@lobehub/chat 1.51.2 → 1.51.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +41 -0
- package/Dockerfile +1 -1
- package/Dockerfile.database +1 -1
- package/changelog/v1.json +12 -0
- package/docs/usage/providers/wenxin.mdx +16 -13
- package/docs/usage/providers/wenxin.zh-CN.mdx +11 -8
- package/package.json +1 -2
- package/src/app/(main)/settings/llm/ProviderList/providers.tsx +2 -4
- package/src/config/aiModels/wenxin.ts +125 -19
- package/src/config/llm.ts +3 -5
- package/src/config/modelProviders/wenxin.ts +100 -23
- package/src/const/auth.ts +0 -3
- package/src/features/Conversation/Error/APIKeyForm/index.tsx +0 -3
- package/src/features/Conversation/components/ChatItem/utils.test.ts +284 -0
- package/src/features/Conversation/components/ChatItem/utils.ts +39 -8
- package/src/features/Conversation/components/MarkdownElements/LobeArtifact/rehypePlugin.test.ts +125 -0
- package/src/features/DevPanel/CacheViewer/DataTable/index.tsx +33 -0
- package/src/features/DevPanel/CacheViewer/cacheProvider.tsx +64 -0
- package/src/features/DevPanel/CacheViewer/getCacheEntries.ts +52 -0
- package/src/features/DevPanel/CacheViewer/index.tsx +25 -0
- package/src/features/DevPanel/CacheViewer/schema.ts +49 -0
- package/src/features/DevPanel/FeatureFlagViewer/Form.tsx +93 -0
- package/src/features/DevPanel/FeatureFlagViewer/index.tsx +11 -0
- package/src/features/DevPanel/MetadataViewer/Ld.tsx +25 -0
- package/src/features/DevPanel/MetadataViewer/MetaData.tsx +30 -0
- package/src/features/DevPanel/MetadataViewer/Og.tsx +75 -0
- package/src/features/DevPanel/MetadataViewer/index.tsx +80 -0
- package/src/features/DevPanel/MetadataViewer/useHead.ts +16 -0
- package/src/features/DevPanel/PostgresViewer/DataTable/index.tsx +39 -49
- package/src/features/DevPanel/PostgresViewer/{TableColumns.tsx → SchemaSidebar/Columns.tsx} +6 -4
- package/src/features/DevPanel/PostgresViewer/{Schema.tsx → SchemaSidebar/index.tsx} +49 -55
- package/src/features/DevPanel/PostgresViewer/index.tsx +4 -2
- package/src/features/DevPanel/features/FloatPanel.tsx +218 -0
- package/src/features/DevPanel/features/Header.tsx +50 -0
- package/src/features/DevPanel/features/Table/TableCell.tsx +73 -0
- package/src/features/DevPanel/features/Table/TooltipContent.tsx +39 -0
- package/src/features/DevPanel/{PostgresViewer/DataTable/Table.tsx → features/Table/index.tsx} +12 -14
- package/src/features/DevPanel/index.tsx +29 -5
- package/src/libs/agent-runtime/AgentRuntime.test.ts +0 -1
- package/src/libs/agent-runtime/AgentRuntime.ts +7 -0
- package/src/libs/agent-runtime/wenxin/index.ts +10 -107
- package/src/locales/default/modelProvider.ts +0 -20
- package/src/server/modules/AgentRuntime/index.test.ts +0 -21
- package/src/services/_auth.ts +0 -14
- package/src/store/chat/slices/portal/selectors.test.ts +169 -3
- package/src/store/chat/slices/portal/selectors.ts +6 -1
- package/src/store/user/slices/modelList/selectors/keyVaults.ts +0 -2
- package/src/types/aiProvider.ts +0 -1
- package/src/types/user/settings/keyVaults.ts +1 -6
- package/src/app/(backend)/webapi/chat/wenxin/route.test.ts +0 -27
- package/src/app/(backend)/webapi/chat/wenxin/route.ts +0 -30
- package/src/app/(main)/settings/llm/ProviderList/Wenxin/index.tsx +0 -44
- package/src/app/(main)/settings/provider/(detail)/wenxin/page.tsx +0 -61
- package/src/features/Conversation/Error/APIKeyForm/Wenxin.tsx +0 -49
- package/src/features/DevPanel/FloatPanel.tsx +0 -136
- package/src/features/DevPanel/PostgresViewer/DataTable/TableCell.tsx +0 -34
- package/src/libs/agent-runtime/utils/streams/wenxin.test.ts +0 -153
- package/src/libs/agent-runtime/utils/streams/wenxin.ts +0 -38
- package/src/libs/agent-runtime/wenxin/type.ts +0 -84
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,47 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.51.3](https://github.com/lobehub/lobe-chat/compare/v1.51.2...v1.51.3)
|
6
|
+
|
7
|
+
<sup>Released on **2025-02-05**</sup>
|
8
|
+
|
9
|
+
#### ♻ Code Refactoring
|
10
|
+
|
11
|
+
- **misc**: Refactor Wenxin with LobeOpenAICompatibleFactory.
|
12
|
+
|
13
|
+
#### 🐛 Bug Fixes
|
14
|
+
|
15
|
+
- **misc**: Artifact Parsing and Rendering Bug Fix for Gemini 2.0 Flash.
|
16
|
+
|
17
|
+
#### 💄 Styles
|
18
|
+
|
19
|
+
- **misc**: Add Cache, Metadata, FeatureFlag Viewer to DevPanel.
|
20
|
+
|
21
|
+
<br/>
|
22
|
+
|
23
|
+
<details>
|
24
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
25
|
+
|
26
|
+
#### Code refactoring
|
27
|
+
|
28
|
+
- **misc**: Refactor Wenxin with LobeOpenAICompatibleFactory, closes [#5729](https://github.com/lobehub/lobe-chat/issues/5729) ([a90a75e](https://github.com/lobehub/lobe-chat/commit/a90a75e))
|
29
|
+
|
30
|
+
#### What's fixed
|
31
|
+
|
32
|
+
- **misc**: Artifact Parsing and Rendering Bug Fix for Gemini 2.0 Flash, closes [#5633](https://github.com/lobehub/lobe-chat/issues/5633) ([7d782b1](https://github.com/lobehub/lobe-chat/commit/7d782b1))
|
33
|
+
|
34
|
+
#### Styles
|
35
|
+
|
36
|
+
- **misc**: Add Cache, Metadata, FeatureFlag Viewer to DevPanel, closes [#5764](https://github.com/lobehub/lobe-chat/issues/5764) ([db4e9c7](https://github.com/lobehub/lobe-chat/commit/db4e9c7))
|
37
|
+
|
38
|
+
</details>
|
39
|
+
|
40
|
+
<div align="right">
|
41
|
+
|
42
|
+
[](#readme-top)
|
43
|
+
|
44
|
+
</div>
|
45
|
+
|
5
46
|
### [Version 1.51.2](https://github.com/lobehub/lobe-chat/compare/v1.51.1...v1.51.2)
|
6
47
|
|
7
48
|
<sup>Released on **2025-02-05**</sup>
|
package/Dockerfile
CHANGED
@@ -212,7 +212,7 @@ ENV \
|
|
212
212
|
# Upstage
|
213
213
|
UPSTAGE_API_KEY="" UPSTAGE_MODEL_LIST="" \
|
214
214
|
# Wenxin
|
215
|
-
|
215
|
+
WENXIN_API_KEY="" WENXIN_MODEL_LIST="" \
|
216
216
|
# xAI
|
217
217
|
XAI_API_KEY="" XAI_MODEL_LIST="" XAI_PROXY_URL="" \
|
218
218
|
# 01.AI
|
package/Dockerfile.database
CHANGED
@@ -247,7 +247,7 @@ ENV \
|
|
247
247
|
# Upstage
|
248
248
|
UPSTAGE_API_KEY="" UPSTAGE_MODEL_LIST="" \
|
249
249
|
# Wenxin
|
250
|
-
|
250
|
+
WENXIN_API_KEY="" WENXIN_MODEL_LIST="" \
|
251
251
|
# xAI
|
252
252
|
XAI_API_KEY="" XAI_MODEL_LIST="" XAI_PROXY_URL="" \
|
253
253
|
# 01.AI
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,16 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Add Cache, Metadata, FeatureFlag Viewer to DevPanel."
|
6
|
+
],
|
7
|
+
"fixes": [
|
8
|
+
"Artifact Parsing and Rendering Bug Fix for Gemini 2.0 Flash."
|
9
|
+
]
|
10
|
+
},
|
11
|
+
"date": "2025-02-05",
|
12
|
+
"version": "1.51.3"
|
13
|
+
},
|
2
14
|
{
|
3
15
|
"children": {
|
4
16
|
"improvements": [
|
@@ -22,27 +22,30 @@ This article will guide you on how to use Wenxin Qianfan in LobeChat.
|
|
22
22
|
<Steps>
|
23
23
|
### Step 1: Obtain the Wenxin Qianfan API Key
|
24
24
|
|
25
|
-
- Register and log in to the [Baidu
|
26
|
-
- Navigate to `Baidu
|
27
|
-
-
|
28
|
-
- Create an application
|
25
|
+
- Register and log in to the [Baidu AI Cloud Console](https://console.bce.baidu.com/)
|
26
|
+
- Navigate to `Baidu AI Cloud Qianfan ModelBuilder`
|
27
|
+
- Select `API Key` from the left menu
|
29
28
|
|
30
|
-
<Image alt={'
|
29
|
+
<Image alt={'API Key'} inStep src={'https://github.com/user-attachments/assets/6234428d-5633-4b2f-be22-1a1772a69a55'} />
|
31
30
|
|
32
|
-
-
|
33
|
-
-
|
31
|
+
- Click `Create API Key`
|
32
|
+
- In `Service`, select `Qianfan ModelBuilder`
|
33
|
+
- In `Resource`, choose `All Resources`
|
34
|
+
- Click the `Confirm` button
|
35
|
+
- Copy the `API Key` and keep it safe
|
34
36
|
|
35
|
-
<Image alt={'
|
37
|
+
<Image alt={'Create API Key'} inStep src={'https://github.com/user-attachments/assets/6d068fe0-8100-4b43-b0c3-7934f54e688f'} />
|
38
|
+
<Image alt={'Copy API Key'} inStep src={'https://github.com/user-attachments/assets/629adf4e-e9e1-40dc-b9e5-d7b908878170'} />
|
36
39
|
|
37
40
|
### Step 2: Configure Wenxin Qianfan in LobeChat
|
38
41
|
|
39
|
-
- Go to the `Settings`
|
40
|
-
-
|
42
|
+
- Go to the `Settings` page of LobeChat
|
43
|
+
- Under `Language Models`, find the `Wenxin Qianfan` settings
|
41
44
|
|
42
|
-
<Image alt={'Enter API
|
45
|
+
<Image alt={'Enter API Key'} inStep src={'https://github.com/user-attachments/assets/d7666e2a-0202-4b45-8338-9806ddffa44e'} />
|
43
46
|
|
44
|
-
- Enter the obtained `
|
45
|
-
- Select a Wenxin Qianfan model for your AI assistant to start
|
47
|
+
- Enter the obtained `API Key`
|
48
|
+
- Select a Wenxin Qianfan model for your AI assistant, and you're ready to start chatting!
|
46
49
|
|
47
50
|
<Image alt={'Select Wenxin Qianfan Model and Start Chat'} inStep src={'https://github.com/user-attachments/assets/b6e6a3eb-13c6-46f0-9c7c-69a20deae30f'} />
|
48
51
|
|
@@ -22,24 +22,27 @@ tags:
|
|
22
22
|
|
23
23
|
- 注册并登录 [百度智能云控制台](https://console.bce.baidu.com/)
|
24
24
|
- 进入 `百度智能云千帆 ModelBuilder`
|
25
|
-
-
|
26
|
-
- 创建一个应用
|
25
|
+
- 在左侧菜单中选择 `API Key`
|
27
26
|
|
28
|
-
<Image alt={'
|
27
|
+
<Image alt={'API Key'} inStep src={'https://github.com/user-attachments/assets/6234428d-5633-4b2f-be22-1a1772a69a55'} />
|
29
28
|
|
30
|
-
-
|
31
|
-
-
|
29
|
+
- 点击创建 API Key
|
30
|
+
- 在 `服务` 中选择 `千帆ModelBuilder`
|
31
|
+
- 在 `资源` 中选择 `所有资源`
|
32
|
+
- 点击 `确定` 按钮
|
33
|
+
- 复制 `API Key` 并妥善保存
|
32
34
|
|
33
|
-
<Image alt={'
|
35
|
+
<Image alt={'创建密钥'} inStep src={'https://github.com/user-attachments/assets/6d068fe0-8100-4b43-b0c3-7934f54e688f'} />
|
36
|
+
<Image alt={'复制密钥'} inStep src={'https://github.com/user-attachments/assets/629adf4e-e9e1-40dc-b9e5-d7b908878170'} />
|
34
37
|
|
35
38
|
### 步骤二:在 LobeChat 中配置文心千帆
|
36
39
|
|
37
40
|
- 访问 LobeChat 的`设置`界面
|
38
41
|
- 在`语言模型`下找到 `文心千帆` 的设置项
|
39
42
|
|
40
|
-
<Image alt={'填入 API 密钥'} inStep src={'https://github.com/user-attachments/assets/
|
43
|
+
<Image alt={'填入 API 密钥'} inStep src={'https://github.com/user-attachments/assets/d7666e2a-0202-4b45-8338-9806ddffa44e'} />
|
41
44
|
|
42
|
-
- 填入获得的 `
|
45
|
+
- 填入获得的 `API Key`
|
43
46
|
- 为你的 AI 助手选择一个文心千帆的模型即可开始对话
|
44
47
|
|
45
48
|
<Image alt={'选择文心千帆模型并开始对话'} inStep src={'https://github.com/user-attachments/assets/b6e6a3eb-13c6-46f0-9c7c-69a20deae30f'} />
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.51.
|
3
|
+
"version": "1.51.3",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -111,7 +111,6 @@
|
|
111
111
|
"@aws-sdk/s3-request-presigner": "^3.723.0",
|
112
112
|
"@azure/core-rest-pipeline": "1.16.0",
|
113
113
|
"@azure/openai": "1.0.0-beta.12",
|
114
|
-
"@baiducloud/qianfan": "^0.1.9",
|
115
114
|
"@cfworker/json-schema": "^4.1.0",
|
116
115
|
"@clerk/localizations": "^3.9.6",
|
117
116
|
"@clerk/nextjs": "^6.10.6",
|
@@ -27,6 +27,7 @@ import {
|
|
27
27
|
TaichuProviderCard,
|
28
28
|
TogetherAIProviderCard,
|
29
29
|
UpstageProviderCard,
|
30
|
+
WenxinProviderCard,
|
30
31
|
XAIProviderCard,
|
31
32
|
ZeroOneProviderCard,
|
32
33
|
ZhiPuProviderCard,
|
@@ -40,7 +41,6 @@ import { useGithubProvider } from './Github';
|
|
40
41
|
import { useHuggingFaceProvider } from './HuggingFace';
|
41
42
|
import { useOllamaProvider } from './Ollama';
|
42
43
|
import { useOpenAIProvider } from './OpenAI';
|
43
|
-
import { useWenxinProvider } from './Wenxin';
|
44
44
|
|
45
45
|
export const useProviderList = (): ProviderItem[] => {
|
46
46
|
const AzureProvider = useAzureProvider();
|
@@ -50,7 +50,6 @@ export const useProviderList = (): ProviderItem[] => {
|
|
50
50
|
const CloudflareProvider = useCloudflareProvider();
|
51
51
|
const GithubProvider = useGithubProvider();
|
52
52
|
const HuggingFaceProvider = useHuggingFaceProvider();
|
53
|
-
const WenxinProvider = useWenxinProvider();
|
54
53
|
|
55
54
|
return useMemo(
|
56
55
|
() => [
|
@@ -75,7 +74,7 @@ export const useProviderList = (): ProviderItem[] => {
|
|
75
74
|
UpstageProviderCard,
|
76
75
|
XAIProviderCard,
|
77
76
|
QwenProviderCard,
|
78
|
-
|
77
|
+
WenxinProviderCard,
|
79
78
|
HunyuanProviderCard,
|
80
79
|
SparkProviderCard,
|
81
80
|
ZhiPuProviderCard,
|
@@ -99,7 +98,6 @@ export const useProviderList = (): ProviderItem[] => {
|
|
99
98
|
BedrockProvider,
|
100
99
|
CloudflareProvider,
|
101
100
|
GithubProvider,
|
102
|
-
WenxinProvider,
|
103
101
|
HuggingFaceProvider,
|
104
102
|
],
|
105
103
|
);
|
@@ -2,12 +2,15 @@ import { AIChatModelCard } from '@/types/aiModel';
|
|
2
2
|
|
3
3
|
const wenxinChatModels: AIChatModelCard[] = [
|
4
4
|
{
|
5
|
+
abilities: {
|
6
|
+
functionCall: true,
|
7
|
+
},
|
5
8
|
contextWindowTokens: 8192,
|
6
9
|
description:
|
7
10
|
'百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
|
8
11
|
displayName: 'ERNIE 3.5 8K',
|
9
12
|
enabled: true,
|
10
|
-
id: '
|
13
|
+
id: 'ernie-3.5-8k',
|
11
14
|
pricing: {
|
12
15
|
currency: 'CNY',
|
13
16
|
input: 0.8,
|
@@ -16,11 +19,14 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
16
19
|
type: 'chat',
|
17
20
|
},
|
18
21
|
{
|
22
|
+
abilities: {
|
23
|
+
functionCall: true,
|
24
|
+
},
|
19
25
|
contextWindowTokens: 8192,
|
20
26
|
description:
|
21
27
|
'百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
|
22
28
|
displayName: 'ERNIE 3.5 8K Preview',
|
23
|
-
id: '
|
29
|
+
id: 'ernie-3.5-8k-preview',
|
24
30
|
pricing: {
|
25
31
|
currency: 'CNY',
|
26
32
|
input: 0.8,
|
@@ -29,12 +35,15 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
29
35
|
type: 'chat',
|
30
36
|
},
|
31
37
|
{
|
38
|
+
abilities: {
|
39
|
+
functionCall: true,
|
40
|
+
},
|
32
41
|
contextWindowTokens: 128_000,
|
33
42
|
description:
|
34
43
|
'百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
|
35
44
|
displayName: 'ERNIE 3.5 128K',
|
36
45
|
enabled: true,
|
37
|
-
id: '
|
46
|
+
id: 'ernie-3.5-128k',
|
38
47
|
pricing: {
|
39
48
|
currency: 'CNY',
|
40
49
|
input: 0.8,
|
@@ -43,12 +52,15 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
43
52
|
type: 'chat',
|
44
53
|
},
|
45
54
|
{
|
55
|
+
abilities: {
|
56
|
+
functionCall: true,
|
57
|
+
},
|
46
58
|
contextWindowTokens: 8192,
|
47
59
|
description:
|
48
60
|
'百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。',
|
49
61
|
displayName: 'ERNIE 4.0 8K',
|
50
62
|
enabled: true,
|
51
|
-
id: '
|
63
|
+
id: 'ernie-4.0-8k-latest',
|
52
64
|
pricing: {
|
53
65
|
currency: 'CNY',
|
54
66
|
input: 30,
|
@@ -57,11 +69,14 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
57
69
|
type: 'chat',
|
58
70
|
},
|
59
71
|
{
|
72
|
+
abilities: {
|
73
|
+
functionCall: true,
|
74
|
+
},
|
60
75
|
contextWindowTokens: 8192,
|
61
76
|
description:
|
62
77
|
'百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。',
|
63
78
|
displayName: 'ERNIE 4.0 8K Preview',
|
64
|
-
id: '
|
79
|
+
id: 'ernie-4.0-8k-preview',
|
65
80
|
pricing: {
|
66
81
|
currency: 'CNY',
|
67
82
|
input: 30,
|
@@ -70,12 +85,15 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
70
85
|
type: 'chat',
|
71
86
|
},
|
72
87
|
{
|
88
|
+
abilities: {
|
89
|
+
functionCall: true,
|
90
|
+
},
|
73
91
|
contextWindowTokens: 8192,
|
74
92
|
description:
|
75
93
|
'百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀',
|
76
94
|
displayName: 'ERNIE 4.0 Turbo 8K',
|
77
95
|
enabled: true,
|
78
|
-
id: '
|
96
|
+
id: 'ernie-4.0-turbo-8k-latest',
|
79
97
|
pricing: {
|
80
98
|
currency: 'CNY',
|
81
99
|
input: 20,
|
@@ -84,12 +102,15 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
84
102
|
type: 'chat',
|
85
103
|
},
|
86
104
|
{
|
105
|
+
abilities: {
|
106
|
+
functionCall: true,
|
107
|
+
},
|
87
108
|
contextWindowTokens: 128_000,
|
88
109
|
description:
|
89
110
|
'百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀',
|
90
111
|
displayName: 'ERNIE 4.0 Turbo 128K',
|
91
112
|
enabled: true,
|
92
|
-
id: '
|
113
|
+
id: 'ernie-4.0-turbo-128k',
|
93
114
|
pricing: {
|
94
115
|
currency: 'CNY',
|
95
116
|
input: 20,
|
@@ -98,11 +119,14 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
98
119
|
type: 'chat',
|
99
120
|
},
|
100
121
|
{
|
122
|
+
abilities: {
|
123
|
+
functionCall: true,
|
124
|
+
},
|
101
125
|
contextWindowTokens: 8192,
|
102
126
|
description:
|
103
127
|
'百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀',
|
104
128
|
displayName: 'ERNIE 4.0 Turbo 8K Preview',
|
105
|
-
id: '
|
129
|
+
id: 'ernie-4.0-turbo-8k-preview',
|
106
130
|
pricing: {
|
107
131
|
currency: 'CNY',
|
108
132
|
input: 20,
|
@@ -111,12 +135,27 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
111
135
|
type: 'chat',
|
112
136
|
},
|
113
137
|
{
|
138
|
+
contextWindowTokens: 8192,
|
139
|
+
description:
|
140
|
+
'ERNIE Lite是百度自研的轻量级大语言模型,兼顾优异的模型效果与推理性能,适合低算力AI加速卡推理使用。',
|
141
|
+
displayName: 'ERNIE Lite 8K',
|
142
|
+
id: 'ernie-lite-8k',
|
143
|
+
pricing: {
|
144
|
+
currency: 'CNY',
|
145
|
+
input: 0,
|
146
|
+
output: 0,
|
147
|
+
},
|
148
|
+
type: 'chat',
|
149
|
+
},
|
150
|
+
{
|
151
|
+
abilities: {
|
152
|
+
functionCall: true,
|
153
|
+
},
|
114
154
|
contextWindowTokens: 128_000,
|
115
155
|
description:
|
116
156
|
'百度自研的轻量级大语言模型,兼顾优异的模型效果与推理性能,效果比ERNIE Lite更优,适合低算力AI加速卡推理使用。',
|
117
157
|
displayName: 'ERNIE Lite Pro 128K',
|
118
|
-
|
119
|
-
id: 'ERNIE-Lite-Pro-128K',
|
158
|
+
id: 'ernie-lite-pro-128k',
|
120
159
|
pricing: {
|
121
160
|
currency: 'CNY',
|
122
161
|
input: 0.2,
|
@@ -125,16 +164,15 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
125
164
|
type: 'chat',
|
126
165
|
},
|
127
166
|
{
|
128
|
-
contextWindowTokens:
|
167
|
+
contextWindowTokens: 8192,
|
129
168
|
description:
|
130
|
-
'
|
131
|
-
displayName: 'ERNIE
|
132
|
-
|
133
|
-
id: 'ERNIE-Speed-Pro-128K',
|
169
|
+
'ERNIE Tiny是百度自研的超高性能大语言模型,部署与精调成本在文心系列模型中最低。',
|
170
|
+
displayName: 'ERNIE Tiny 8K',
|
171
|
+
id: 'ernie-tiny-8k',
|
134
172
|
pricing: {
|
135
173
|
currency: 'CNY',
|
136
|
-
input: 0
|
137
|
-
output: 0
|
174
|
+
input: 0,
|
175
|
+
output: 0,
|
138
176
|
},
|
139
177
|
type: 'chat',
|
140
178
|
},
|
@@ -143,7 +181,7 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
143
181
|
description:
|
144
182
|
'百度2024年最新发布的自研高性能大语言模型,通用能力优异,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。',
|
145
183
|
displayName: 'ERNIE Speed 128K',
|
146
|
-
id: '
|
184
|
+
id: 'ernie-speed-128k',
|
147
185
|
pricing: {
|
148
186
|
currency: 'CNY',
|
149
187
|
input: 0,
|
@@ -151,12 +189,25 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
151
189
|
},
|
152
190
|
type: 'chat',
|
153
191
|
},
|
192
|
+
{
|
193
|
+
contextWindowTokens: 128_000,
|
194
|
+
description:
|
195
|
+
'百度2024年最新发布的自研高性能大语言模型,通用能力优异,效果比ERNIE Speed更优,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。',
|
196
|
+
displayName: 'ERNIE Speed Pro 128K',
|
197
|
+
id: 'ernie-speed-pro-128k',
|
198
|
+
pricing: {
|
199
|
+
currency: 'CNY',
|
200
|
+
input: 0.3,
|
201
|
+
output: 0.6,
|
202
|
+
},
|
203
|
+
type: 'chat',
|
204
|
+
},
|
154
205
|
{
|
155
206
|
contextWindowTokens: 8192,
|
156
207
|
description:
|
157
208
|
'百度自研的垂直场景大语言模型,适合游戏NPC、客服对话、对话角色扮演等应用场景,人设风格更为鲜明、一致,指令遵循能力更强,推理性能更优。',
|
158
209
|
displayName: 'ERNIE Character 8K',
|
159
|
-
id: '
|
210
|
+
id: 'ernie-char-8k',
|
160
211
|
pricing: {
|
161
212
|
currency: 'CNY',
|
162
213
|
input: 4,
|
@@ -164,6 +215,61 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
164
215
|
},
|
165
216
|
type: 'chat',
|
166
217
|
},
|
218
|
+
{
|
219
|
+
contextWindowTokens: 8192,
|
220
|
+
description:
|
221
|
+
'百度自研的垂直场景大语言模型,适合游戏NPC、客服对话、对话角色扮演等应用场景,人设风格更为鲜明、一致,指令遵循能力更强,推理性能更优。',
|
222
|
+
displayName: 'ERNIE Character Fiction 8K',
|
223
|
+
id: 'ernie-char-fiction-8k',
|
224
|
+
pricing: {
|
225
|
+
currency: 'CNY',
|
226
|
+
input: 4,
|
227
|
+
output: 8,
|
228
|
+
},
|
229
|
+
type: 'chat',
|
230
|
+
},
|
231
|
+
{
|
232
|
+
contextWindowTokens: 8192,
|
233
|
+
description:
|
234
|
+
'百度自研通用大语言模型,在小说续写能力上有明显优势,也可用在短剧、电影等场景。',
|
235
|
+
displayName: 'ERNIE Novel 8K',
|
236
|
+
id: 'ernie-novel-8k',
|
237
|
+
pricing: {
|
238
|
+
currency: 'CNY',
|
239
|
+
input: 40,
|
240
|
+
output: 120,
|
241
|
+
},
|
242
|
+
type: 'chat',
|
243
|
+
},
|
244
|
+
{
|
245
|
+
contextWindowTokens: 65_536,
|
246
|
+
description:
|
247
|
+
'DeepSeek-V3 为杭州深度求索人工智能基础技术研究有限公司自研的 MoE 模型,其多项评测成绩突出,在主流榜单中位列开源模型榜首。V3 相比 V2.5 模型生成速度实现 3 倍提升,为用户带来更加迅速流畅的使用体验。',
|
248
|
+
displayName: 'DeepSeek V3',
|
249
|
+
id: 'deepseek-v3',
|
250
|
+
pricing: {
|
251
|
+
currency: 'CNY',
|
252
|
+
input: 0.8,
|
253
|
+
output: 1.6,
|
254
|
+
},
|
255
|
+
type: 'chat',
|
256
|
+
},
|
257
|
+
{
|
258
|
+
abilities: {
|
259
|
+
reasoning: true,
|
260
|
+
},
|
261
|
+
contextWindowTokens: 65_536,
|
262
|
+
description:
|
263
|
+
'DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。',
|
264
|
+
displayName: 'DeepSeek R1',
|
265
|
+
id: 'deepseek-r1',
|
266
|
+
pricing: {
|
267
|
+
currency: 'CNY',
|
268
|
+
input: 2,
|
269
|
+
output: 8,
|
270
|
+
},
|
271
|
+
type: 'chat',
|
272
|
+
},
|
167
273
|
];
|
168
274
|
|
169
275
|
export const allModels = [...wenxinChatModels];
|
package/src/config/llm.ts
CHANGED
@@ -64,8 +64,7 @@ export const getLLMConfig = () => {
|
|
64
64
|
AWS_SESSION_TOKEN: z.string().optional(),
|
65
65
|
|
66
66
|
ENABLED_WENXIN: z.boolean(),
|
67
|
-
|
68
|
-
WENXIN_SECRET_KEY: z.string().optional(),
|
67
|
+
WENXIN_API_KEY: z.string().optional(),
|
69
68
|
|
70
69
|
ENABLED_OLLAMA: z.boolean(),
|
71
70
|
|
@@ -186,9 +185,8 @@ export const getLLMConfig = () => {
|
|
186
185
|
AWS_SECRET_ACCESS_KEY: process.env.AWS_SECRET_ACCESS_KEY,
|
187
186
|
AWS_SESSION_TOKEN: process.env.AWS_SESSION_TOKEN,
|
188
187
|
|
189
|
-
ENABLED_WENXIN: !!process.env.
|
190
|
-
|
191
|
-
WENXIN_SECRET_KEY: process.env.WENXIN_SECRET_KEY,
|
188
|
+
ENABLED_WENXIN: !!process.env.WENXIN_API_KEY,
|
189
|
+
WENXIN_API_KEY: process.env.WENXIN_API_KEY,
|
192
190
|
|
193
191
|
ENABLED_OLLAMA: process.env.ENABLED_OLLAMA !== '0',
|
194
192
|
|