displayName: 'DeepSeek V3',
327
327
  id: 'deepseek-v3',
@@ -332,6 +332,84 @@ const Qwen: ModelProviderCard = {
332
332
  },
333
333
  releasedAt: '2025-01-27',
334
334
  },
335
+ {
336
+ contextWindowTokens: 131_072,
337
+ description:
338
+ 'DeepSeek-R1-Distill-Qwen-1.5B 是一个基于 Qwen2.5-Math-1.5B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。',
339
+ displayName: 'DeepSeek R1 Distill Qwen 1.5B',
340
+ id: 'deepseek-r1-distill-qwen-1.5b',
341
+ pricing: {
342
+ currency: 'CNY',
343
+ input: 0,
344
+ output: 0,
345
+ },
346
+ releasedAt: '2025-02-05',
347
+ },
348
+ {
349
+ contextWindowTokens: 131_072,
350
+ description:
351
+ 'DeepSeek-R1-Distill-Qwen-7B 是一个基于 Qwen2.5-Math-7B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。',
352
+ displayName: 'DeepSeek R1 Distill Qwen 7B',
353
+ id: 'deepseek-r1-distill-qwen-7b',
354
+ pricing: {
355
+ currency: 'CNY',
356
+ input: 0,
357
+ output: 0,
358
+ },
359
+ releasedAt: '2025-02-05',
360
+ },
361
+ {
362
+ contextWindowTokens: 131_072,
363
+ description:
364
+ 'DeepSeek-R1-Distill-Qwen-14B 是一个基于 Qwen2.5-14B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。',
365
+ displayName: 'DeepSeek R1 Distill Qwen 14B',
366
+ id: 'deepseek-r1-distill-qwen-14b',
367
+ pricing: {
368
+ currency: 'CNY',
369
+ input: 0,
370
+ output: 0,
371
+ },
372
+ releasedAt: '2025-02-05',
373
+ },
374
+ {
375
+ contextWindowTokens: 131_072,
376
+ description:
377
+ 'DeepSeek-R1-Distill-Qwen-32B 是一个基于 Qwen2.5-32B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。',
378
+ displayName: 'DeepSeek R1 Distill Qwen 32B',
379
+ id: 'deepseek-r1-distill-qwen-32b',
380
+ pricing: {
381
+ currency: 'CNY',
382
+ input: 0,
383
+ output: 0,
384
+ },
385
+ releasedAt: '2025-02-05',
386
+ },
387
+ {
388
+ contextWindowTokens: 131_072,
389
+ description:
390
+ 'DeepSeek-R1-Distill-Llama-8B 是一个基于 Llama-3.1-8B 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。',
391
+ displayName: 'DeepSeek R1 Distill Llama 8B',
392
+ id: 'deepseek-r1-distill-llama-8b',
393
+ pricing: {
394
+ currency: 'CNY',
395
+ input: 0,
396
+ output: 0,
397
+ },
398
+ releasedAt: '2025-02-05',
399
+ },
400
+ {
401
+ contextWindowTokens: 131_072,
402
+ description:
403
+ 'DeepSeek-R1-Distill-Llama-70B 是一个基于 Llama-3.3-70B-Instruct 的蒸馏大型语言模型,使用了 DeepSeek R1 的输出。',
404
+ displayName: 'DeepSeek R1 Distill Llama 70B',
405
+ id: 'deepseek-r1-distill-llama-70b',
406
+ pricing: {
407
+ currency: 'CNY',
408
+ input: 0,
409
+ output: 0,
410
+ },
411
+ releasedAt: '2025-02-05',
412
+ },
335
413
  ],
336
414
  checkModel: 'qwen-turbo-latest',
337
415
  description: