@lobehub/chat 1.52.19 → 1.53.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +59 -0
- package/changelog/v1.json +21 -0
- package/locales/ar/models.json +53 -5
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +53 -5
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +53 -5
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +53 -5
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +53 -5
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +53 -5
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +53 -5
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +53 -5
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +53 -5
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +53 -5
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +53 -5
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +53 -5
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +53 -5
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +53 -5
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +53 -5
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +53 -5
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +58 -10
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +53 -5
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +2 -2
- package/src/config/aiModels/index.ts +3 -0
- package/src/config/aiModels/tencentcloud.ts +43 -0
- package/src/config/modelProviders/index.ts +3 -0
- package/src/config/modelProviders/openrouter.ts +13 -0
- package/src/config/modelProviders/tencentcloud.ts +19 -0
- package/src/libs/agent-runtime/AgentRuntime.ts +7 -0
- package/src/libs/agent-runtime/openrouter/index.test.ts +2 -2
- package/src/libs/agent-runtime/openrouter/index.ts +13 -7
- package/src/libs/agent-runtime/tencentcloud/index.test.ts +13 -0
- package/src/libs/agent-runtime/tencentcloud/index.ts +10 -0
- package/src/libs/agent-runtime/types/type.ts +1 -0
- package/src/libs/agent-runtime/utils/streams/openai.test.ts +201 -0
- package/src/libs/agent-runtime/utils/streams/openai.ts +6 -2
- package/src/types/user/settings/keyVaults.ts +1 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,65 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.53.1](https://github.com/lobehub/lobe-chat/compare/v1.53.0...v1.53.1)
|
6
|
+
|
7
|
+
<sup>Released on **2025-02-12**</sup>
|
8
|
+
|
9
|
+
#### 🐛 Bug Fixes
|
10
|
+
|
11
|
+
- **misc**: Fix reasoning output for OpenRouter reasoning models like deepseek-r1.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### What's fixed
|
19
|
+
|
20
|
+
- **misc**: Fix reasoning output for OpenRouter reasoning models like deepseek-r1, closes [#5903](https://github.com/lobehub/lobe-chat/issues/5903) [#5766](https://github.com/lobehub/lobe-chat/issues/5766) ([bfd9317](https://github.com/lobehub/lobe-chat/commit/bfd9317))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
## [Version 1.53.0](https://github.com/lobehub/lobe-chat/compare/v1.52.19...v1.53.0)
|
31
|
+
|
32
|
+
<sup>Released on **2025-02-11**</sup>
|
33
|
+
|
34
|
+
#### ✨ Features
|
35
|
+
|
36
|
+
- **misc**: Support tencent cloud provider.
|
37
|
+
|
38
|
+
#### 💄 Styles
|
39
|
+
|
40
|
+
- **misc**: Update i18n, update provider i18n.
|
41
|
+
|
42
|
+
<br/>
|
43
|
+
|
44
|
+
<details>
|
45
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
46
|
+
|
47
|
+
#### What's improved
|
48
|
+
|
49
|
+
- **misc**: Support tencent cloud provider, closes [#6029](https://github.com/lobehub/lobe-chat/issues/6029) ([6ec6b08](https://github.com/lobehub/lobe-chat/commit/6ec6b08))
|
50
|
+
|
51
|
+
#### Styles
|
52
|
+
|
53
|
+
- **misc**: Update i18n, closes [#6030](https://github.com/lobehub/lobe-chat/issues/6030) ([ee48e30](https://github.com/lobehub/lobe-chat/commit/ee48e30))
|
54
|
+
- **misc**: Update provider i18n, closes [#6031](https://github.com/lobehub/lobe-chat/issues/6031) ([e0e231c](https://github.com/lobehub/lobe-chat/commit/e0e231c))
|
55
|
+
|
56
|
+
</details>
|
57
|
+
|
58
|
+
<div align="right">
|
59
|
+
|
60
|
+
[](#readme-top)
|
61
|
+
|
62
|
+
</div>
|
63
|
+
|
5
64
|
### [Version 1.52.19](https://github.com/lobehub/lobe-chat/compare/v1.52.18...v1.52.19)
|
6
65
|
|
7
66
|
<sup>Released on **2025-02-11**</sup>
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,25 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"fixes": [
|
5
|
+
"Fix reasoning output for OpenRouter reasoning models like deepseek-r1."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-02-12",
|
9
|
+
"version": "1.53.1"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"features": [
|
14
|
+
"Support tencent cloud provider."
|
15
|
+
],
|
16
|
+
"improvements": [
|
17
|
+
"Update i18n, update provider i18n."
|
18
|
+
]
|
19
|
+
},
|
20
|
+
"date": "2025-02-11",
|
21
|
+
"version": "1.53.0"
|
22
|
+
},
|
2
23
|
{
|
3
24
|
"children": {
|
4
25
|
"improvements": [
|
package/locales/ar/models.json
CHANGED
@@ -182,6 +182,12 @@
|
|
182
182
|
"Pro/THUDM/glm-4-9b-chat": {
|
183
183
|
"description": "GLM-4-9B-Chat هو الإصدار مفتوح المصدر من نموذج GLM-4 الذي أطلقته Zhizhu AI. أظهر هذا النموذج أداءً ممتازًا في مجالات الدلالات، والرياضيات، والاستدلال، والشيفرة، والمعرفة. بالإضافة إلى دعم المحادثات متعددة الجولات، يتمتع GLM-4-9B-Chat أيضًا بميزات متقدمة مثل تصفح الويب، وتنفيذ الشيفرة، واستدعاء الأدوات المخصصة (Function Call)، والاستدلال على النصوص الطويلة. يدعم النموذج 26 لغة، بما في ذلك الصينية، والإنجليزية، واليابانية، والكورية، والألمانية. أظهر GLM-4-9B-Chat أداءً ممتازًا في العديد من اختبارات المعايير مثل AlignBench-v2 وMT-Bench وMMLU وC-Eval. يدعم النموذج طول سياق يصل إلى 128K، مما يجعله مناسبًا للأبحاث الأكاديمية والتطبيقات التجارية."
|
184
184
|
},
|
185
|
+
"Pro/deepseek-ai/DeepSeek-R1": {
|
186
|
+
"description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL)، يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل التعلم المعزز، أدخل DeepSeek-R1 بيانات بدء التشغيل الباردة، مما أدى إلى تحسين أداء الاستدلال. إنه يتفوق في المهام الرياضية، والبرمجة، والاستدلال مقارنةً بـ OpenAI-o1، وقد حسّن الأداء العام من خلال طرق تدريب مصممة بعناية."
|
187
|
+
},
|
188
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
189
|
+
"description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، يستخدم الانتباه المتعدد الرؤوس (MLA) وهيكل DeepSeekMoE، ويجمع بين استراتيجيات توازن الحمل بدون خسائر مساعدة، مما يحسن كفاءة الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون توكن عالية الجودة، وتم إجراء تعديل دقيق تحت الإشراف والتعلم المعزز، مما يجعل DeepSeek-V3 يتفوق على نماذج مفتوحة المصدر الأخرى، ويقترب من النماذج المغلقة الرائدة."
|
190
|
+
},
|
185
191
|
"Pro/google/gemma-2-9b-it": {
|
186
192
|
"description": "Gemma هو أحد نماذج Google المتقدمة والخفيفة الوزن من سلسلة النماذج المفتوحة. إنه نموذج لغوي كبير يعتمد على فك الشيفرة فقط، يدعم اللغة الإنجليزية، ويقدم أوزان مفتوحة، ومتغيرات مدربة مسبقًا، ومتغيرات معدلة وفقًا للتعليمات. نموذج Gemma مناسب لمجموعة متنوعة من مهام توليد النصوص، بما في ذلك الأسئلة والأجوبة، والتلخيص، والاستدلال. تم تدريب هذا النموذج 9B على 8 تريليون توكن. حجمه النسبي الصغير يجعله مناسبًا للنشر في بيئات ذات موارد محدودة، مثل أجهزة الكمبيوتر المحمولة، وأجهزة الكمبيوتر المكتبية، أو البنية التحتية السحابية الخاصة بك، مما يتيح لمزيد من الأشخاص الوصول إلى نماذج الذكاء الاصطناعي المتقدمة وتعزيز الابتكار."
|
187
193
|
},
|
@@ -440,6 +446,9 @@
|
|
440
446
|
"anthropic/claude-3-opus": {
|
441
447
|
"description": "Claude 3 Opus هو أقوى نموذج من Anthropic لمعالجة المهام المعقدة للغاية. يتميز بأداء ممتاز وذكاء وسلاسة وفهم."
|
442
448
|
},
|
449
|
+
"anthropic/claude-3.5-haiku": {
|
450
|
+
"description": "Claude 3.5 Haiku هو أسرع نموذج من الجيل التالي من Anthropic. مقارنةً بـ Claude 3 Haiku، تم تحسين Claude 3.5 Haiku في جميع المهارات، وتفوق في العديد من اختبارات الذكاء على النموذج الأكبر من الجيل السابق Claude 3 Opus."
|
451
|
+
},
|
443
452
|
"anthropic/claude-3.5-sonnet": {
|
444
453
|
"description": "Claude 3.5 Sonnet يقدم قدرات تتجاوز Opus وسرعة أكبر من Sonnet، مع الحفاظ على نفس السعر. يتميز Sonnet بمهارات خاصة في البرمجة وعلوم البيانات ومعالجة الصور والمهام الوكيلة."
|
445
454
|
},
|
@@ -590,6 +599,21 @@
|
|
590
599
|
"deepseek-r1-distill-llama-70b": {
|
591
600
|
"description": "DeepSeek R1 - النموذج الأكبر والأذكى في مجموعة DeepSeek - تم تقطيره إلى بنية Llama 70B. بناءً على اختبارات المعايير والتقييمات البشرية، يظهر هذا النموذج ذكاءً أكبر من Llama 70B الأصلي، خاصة في المهام التي تتطلب دقة رياضية وحقائق."
|
592
601
|
},
|
602
|
+
"deepseek-r1-distill-llama-8b": {
|
603
|
+
"description": "نموذج DeepSeek-R1-Distill تم تطويره من خلال تقنية تقطير المعرفة، حيث تم تعديل عينات تم إنشاؤها بواسطة DeepSeek-R1 على نماذج مفتوحة المصدر مثل Qwen وLlama."
|
604
|
+
},
|
605
|
+
"deepseek-r1-distill-qwen-1.5b": {
|
606
|
+
"description": "نموذج DeepSeek-R1-Distill تم تطويره من خلال تقنية تقطير المعرفة، حيث تم تعديل عينات تم إنشاؤها بواسطة DeepSeek-R1 على نماذج مفتوحة المصدر مثل Qwen وLlama."
|
607
|
+
},
|
608
|
+
"deepseek-r1-distill-qwen-14b": {
|
609
|
+
"description": "نموذج DeepSeek-R1-Distill تم تطويره من خلال تقنية تقطير المعرفة، حيث تم تعديل عينات تم إنشاؤها بواسطة DeepSeek-R1 على نماذج مفتوحة المصدر مثل Qwen وLlama."
|
610
|
+
},
|
611
|
+
"deepseek-r1-distill-qwen-32b": {
|
612
|
+
"description": "نموذج DeepSeek-R1-Distill تم تطويره من خلال تقنية تقطير المعرفة، حيث تم تعديل عينات تم إنشاؤها بواسطة DeepSeek-R1 على نماذج مفتوحة المصدر مثل Qwen وLlama."
|
613
|
+
},
|
614
|
+
"deepseek-r1-distill-qwen-7b": {
|
615
|
+
"description": "نموذج DeepSeek-R1-Distill تم تطويره من خلال تقنية تقطير المعرفة، حيث تم تعديل عينات تم إنشاؤها بواسطة DeepSeek-R1 على نماذج مفتوحة المصدر مثل Qwen وLlama."
|
616
|
+
},
|
593
617
|
"deepseek-reasoner": {
|
594
618
|
"description": "نموذج الاستدلال الذي أطلقته DeepSeek. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من المحتوى الفكري لتحسين دقة الإجابة النهائية."
|
595
619
|
},
|
@@ -698,20 +722,26 @@
|
|
698
722
|
"gemini-1.5-pro-latest": {
|
699
723
|
"description": "Gemini 1.5 Pro يدعم ما يصل إلى 2 مليون توكن، وهو الخيار المثالي للنماذج المتوسطة الحجم متعددة الوسائط، مناسب لدعم المهام المعقدة من جوانب متعددة."
|
700
724
|
},
|
725
|
+
"gemini-2.0-flash": {
|
726
|
+
"description": "Gemini 2.0 Flash يقدم ميزات وتحسينات من الجيل التالي، بما في ذلك سرعة فائقة، واستخدام أدوات أصلية، وتوليد متعدد الوسائط، ونافذة سياق تصل إلى 1M توكن."
|
727
|
+
},
|
728
|
+
"gemini-2.0-flash-001": {
|
729
|
+
"description": "Gemini 2.0 Flash يقدم ميزات وتحسينات من الجيل التالي، بما في ذلك سرعة فائقة، واستخدام أدوات أصلية، وتوليد متعدد الوسائط، ونافذة سياق تصل إلى 1M توكن."
|
730
|
+
},
|
701
731
|
"gemini-2.0-flash-exp": {
|
702
732
|
"description": "جيميناي 2.0 فلاش إكسب هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط من جوجل، يتمتع بميزات الجيل القادم، وسرعة فائقة، واستدعاء أدوات أصلية، وتوليد متعدد الوسائط."
|
703
733
|
},
|
734
|
+
"gemini-2.0-flash-lite-preview-02-05": {
|
735
|
+
"description": "نموذج Gemini 2.0 Flash، تم تحسينه لأهداف التكلفة المنخفضة والكمون المنخفض."
|
736
|
+
},
|
704
737
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
705
738
|
"description": "Gemini 2.0 Flash Exp هو أحدث نموذج تجريبي متعدد الوسائط من Google، يتمتع بميزات الجيل التالي، وسرعة فائقة، واستدعاء أدوات أصلية، وتوليد متعدد الوسائط."
|
706
739
|
},
|
707
740
|
"gemini-2.0-flash-thinking-exp-1219": {
|
708
741
|
"description": "Gemini 2.0 Flash Exp هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط التجريبي من Google، يتميز بخصائص الجيل التالي، وسرعة فائقة، واستدعاء أدوات أصلية، وتوليد متعدد الوسائط."
|
709
742
|
},
|
710
|
-
"gemini-exp-
|
711
|
-
"description": "
|
712
|
-
},
|
713
|
-
"gemini-exp-1121": {
|
714
|
-
"description": "جمني إكسب 1121 هو أحدث نموذج تجريبي متعدد الوسائط من جوجل، يتمتع بقدرة معالجة سريعة، ويدعم إدخال النصوص والصور والفيديو، مما يجعله مناسبًا للتوسع الفعال في مجموعة متنوعة من المهام."
|
743
|
+
"gemini-2.0-pro-exp-02-05": {
|
744
|
+
"description": "Gemini 2.0 Pro Experimental هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط التجريبي من Google، مع تحسينات ملحوظة في الجودة مقارنة بالإصدارات السابقة، خاصة في المعرفة العالمية، والبرمجة، والسياقات الطويلة."
|
715
745
|
},
|
716
746
|
"gemini-exp-1206": {
|
717
747
|
"description": "جيميني إكسب 1206 هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط من جوجل، مع تحسينات في الجودة مقارنةً بالإصدارات السابقة."
|
@@ -779,6 +809,12 @@
|
|
779
809
|
"glm-zero-preview": {
|
780
810
|
"description": "يمتلك GLM-Zero-Preview قدرة قوية على الاستدلال المعقد، ويظهر أداءً ممتازًا في مجالات الاستدلال المنطقي، والرياضيات، والبرمجة."
|
781
811
|
},
|
812
|
+
"google/gemini-2.0-flash-001": {
|
813
|
+
"description": "Gemini 2.0 Flash يقدم ميزات وتحسينات من الجيل التالي، بما في ذلك سرعة فائقة، واستخدام أدوات أصلية، وتوليد متعدد الوسائط، ونافذة سياق تصل إلى 1M توكن."
|
814
|
+
},
|
815
|
+
"google/gemini-2.0-pro-exp-02-05:free": {
|
816
|
+
"description": "Gemini 2.0 Pro Experimental هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط التجريبي من Google، مع تحسينات ملحوظة في الجودة مقارنة بالإصدارات السابقة، خاصة في المعرفة العالمية، والبرمجة، والسياقات الطويلة."
|
817
|
+
},
|
782
818
|
"google/gemini-flash-1.5": {
|
783
819
|
"description": "يقدم Gemini 1.5 Flash قدرات معالجة متعددة الوسائط محسّنة، مناسبة لمجموعة متنوعة من سيناريوهات المهام المعقدة."
|
784
820
|
},
|
@@ -995,6 +1031,9 @@
|
|
995
1031
|
"llama-3.2-90b-vision-preview": {
|
996
1032
|
"description": "Llama 3.2 مصمم للتعامل مع المهام التي تجمع بين البيانات البصرية والنصية. يظهر أداءً ممتازًا في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة والاستدلال البصري."
|
997
1033
|
},
|
1034
|
+
"llama-3.3-70b-instruct": {
|
1035
|
+
"description": "Llama 3.3 هو النموذج الأكثر تقدمًا في سلسلة Llama، وهو نموذج لغوي مفتوح المصدر متعدد اللغات، يوفر تجربة أداء تنافس نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسين فائدته وأمانه من خلال التعديل الدقيق تحت الإشراف (SFT) والتعلم المعزز من خلال التغذية الراجعة البشرية (RLHF). تم تحسين نسخة التعديل الخاصة به لتكون مثالية للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
1036
|
+
},
|
998
1037
|
"llama-3.3-70b-versatile": {
|
999
1038
|
"description": "ميتّا لاما 3.3 هو نموذج لغة كبير متعدد اللغات (LLM) يضم 70 مليار (إدخال نص/إخراج نص) من النموذج المدرب مسبقًا والمعدل وفقًا للتعليمات. تم تحسين نموذج لاما 3.3 المعدل وفقًا للتعليمات للاستخدامات الحوارية متعددة اللغات ويتفوق على العديد من النماذج المتاحة مفتوحة المصدر والمغلقة في المعايير الصناعية الشائعة."
|
1000
1039
|
},
|
@@ -1136,6 +1175,12 @@
|
|
1136
1175
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1137
1176
|
"description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يتفوق في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة والاستدلال البصري."
|
1138
1177
|
},
|
1178
|
+
"meta-llama/llama-3.3-70b-instruct": {
|
1179
|
+
"description": "Llama 3.3 هو النموذج الأكثر تقدمًا في سلسلة Llama، وهو نموذج لغوي مفتوح المصدر متعدد اللغات، يوفر تجربة أداء تنافس نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسين فائدته وأمانه من خلال التعديل الدقيق تحت الإشراف (SFT) والتعلم المعزز من خلال التغذية الراجعة البشرية (RLHF). تم تحسين نسخة التعديل الخاصة به لتكون مثالية للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
1180
|
+
},
|
1181
|
+
"meta-llama/llama-3.3-70b-instruct:free": {
|
1182
|
+
"description": "Llama 3.3 هو النموذج الأكثر تقدمًا في سلسلة Llama، وهو نموذج لغوي مفتوح المصدر متعدد اللغات، يوفر تجربة أداء تنافس نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسين فائدته وأمانه من خلال التعديل الدقيق تحت الإشراف (SFT) والتعلم المعزز من خلال التغذية الراجعة البشرية (RLHF). تم تحسين نسخة التعديل الخاصة به لتكون مثالية للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
1183
|
+
},
|
1139
1184
|
"meta.llama3-1-405b-instruct-v1:0": {
|
1140
1185
|
"description": "نموذج Meta Llama 3.1 405B Instruct هو أكبر وأقوى نموذج في مجموعة نماذج Llama 3.1 Instruct، وهو نموذج متقدم للغاية لتوليد البيانات والحوار، ويمكن استخدامه كأساس للتدريب المستمر أو التخصيص في مجالات معينة. توفر Llama 3.1 نماذج لغوية كبيرة متعددة اللغات (LLMs) وهي مجموعة من النماذج المدربة مسبقًا والمعدلة وفقًا للتعليمات، بما في ذلك أحجام 8B و70B و405B (إدخال/إخراج نصي). تم تحسين نماذج النص المعدلة وفقًا للتعليمات (8B و70B و405B) لحالات الاستخدام الحوارية متعددة اللغات، وقد تفوقت في العديد من اختبارات المعايير الصناعية الشائعة على العديد من نماذج الدردشة مفتوحة المصدر المتاحة. تم تصميم Llama 3.1 للاستخدام التجاري والبحثي في عدة لغات. نماذج النص المعدلة وفقًا للتعليمات مناسبة للدردشة الشبيهة بالمساعد، بينما يمكن للنماذج المدربة مسبقًا التكيف مع مجموعة متنوعة من مهام توليد اللغة الطبيعية. تدعم نماذج Llama 3.1 أيضًا تحسين نماذج أخرى باستخدام مخرجاتها، بما في ذلك توليد البيانات الاصطناعية والتنقيح. Llama 3.1 هو نموذج لغوي ذاتي التكرار يستخدم بنية المحولات المحسّنة. تستخدم النسخ المعدلة التعلم المعزز مع التغذية الراجعة البشرية (RLHF) لتلبية تفضيلات البشر فيما يتعلق بالمساعدة والأمان."
|
1141
1186
|
},
|
@@ -1549,5 +1594,8 @@
|
|
1549
1594
|
},
|
1550
1595
|
"yi-vision": {
|
1551
1596
|
"description": "نموذج لمهام الرؤية المعقدة، يوفر قدرة عالية على فهم وتحليل الصور."
|
1597
|
+
},
|
1598
|
+
"yi-vision-v2": {
|
1599
|
+
"description": "نموذج مهام بصرية معقدة، يوفر فهمًا عالي الأداء وقدرات تحليلية بناءً على صور متعددة."
|
1552
1600
|
}
|
1553
1601
|
}
|
@@ -98,6 +98,9 @@
|
|
98
98
|
"taichu": {
|
99
99
|
"description": "أطلقت الأكاديمية الصينية للعلوم ومعهد ووهان للذكاء الاصطناعي نموذجًا جديدًا متعدد الوسائط، يدعم أسئلة وأجوبة متعددة الجولات، وإنشاء النصوص، وتوليد الصور، وفهم 3D، وتحليل الإشارات، ويغطي مجموعة شاملة من مهام الأسئلة والأجوبة، مع قدرات أقوى في الإدراك والفهم والإبداع، مما يوفر تجربة تفاعلية جديدة."
|
100
100
|
},
|
101
|
+
"tencentcloud": {
|
102
|
+
"description": "قدرة المحرك المعرفي الذري (LLM Knowledge Engine Atomic Power) هي قدرة كاملة للإجابة على الأسئلة مبنية على تطوير المحرك المعرفي، موجهة نحو الشركات والمطورين، وتوفر القدرة على تجميع وتطوير تطبيقات النماذج بشكل مرن. يمكنك من خلال مجموعة من القدرات الذرية تجميع خدمة النموذج الخاصة بك، واستدعاء خدمات تحليل الوثائق، والتقسيم، والتضمين، وإعادة الكتابة متعددة الجولات، لتخصيص أعمال الذكاء الاصطناعي الخاصة بالشركة."
|
103
|
+
},
|
101
104
|
"togetherai": {
|
102
105
|
"description": "تسعى Together AI لتحقيق أداء رائد من خلال نماذج الذكاء الاصطناعي المبتكرة، وتقدم مجموعة واسعة من القدرات المخصصة، بما في ذلك دعم التوسع السريع وعمليات النشر البديهية، لتلبية احتياجات الشركات المتنوعة."
|
103
106
|
},
|
@@ -182,6 +182,12 @@
|
|
182
182
|
"Pro/THUDM/glm-4-9b-chat": {
|
183
183
|
"description": "GLM-4-9B-Chat е отворената версия на предварително обучен модел от серията GLM-4, пусната от Zhizhu AI. Моделът показва отлични резултати в семантика, математика, разсъждения, код и знания. Освен че поддържа многократни разговори, GLM-4-9B-Chat предлага и напреднали функции като уеб браузинг, изпълнение на код, извикване на персонализирани инструменти (Function Call) и разсъждения с дълги текстове. Моделът поддържа 26 езика, включително китайски, английски, японски, корейски и немски. В множество бенчмаркове, GLM-4-9B-Chat показва отлична производителност, като AlignBench-v2, MT-Bench, MMLU и C-Eval. Моделът поддържа максимална контекстна дължина от 128K, подходящ за академични изследвания и търговски приложения."
|
184
184
|
},
|
185
|
+
"Pro/deepseek-ai/DeepSeek-R1": {
|
186
|
+
"description": "DeepSeek-R1 е модел за инференция, управляван от обучение с подсилване (RL), който решава проблемите с повторяемостта и четимостта в моделите. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на инференцията. Той показва сравними резултати с OpenAI-o1 в математически, кодови и инференционни задачи и подобрява общата ефективност чрез внимателно проектирани методи на обучение."
|
187
|
+
},
|
188
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
189
|
+
"description": "DeepSeek-V3 е модел на езика с 6710 милиарда параметри, който използва архитектура на смесени експерти (MoE) с много глави на потенциално внимание (MLA) и стратегия за баланс на натоварването без помощни загуби, оптимизираща производителността на инференцията и обучението. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо супервизирано фино настройване и обучение с подсилване, DeepSeek-V3 надминава производителността на други отворени модели и е близо до водещите затворени модели."
|
190
|
+
},
|
185
191
|
"Pro/google/gemma-2-9b-it": {
|
186
192
|
"description": "Gemma е един от най-новите леки, авангардни отворени модели, разработени от Google. Това е голям езиков модел с един декодер, който поддържа английски и предлага отворени тегла, предварително обучени варианти и варианти с фино настройване на инструкции. Моделът Gemma е подходящ за различни задачи по генериране на текст, включително въпроси и отговори, резюмиране и разсъждения. Този 9B модел е обучен с 8 трилиона токена. Неговият относително малък размер позволява внедряване в среди с ограничени ресурси, като лаптопи, настолни компютри или собствена облачна инфраструктура, което позволява на повече хора да имат достъп до авангардни AI модели и да насърчават иновации."
|
187
193
|
},
|
@@ -440,6 +446,9 @@
|
|
440
446
|
"anthropic/claude-3-opus": {
|
441
447
|
"description": "Claude 3 Opus е най-мощният модел на Anthropic, предназначен за обработка на изключително сложни задачи. Той се отличава с изключителна производителност, интелигентност, гладкост и разбиране."
|
442
448
|
},
|
449
|
+
"anthropic/claude-3.5-haiku": {
|
450
|
+
"description": "Claude 3.5 Haiku е най-бързият следващ модел на Anthropic. В сравнение с Claude 3 Haiku, Claude 3.5 Haiku показва подобрения в различни умения и надминава предишното поколение най-голям модел Claude 3 Opus в много интелектуални бенчмаркове."
|
451
|
+
},
|
443
452
|
"anthropic/claude-3.5-sonnet": {
|
444
453
|
"description": "Claude 3.5 Sonnet предлага способности, надхвърлящи Opus, и по-бърза скорост в сравнение с Sonnet, като същевременно запазва същата цена. Sonnet е особено силен в програмирането, науката за данни, визуалната обработка и агентските задачи."
|
445
454
|
},
|
@@ -590,6 +599,21 @@
|
|
590
599
|
"deepseek-r1-distill-llama-70b": {
|
591
600
|
"description": "DeepSeek R1 - по-голям и по-интелигентен модел в комплекта DeepSeek - е дестилиран в архитектурата Llama 70B. На базата на бенчмаркове и човешка оценка, този модел е по-интелигентен от оригиналния Llama 70B, особено в задачи, изискващи математическа и фактическа точност."
|
592
601
|
},
|
602
|
+
"deepseek-r1-distill-llama-8b": {
|
603
|
+
"description": "Моделите от серията DeepSeek-R1-Distill са получени чрез техника на знание дестилация, като се фино настройват образците, генерирани от DeepSeek-R1, спрямо отворени модели като Qwen и Llama."
|
604
|
+
},
|
605
|
+
"deepseek-r1-distill-qwen-1.5b": {
|
606
|
+
"description": "Моделите от серията DeepSeek-R1-Distill са получени чрез техника на знание дестилация, като се фино настройват образците, генерирани от DeepSeek-R1, спрямо отворени модели като Qwen и Llama."
|
607
|
+
},
|
608
|
+
"deepseek-r1-distill-qwen-14b": {
|
609
|
+
"description": "Моделите от серията DeepSeek-R1-Distill са получени чрез техника на знание дестилация, като се фино настройват образците, генерирани от DeepSeek-R1, спрямо отворени модели като Qwen и Llama."
|
610
|
+
},
|
611
|
+
"deepseek-r1-distill-qwen-32b": {
|
612
|
+
"description": "Моделите от серията DeepSeek-R1-Distill са получени чрез техника на знание дестилация, като се фино настройват образците, генерирани от DeepSeek-R1, спрямо отворени модели като Qwen и Llama."
|
613
|
+
},
|
614
|
+
"deepseek-r1-distill-qwen-7b": {
|
615
|
+
"description": "Моделите от серията DeepSeek-R1-Distill са получени чрез техника на знание дестилация, като се фино настройват образците, генерирани от DeepSeek-R1, спрямо отворени модели като Qwen и Llama."
|
616
|
+
},
|
593
617
|
"deepseek-reasoner": {
|
594
618
|
"description": "Модел за извеждане, разработен от DeepSeek. Преди да предостави окончателния отговор, моделът първо извежда част от веригата на мислене, за да повиши точността на крайния отговор."
|
595
619
|
},
|
@@ -698,20 +722,26 @@
|
|
698
722
|
"gemini-1.5-pro-latest": {
|
699
723
|
"description": "Gemini 1.5 Pro поддържа до 2 милиона токена и е идеален избор за среден многомодален модел, подходящ за многостранна поддръжка на сложни задачи."
|
700
724
|
},
|
725
|
+
"gemini-2.0-flash": {
|
726
|
+
"description": "Gemini 2.0 Flash предлага следващо поколение функции и подобрения, включително изключителна скорост, нативна употреба на инструменти, многомодално генериране и контекстен прозорец от 1M токена."
|
727
|
+
},
|
728
|
+
"gemini-2.0-flash-001": {
|
729
|
+
"description": "Gemini 2.0 Flash предлага следващо поколение функции и подобрения, включително изключителна скорост, нативна употреба на инструменти, многомодално генериране и контекстен прозорец от 1M токена."
|
730
|
+
},
|
701
731
|
"gemini-2.0-flash-exp": {
|
702
732
|
"description": "Gemini 2.0 Flash Exp е най-новият експериментален мултимодален AI модел на Google, предлагащ следващо поколение функции, изключителна скорост, нативно извикване на инструменти и мултимодално генериране."
|
703
733
|
},
|
734
|
+
"gemini-2.0-flash-lite-preview-02-05": {
|
735
|
+
"description": "Модел на Gemini 2.0 Flash, оптимизиран за икономичност и ниска латентност."
|
736
|
+
},
|
704
737
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
705
738
|
"description": "Gemini 2.0 Flash Exp е най-новият експериментален многомодален AI модел на Google, с ново поколение функции, изключителна скорост, нативно извикване на инструменти и многомодално генериране."
|
706
739
|
},
|
707
740
|
"gemini-2.0-flash-thinking-exp-1219": {
|
708
741
|
"description": "Gemini 2.0 Flash Exp е най-новият експериментален мултимодален AI модел на Google, с ново поколение функции, изключителна скорост, нативни инструменти за извикване и мултимодално генериране."
|
709
742
|
},
|
710
|
-
"gemini-exp-
|
711
|
-
"description": "Gemini
|
712
|
-
},
|
713
|
-
"gemini-exp-1121": {
|
714
|
-
"description": "Gemini Exp 1121 е най-новият експериментален мултимодален AI модел на Google, който предлага бърза обработка и поддържа текстови, изображенчески и видео входове, подходящ за ефективно разширяване на множество задачи."
|
743
|
+
"gemini-2.0-pro-exp-02-05": {
|
744
|
+
"description": "Gemini 2.0 Pro Experimental е най-новият експериментален многомодален AI модел на Google, който предлага значително подобрение в качеството в сравнение с предишните версии, особено по отношение на световни знания, код и дълги контексти."
|
715
745
|
},
|
716
746
|
"gemini-exp-1206": {
|
717
747
|
"description": "Gemini Exp 1206 е най-новият експериментален мултимодален AI модел на Google, който предлага значително подобрение в качеството в сравнение с предишни версии."
|
@@ -779,6 +809,12 @@
|
|
779
809
|
"glm-zero-preview": {
|
780
810
|
"description": "GLM-Zero-Preview притежава мощни способности за сложни разсъждения, показвайки отлични резултати в логическото разсъждение, математиката и програмирането."
|
781
811
|
},
|
812
|
+
"google/gemini-2.0-flash-001": {
|
813
|
+
"description": "Gemini 2.0 Flash предлага следващо поколение функции и подобрения, включително изключителна скорост, нативна употреба на инструменти, многомодално генериране и контекстен прозорец от 1M токена."
|
814
|
+
},
|
815
|
+
"google/gemini-2.0-pro-exp-02-05:free": {
|
816
|
+
"description": "Gemini 2.0 Pro Experimental е най-новият експериментален многомодален AI модел на Google, който предлага значително подобрение в качеството в сравнение с предишните версии, особено по отношение на световни знания, код и дълги контексти."
|
817
|
+
},
|
782
818
|
"google/gemini-flash-1.5": {
|
783
819
|
"description": "Gemini 1.5 Flash предлага оптимизирани мултимодални обработващи способности, подходящи за различни сложни задачи."
|
784
820
|
},
|
@@ -995,6 +1031,9 @@
|
|
995
1031
|
"llama-3.2-90b-vision-preview": {
|
996
1032
|
"description": "Llama 3.2 е проектиран да обработва задачи, свързващи визуални и текстови данни. Той показва отлични резултати в задачи като описание на изображения и визуални въпроси и отговори, преодолявайки пропастта между генерирането на език и визуалното разсъждение."
|
997
1033
|
},
|
1034
|
+
"llama-3.3-70b-instruct": {
|
1035
|
+
"description": "Llama 3.3 е най-напредналият многоезичен отворен езиков модел от серията Llama, който предлага производителност, сравнима с 405B моделите, на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия, оптимизирана за инструкции, е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023."
|
1036
|
+
},
|
998
1037
|
"llama-3.3-70b-versatile": {
|
999
1038
|
"description": "Meta Llama 3.3 е многоезичен модел за генерация на език (LLM) с 70B (вход/изход на текст), който е предварително обучен и е пригоден за указания. Чистият текстов модел на Llama 3.3 е оптимизиран за многоезични диалогови случаи и надминава много налични отворени и затворени чат модели на стандартни индустриални тестове."
|
1000
1039
|
},
|
@@ -1136,6 +1175,12 @@
|
|
1136
1175
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1137
1176
|
"description": "LLaMA 3.2 е проектиран да обработва задачи, свързващи визуални и текстови данни. Той показва отлични резултати в задачи като описание на изображения и визуални въпроси, преодолявайки пропастта между генерирането на език и визуалното разсъждение."
|
1138
1177
|
},
|
1178
|
+
"meta-llama/llama-3.3-70b-instruct": {
|
1179
|
+
"description": "Llama 3.3 е най-напредналият многоезичен отворен езиков модел от серията Llama, който предлага производителност, сравнима с 405B моделите, на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия, оптимизирана за инструкции, е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023."
|
1180
|
+
},
|
1181
|
+
"meta-llama/llama-3.3-70b-instruct:free": {
|
1182
|
+
"description": "Llama 3.3 е най-напредналият многоезичен отворен езиков модел от серията Llama, който предлага производителност, сравнима с 405B моделите, на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия, оптимизирана за инструкции, е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023."
|
1183
|
+
},
|
1139
1184
|
"meta.llama3-1-405b-instruct-v1:0": {
|
1140
1185
|
"description": "Meta Llama 3.1 405B Instruct е най-голямата и най-мощната версия на модела Llama 3.1 Instruct. Това е високо напреднал модел за диалогово разсъждение и генериране на синтетични данни, който може да се използва и като основа за професионално продължително предварително обучение или фино настройване в специфични области. Многоезичният голям езиков модел (LLMs), предоставен от Llama 3.1, е набор от предварително обучени, коригирани по инструкции генеративни модели, включително размери 8B, 70B и 405B (текстов вход/изход). Текстовите модели, коригирани по инструкции (8B, 70B, 405B), са оптимизирани за многоезични диалогови случаи и надминават много налични отворени чат модели в общи индустриални бенчмаркове. Llama 3.1 е проектиран за търговски и изследователски цели на множество езици. Моделите, коригирани по инструкции, са подходящи за чатове, подобни на асистенти, докато предварително обучените модели могат да се адаптират към различни задачи за генериране на естествен език. Моделите на Llama 3.1 също поддържат използването на изхода на модела за подобряване на други модели, включително генериране на синтетични данни и рафиниране. Llama 3.1 е саморегресивен езиков модел, използващ оптимизирана трансформаторна архитектура. Коригираните версии използват супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF), за да отговорят на предпочитанията на хората за полезност и безопасност."
|
1141
1186
|
},
|
@@ -1549,5 +1594,8 @@
|
|
1549
1594
|
},
|
1550
1595
|
"yi-vision": {
|
1551
1596
|
"description": "Модел за сложни визуални задачи, предлагащ висока производителност за разбиране и анализ на изображения."
|
1597
|
+
},
|
1598
|
+
"yi-vision-v2": {
|
1599
|
+
"description": "Модел за сложни визуални задачи, предлагащ висока производителност в разбирането и анализа на базата на множество изображения."
|
1552
1600
|
}
|
1553
1601
|
}
|
@@ -98,6 +98,9 @@
|
|
98
98
|
"taichu": {
|
99
99
|
"description": "Институтът по автоматизация на Китайската академия на науките и Институтът по изкуствен интелект в Ухан представят ново поколение мултимодални големи модели, поддържащи многократни въпроси и отговори, текстово създаване, генериране на изображения, 3D разбиране, анализ на сигнали и др., с по-силни способности за познание, разбиране и създаване, предоставяйки ново взаимодействие."
|
100
100
|
},
|
101
|
+
"tencentcloud": {
|
102
|
+
"description": "Атомни способности на знаниевия двигател (LLM Knowledge Engine Atomic Power) са базирани на разработката на знаниевия двигател и предлагат пълна верига от способности за въпроси и отговори, насочени към предприятия и разработчици, предоставяйки гъвкави възможности за изграждане и разработка на моделни приложения. Можете да изградите собствена моделна услуга чрез множество атомни способности, като използвате услуги за анализ на документи, разделяне, вграждане, многократни пренаписвания и др., за да персонализирате AI бизнеса, специфичен за вашето предприятие."
|
103
|
+
},
|
101
104
|
"togetherai": {
|
102
105
|
"description": "Together AI се стреми да постигне водеща производителност чрез иновационни AI модели, предлагащи широки възможности за персонализация, включително бърза поддръжка за разширяване и интуитивни процеси на внедряване, отговарящи на разнообразните нужди на предприятията."
|
103
106
|
},
|
@@ -182,6 +182,12 @@
|
|
182
182
|
"Pro/THUDM/glm-4-9b-chat": {
|
183
183
|
"description": "GLM-4-9B-Chat ist die Open-Source-Version des GLM-4-Modells, das von Zhizhu AI eingeführt wurde. Dieses Modell zeigt hervorragende Leistungen in den Bereichen Semantik, Mathematik, Inferenz, Code und Wissen. Neben der Unterstützung für mehrstufige Dialoge bietet GLM-4-9B-Chat auch fortgeschrittene Funktionen wie Web-Browsing, Code-Ausführung, benutzerdefinierte Tool-Aufrufe (Function Call) und langes Textverständnis. Das Modell unterstützt 26 Sprachen, darunter Chinesisch, Englisch, Japanisch, Koreanisch und Deutsch. In mehreren Benchmark-Tests zeigt GLM-4-9B-Chat hervorragende Leistungen, wie AlignBench-v2, MT-Bench, MMLU und C-Eval. Das Modell unterstützt eine maximale Kontextlänge von 128K und ist für akademische Forschung und kommerzielle Anwendungen geeignet."
|
184
184
|
},
|
185
|
+
"Pro/deepseek-ai/DeepSeek-R1": {
|
186
|
+
"description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das Probleme mit Wiederholungen und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert die Gesamtleistung durch sorgfältig gestaltete Trainingsmethoden."
|
187
|
+
},
|
188
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
189
|
+
"description": "DeepSeek-V3 ist ein hybrides Experten (MoE) Sprachmodell mit 6710 Milliarden Parametern, das eine Multi-Head-Latente-Attention (MLA) und DeepSeekMoE-Architektur verwendet, kombiniert mit einer Lastenausgleichsstrategie ohne Hilfskosten, um die Inferenz- und Trainingseffizienz zu optimieren. Durch das Pre-Training auf 14,8 Billionen hochwertigen Tokens und anschließende überwachte Feinabstimmung und verstärktes Lernen übertrifft DeepSeek-V3 in der Leistung andere Open-Source-Modelle und nähert sich führenden geschlossenen Modellen."
|
190
|
+
},
|
185
191
|
"Pro/google/gemma-2-9b-it": {
|
186
192
|
"description": "Gemma ist eines der leichtgewichtigen, hochmodernen offenen Modellserien, die von Google entwickelt wurden. Es handelt sich um ein großes Sprachmodell mit nur Decoder, das Englisch unterstützt und offene Gewichte, vortrainierte Varianten und anweisungsfeinabgestimmte Varianten bietet. Das Gemma-Modell eignet sich für verschiedene Textgenerierungsaufgaben, einschließlich Fragen und Antworten, Zusammenfassungen und Inferenz. Dieses 9B-Modell wurde mit 80 Billionen Tokens trainiert. Seine relativ kleine Größe ermöglicht es, in ressourcenbeschränkten Umgebungen wie Laptops, Desktop-Computern oder Ihrer eigenen Cloud-Infrastruktur bereitgestellt zu werden, wodurch mehr Menschen Zugang zu modernsten KI-Modellen erhalten und Innovationen gefördert werden."
|
187
193
|
},
|
@@ -440,6 +446,9 @@
|
|
440
446
|
"anthropic/claude-3-opus": {
|
441
447
|
"description": "Claude 3 Opus ist das leistungsstärkste Modell von Anthropic zur Bearbeitung hochkomplexer Aufgaben. Es zeichnet sich durch hervorragende Leistung, Intelligenz, Flüssigkeit und Verständnis aus."
|
442
448
|
},
|
449
|
+
"anthropic/claude-3.5-haiku": {
|
450
|
+
"description": "Claude 3.5 Haiku ist das schnellste nächste Generation Modell von Anthropic. Im Vergleich zu Claude 3 Haiku hat Claude 3.5 Haiku in allen Fähigkeiten Fortschritte gemacht und übertrifft in vielen intellektuellen Benchmark-Tests das größte Modell der vorherigen Generation, Claude 3 Opus."
|
451
|
+
},
|
443
452
|
"anthropic/claude-3.5-sonnet": {
|
444
453
|
"description": "Claude 3.5 Sonnet bietet Fähigkeiten, die über Opus hinausgehen, und eine schnellere Geschwindigkeit als Sonnet, während es den gleichen Preis wie Sonnet beibehält. Sonnet ist besonders gut in Programmierung, Datenwissenschaft, visueller Verarbeitung und Agentenaufgaben."
|
445
454
|
},
|
@@ -590,6 +599,21 @@
|
|
590
599
|
"deepseek-r1-distill-llama-70b": {
|
591
600
|
"description": "DeepSeek R1 – das größere und intelligentere Modell im DeepSeek-Paket – wurde in die Llama 70B-Architektur destilliert. Basierend auf Benchmark-Tests und menschlicher Bewertung ist dieses Modell intelligenter als das ursprüngliche Llama 70B, insbesondere bei Aufgaben, die mathematische und faktische Genauigkeit erfordern."
|
592
601
|
},
|
602
|
+
"deepseek-r1-distill-llama-8b": {
|
603
|
+
"description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
|
604
|
+
},
|
605
|
+
"deepseek-r1-distill-qwen-1.5b": {
|
606
|
+
"description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
|
607
|
+
},
|
608
|
+
"deepseek-r1-distill-qwen-14b": {
|
609
|
+
"description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
|
610
|
+
},
|
611
|
+
"deepseek-r1-distill-qwen-32b": {
|
612
|
+
"description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
|
613
|
+
},
|
614
|
+
"deepseek-r1-distill-qwen-7b": {
|
615
|
+
"description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
|
616
|
+
},
|
593
617
|
"deepseek-reasoner": {
|
594
618
|
"description": "Das von DeepSeek entwickelte Inferenzmodell. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
|
595
619
|
},
|
@@ -698,20 +722,26 @@
|
|
698
722
|
"gemini-1.5-pro-latest": {
|
699
723
|
"description": "Gemini 1.5 Pro unterstützt bis zu 2 Millionen Tokens und ist die ideale Wahl für mittelgroße multimodale Modelle, die umfassende Unterstützung für komplexe Aufgaben bieten."
|
700
724
|
},
|
725
|
+
"gemini-2.0-flash": {
|
726
|
+
"description": "Gemini 2.0 Flash bietet nächste Generation Funktionen und Verbesserungen, einschließlich außergewöhnlicher Geschwindigkeit, nativer Werkzeugnutzung, multimodaler Generierung und einem Kontextfenster von 1M Tokens."
|
727
|
+
},
|
728
|
+
"gemini-2.0-flash-001": {
|
729
|
+
"description": "Gemini 2.0 Flash bietet nächste Generation Funktionen und Verbesserungen, einschließlich außergewöhnlicher Geschwindigkeit, nativer Werkzeugnutzung, multimodaler Generierung und einem Kontextfenster von 1M Tokens."
|
730
|
+
},
|
701
731
|
"gemini-2.0-flash-exp": {
|
702
732
|
"description": "Gemini 2.0 Flash Exp ist Googles neuestes experimentelles multimodales KI-Modell mit Next-Gen-Funktionen, herausragender Geschwindigkeit, nativer Werkzeuganwendung und multimodaler Generierung."
|
703
733
|
},
|
734
|
+
"gemini-2.0-flash-lite-preview-02-05": {
|
735
|
+
"description": "Ein Gemini 2.0 Flash Modell, das auf Kosteneffizienz und niedrige Latenz optimiert wurde."
|
736
|
+
},
|
704
737
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
705
738
|
"description": "Gemini 2.0 Flash Exp ist Googles neuestes experimentelles multimodales KI-Modell mit der nächsten Generation von Funktionen, außergewöhnlicher Geschwindigkeit, nativer Tool-Nutzung und multimodaler Generierung."
|
706
739
|
},
|
707
740
|
"gemini-2.0-flash-thinking-exp-1219": {
|
708
741
|
"description": "Gemini 2.0 Flash Exp ist Googles neuestes experimentelles multimodales KI-Modell mit der nächsten Generation von Funktionen, außergewöhnlicher Geschwindigkeit, nativen Toolaufrufen und multimodaler Generierung."
|
709
742
|
},
|
710
|
-
"gemini-exp-
|
711
|
-
"description": "Gemini
|
712
|
-
},
|
713
|
-
"gemini-exp-1121": {
|
714
|
-
"description": "Gemini Exp 1121 ist Googles neuestes experimentelles multimodales KI-Modell, das über eine schnelle Verarbeitungskapazität verfügt und Texte, Bilder und Videoeingaben unterstützt, um eine effiziente Skalierung für verschiedene Aufgaben zu ermöglichen."
|
743
|
+
"gemini-2.0-pro-exp-02-05": {
|
744
|
+
"description": "Gemini 2.0 Pro Experimental ist Googles neuestes experimentelles multimodales KI-Modell, das im Vergleich zu früheren Versionen eine gewisse Qualitätsverbesserung aufweist, insbesondere in Bezug auf Weltwissen, Code und lange Kontexte."
|
715
745
|
},
|
716
746
|
"gemini-exp-1206": {
|
717
747
|
"description": "Gemini Exp 1206 ist Googles neuestes experimentelles multimodales KI-Modell, das im Vergleich zu historischen Versionen eine gewisse Qualitätssteigerung aufweist."
|
@@ -779,6 +809,12 @@
|
|
779
809
|
"glm-zero-preview": {
|
780
810
|
"description": "GLM-Zero-Preview verfügt über starke Fähigkeiten zur komplexen Schlussfolgerung und zeigt hervorragende Leistungen in den Bereichen logisches Denken, Mathematik und Programmierung."
|
781
811
|
},
|
812
|
+
"google/gemini-2.0-flash-001": {
|
813
|
+
"description": "Gemini 2.0 Flash bietet nächste Generation Funktionen und Verbesserungen, einschließlich außergewöhnlicher Geschwindigkeit, nativer Werkzeugnutzung, multimodaler Generierung und einem Kontextfenster von 1M Tokens."
|
814
|
+
},
|
815
|
+
"google/gemini-2.0-pro-exp-02-05:free": {
|
816
|
+
"description": "Gemini 2.0 Pro Experimental ist Googles neuestes experimentelles multimodales KI-Modell, das im Vergleich zu früheren Versionen eine gewisse Qualitätsverbesserung aufweist, insbesondere in Bezug auf Weltwissen, Code und lange Kontexte."
|
817
|
+
},
|
782
818
|
"google/gemini-flash-1.5": {
|
783
819
|
"description": "Gemini 1.5 Flash bietet optimierte multimodale Verarbeitungsfähigkeiten, die für verschiedene komplexe Aufgabenszenarien geeignet sind."
|
784
820
|
},
|
@@ -995,6 +1031,9 @@
|
|
995
1031
|
"llama-3.2-90b-vision-preview": {
|
996
1032
|
"description": "Llama 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellen Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
997
1033
|
},
|
1034
|
+
"llama-3.3-70b-instruct": {
|
1035
|
+
"description": "Llama 3.3 ist das fortschrittlichste mehrsprachige Open-Source-Sprachmodell der Llama-Serie, das eine Leistung bietet, die mit einem 405B-Modell vergleichbar ist, und das zu extrem niedrigen Kosten. Es basiert auf der Transformer-Architektur und verbessert die Nützlichkeit und Sicherheit durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF). Die auf Anweisungen optimierte Version ist speziell für mehrsprachige Dialoge optimiert und übertrifft in mehreren Branchenbenchmarks viele Open-Source- und geschlossene Chat-Modelle. Das Wissensdatum endet im Dezember 2023."
|
1036
|
+
},
|
998
1037
|
"llama-3.3-70b-versatile": {
|
999
1038
|
"description": "Das Meta Llama 3.3 ist ein mehrsprachiges, großes Sprachmodell (LLM), das aus einem vortrainierten und anweisungsorientierten generativen Modell mit 70B (Text-Eingabe/Text-Ausgabe) besteht. Das anweisungsorientierte Modell von Llama 3.3 ist für mehrsprachige Dialoganwendungen optimiert und übertrifft viele verfügbare Open-Source- und Closed-Source-Chat-Modelle bei gängigen Branchenbenchmarks."
|
1000
1039
|
},
|
@@ -1136,6 +1175,12 @@
|
|
1136
1175
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1137
1176
|
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellem Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
1138
1177
|
},
|
1178
|
+
"meta-llama/llama-3.3-70b-instruct": {
|
1179
|
+
"description": "Llama 3.3 ist das fortschrittlichste mehrsprachige Open-Source-Sprachmodell der Llama-Serie, das eine Leistung bietet, die mit einem 405B-Modell vergleichbar ist, und das zu extrem niedrigen Kosten. Es basiert auf der Transformer-Architektur und verbessert die Nützlichkeit und Sicherheit durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF). Die auf Anweisungen optimierte Version ist speziell für mehrsprachige Dialoge optimiert und übertrifft in mehreren Branchenbenchmarks viele Open-Source- und geschlossene Chat-Modelle. Das Wissensdatum endet im Dezember 2023."
|
1180
|
+
},
|
1181
|
+
"meta-llama/llama-3.3-70b-instruct:free": {
|
1182
|
+
"description": "Llama 3.3 ist das fortschrittlichste mehrsprachige Open-Source-Sprachmodell der Llama-Serie, das eine Leistung bietet, die mit einem 405B-Modell vergleichbar ist, und das zu extrem niedrigen Kosten. Es basiert auf der Transformer-Architektur und verbessert die Nützlichkeit und Sicherheit durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF). Die auf Anweisungen optimierte Version ist speziell für mehrsprachige Dialoge optimiert und übertrifft in mehreren Branchenbenchmarks viele Open-Source- und geschlossene Chat-Modelle. Das Wissensdatum endet im Dezember 2023."
|
1183
|
+
},
|
1139
1184
|
"meta.llama3-1-405b-instruct-v1:0": {
|
1140
1185
|
"description": "Meta Llama 3.1 405B Instruct ist das größte und leistungsstärkste Modell innerhalb des Llama 3.1 Instruct Modells. Es handelt sich um ein hochentwickeltes Modell für dialogbasierte Schlussfolgerungen und die Generierung synthetischer Daten, das auch als Grundlage für die professionelle kontinuierliche Vorab- und Feinabstimmung in bestimmten Bereichen verwendet werden kann. Die mehrsprachigen großen Sprachmodelle (LLMs) von Llama 3.1 sind eine Gruppe von vortrainierten, anweisungsoptimierten Generierungsmodellen, die in den Größen 8B, 70B und 405B (Text-Eingabe/Ausgabe) verfügbar sind. Die anweisungsoptimierten Textmodelle (8B, 70B, 405B) sind speziell für mehrsprachige Dialoganwendungen optimiert und haben in gängigen Branchenbenchmarks viele verfügbare Open-Source-Chat-Modelle übertroffen. Llama 3.1 ist für kommerzielle und Forschungszwecke in mehreren Sprachen konzipiert. Die anweisungsoptimierten Textmodelle eignen sich für assistentengleiche Chats, während die vortrainierten Modelle für verschiedene Aufgaben der natürlichen Sprachgenerierung angepasst werden können. Das Llama 3.1 Modell unterstützt auch die Nutzung seiner Ausgaben zur Verbesserung anderer Modelle, einschließlich der Generierung synthetischer Daten und der Verfeinerung. Llama 3.1 ist ein autoregressives Sprachmodell, das auf einer optimierten Transformer-Architektur basiert. Die angepasste Version verwendet überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF), um den menschlichen Präferenzen für Hilfsbereitschaft und Sicherheit zu entsprechen."
|
1141
1186
|
},
|
@@ -1549,5 +1594,8 @@
|
|
1549
1594
|
},
|
1550
1595
|
"yi-vision": {
|
1551
1596
|
"description": "Modell für komplexe visuelle Aufgaben, das hohe Leistungsfähigkeit bei der Bildverarbeitung und -analyse bietet."
|
1597
|
+
},
|
1598
|
+
"yi-vision-v2": {
|
1599
|
+
"description": "Ein Modell für komplexe visuelle Aufgaben, das leistungsstarke Verständnis- und Analysefähigkeiten auf der Grundlage mehrerer Bilder bietet."
|
1552
1600
|
}
|
1553
1601
|
}
|
@@ -98,6 +98,9 @@
|
|
98
98
|
"taichu": {
|
99
99
|
"description": "Das Institut für Automatisierung der Chinesischen Akademie der Wissenschaften und das Wuhan Institute of Artificial Intelligence haben ein neues Generation multimodales großes Modell eingeführt, das umfassende Frage-Antwort-Aufgaben unterstützt, darunter mehrstufige Fragen, Textgenerierung, Bildgenerierung, 3D-Verständnis und Signalverarbeitung, mit stärkeren kognitiven, verstehenden und kreativen Fähigkeiten, die ein neues interaktives Erlebnis bieten."
|
100
100
|
},
|
101
|
+
"tencentcloud": {
|
102
|
+
"description": "Die atomare Fähigkeit der Wissensmaschine (LLM Knowledge Engine Atomic Power) basiert auf der Entwicklung der Wissensmaschine und bietet eine umfassende Fähigkeit zur Wissensabfrage für Unternehmen und Entwickler. Sie können mit verschiedenen atomaren Fähigkeiten Ihren eigenen Modellservice erstellen und Dokumentenanalysen, -aufteilungen, Embeddings, mehrfache Umformulierungen und andere Dienste kombinieren, um maßgeschneiderte KI-Lösungen für Ihr Unternehmen zu entwickeln."
|
103
|
+
},
|
101
104
|
"togetherai": {
|
102
105
|
"description": "Together AI strebt an, durch innovative KI-Modelle führende Leistungen zu erzielen und bietet umfangreiche Anpassungsmöglichkeiten, einschließlich schneller Skalierungsunterstützung und intuitiver Bereitstellungsprozesse, um den unterschiedlichen Anforderungen von Unternehmen gerecht zu werden."
|
103
106
|
},
|