@lobehub/chat 1.45.3 → 1.45.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/models.json +42 -24
- package/locales/bg-BG/models.json +42 -24
- package/locales/de-DE/models.json +42 -24
- package/locales/en-US/models.json +42 -24
- package/locales/es-ES/models.json +42 -24
- package/locales/fa-IR/models.json +42 -24
- package/locales/fr-FR/models.json +42 -24
- package/locales/it-IT/models.json +42 -24
- package/locales/ja-JP/models.json +42 -24
- package/locales/ko-KR/models.json +42 -24
- package/locales/nl-NL/models.json +42 -24
- package/locales/pl-PL/models.json +42 -24
- package/locales/pt-BR/models.json +42 -24
- package/locales/ru-RU/models.json +42 -24
- package/locales/tr-TR/models.json +42 -24
- package/locales/vi-VN/models.json +42 -24
- package/locales/zh-CN/models.json +55 -37
- package/locales/zh-TW/models.json +42 -24
- package/package.json +1 -1
- package/src/app/(main)/settings/provider/(detail)/github/page.tsx +4 -4
- package/src/app/(main)/settings/provider/(detail)/huggingface/page.tsx +4 -4
- package/src/locales/default/models.ts +2 -2
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 demonstrou desempenho excepcional em diversas tarefas de linguagem visual, incluindo compreensão de documentos e gráficos, compreensão de texto em cena, OCR, e resolução de problemas científicos e matemáticos."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 demonstrou desempenho excepcional em diversas tarefas de linguagem visual, incluindo compreensão de documentos e gráficos, compreensão de texto em cena, OCR, e resolução de problemas científicos e matemáticos."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Mesmo modelo Phi-3-medium, mas com um tamanho de contexto maior para RAG ou prompting de poucos exemplos."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct é a versão mais recente da série de modelos de linguagem de grande escala específicos para código lançada pela Alibaba Cloud. Este modelo, baseado no Qwen2.5, foi treinado com 55 trilhões de tokens, melhorando significativamente a capacidade de geração, raciocínio e correção de código. Ele não apenas aprimora a capacidade de codificação, mas também mantém as vantagens em matemática e habilidades gerais. O modelo fornece uma base mais abrangente para aplicações práticas, como agentes de código."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math foca na resolução de problemas na área de matemática, oferecendo respostas especializadas para questões de alta dificuldade."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 é a mais recente série do modelo Qwen, suportando 128k de contexto. Em comparação com os melhores modelos de código aberto atuais, o Qwen2-72B supera significativamente os modelos líderes em várias capacidades, incluindo compreensão de linguagem natural, conhecimento, código, matemática e multilinguismo."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "O modelo TeleMM é um modelo de compreensão multimodal desenvolvido de forma independente pela China Telecom, capaz de lidar com entradas de múltiplas modalidades, como texto e imagem, suportando funções como compreensão de imagem e análise de gráficos, oferecendo serviços de compreensão multimodal aos usuários. O modelo pode interagir com os usuários de forma multimodal, compreendendo com precisão o conteúdo de entrada, respondendo perguntas, auxiliando na criação e fornecendo informações e suporte de inspiração multimodal de forma eficiente. O modelo se destaca em tarefas multimodais, como percepção de granularidade fina e raciocínio lógico."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large é o maior modelo MoE de arquitetura Transformer open source da indústria, com um total de 389 bilhões de parâmetros e 52 bilhões de parâmetros ativados."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct é um modelo de linguagem de grande escala com ajuste fino para instruções na série Qwen2, com um tamanho de parâmetro de 72B. Este modelo é baseado na arquitetura Transformer, utilizando funções de ativação SwiGLU, viés de atenção QKV e atenção de consulta em grupo. Ele é capaz de lidar com entradas em larga escala. O modelo se destaca em compreensão de linguagem, geração, capacidade multilíngue, codificação, matemática e raciocínio em vários benchmarks, superando a maioria dos modelos de código aberto e demonstrando competitividade comparável a modelos proprietários em algumas tarefas."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct é um dos mais recentes modelos de linguagem de grande escala lançados pela Alibaba Cloud. Este modelo de 72B apresenta melhorias significativas em áreas como codificação e matemática. O modelo também oferece suporte multilíngue, abrangendo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ é um modelo de linguagem de grande porte de alto desempenho, projetado para cenários empresariais reais e aplicações complexas."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "O segundo modelo DALL·E, suporta geração de imagens mais realistas e precisas, com resolução quatro vezes maior que a da primeira geração."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "O mais recente modelo DALL·E, lançado em novembro de 2023. Suporta geração de imagens mais realistas e precisas, com maior capacidade de detalhamento."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct oferece capacidade de processamento de instruções altamente confiável, suportando aplicações em diversos setores."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 é um poderoso e econômico modelo de linguagem de especialistas mistos (MoE). Ele foi pré-treinado em um corpus de alta qualidade de 81 trilhões de tokens e aprimorado por meio de ajuste fino supervisionado (SFT) e aprendizado por reforço (RL). Em comparação com o DeepSeek 67B, o DeepSeek-V2 não só apresenta desempenho superior, mas também economiza 42,5% nos custos de treinamento, reduz 93,3% do cache KV e aumenta a taxa de geração máxima em 5,76 vezes. Este modelo suporta um comprimento de contexto de 128k e se destaca em benchmarks padrão e avaliações de geração aberta."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 combina as excelentes características das versões anteriores, aprimorando a capacidade geral e de codificação."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "O GPT 3.5 Turbo é adequado para uma variedade de tarefas de geração e compreensão de texto, atualmente apontando para gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, um modelo de geração de texto de alta capacidade, adequado para tarefas complexas."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "O GPT 3.5 Turbo é adequado para uma variedade de tarefas de geração e compreensão de texto, atualmente apontando para gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o é um modelo dinâmico, atualizado em tempo real para manter a versão mais atualizada. Combina uma poderosa compreensão e capacidade de geração de linguagem, adequado para cenários de aplicação em larga escala, incluindo atendimento ao cliente, educação e suporte técnico."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "Modelo de áudio GPT-4o, suporta entrada e saída de áudio."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "O GPT-4o mini é o mais recente modelo lançado pela OpenAI após o GPT-4 Omni, suportando entrada de texto e imagem e gerando texto como saída. Como seu modelo compacto mais avançado, ele é muito mais acessível do que outros modelos de ponta recentes, custando mais de 60% menos que o GPT-3.5 Turbo. Ele mantém uma inteligência de ponta, ao mesmo tempo que oferece um custo-benefício significativo. O GPT-4o mini obteve uma pontuação de 82% no teste MMLU e atualmente está classificado acima do GPT-4 em preferências de chat."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Versão em tempo real do GPT-4o-mini, suporta entrada e saída de áudio e texto em tempo real."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Versão em tempo real do GPT-4o, suporta entrada e saída de áudio e texto em tempo real."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Versão em tempo real do GPT-4o, suporta entrada e saída de áudio e texto em tempo real."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Versão em tempo real do GPT-4o, suporta entrada e saída de áudio e texto em tempo real."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Este modelo apresenta melhorias em precisão, conformidade com instruções e capacidade multilíngue."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 é projetado para lidar com tarefas que combinam dados visuais e textuais. Ele se destaca em tarefas como descrição de imagens e perguntas visuais, superando a lacuna entre geração de linguagem e raciocínio visual."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 é o modelo de linguagem de código aberto multilíngue mais avançado da série Llama, oferecendo uma experiência de desempenho comparável ao modelo de 405B a um custo extremamente baixo. Baseado na estrutura Transformer e aprimorado por meio de ajuste fino supervisionado (SFT) e aprendizado por reforço com feedback humano (RLHF) para aumentar a utilidade e segurança. Sua versão ajustada para instruções é otimizada para diálogos multilíngues, superando muitos modelos de chat de código aberto e fechado em vários benchmarks da indústria. Data limite de conhecimento é dezembro de 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 é projetado para lidar com tarefas que combinam dados visuais e textuais. Ele se destaca em tarefas como descrição de imagens e perguntas visuais, superando a lacuna entre geração de linguagem e raciocínio visual."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B é uma versão aprimorada do Nous Hermes 2, contendo os conjuntos de dados mais recentes desenvolvidos internamente."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B é um grande modelo de linguagem personalizado pela NVIDIA, visando aumentar a utilidade das respostas geradas pelo LLM para as consultas dos usuários."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B é um modelo de linguagem em larga escala personalizado pela NVIDIA, projetado para aumentar a utilidade das respostas geradas pelo LLM em relação às consultas dos usuários. Este modelo se destacou em benchmarks como Arena Hard, AlpacaEval 2 LC e GPT-4-Turbo MT-Bench, ocupando o primeiro lugar em todos os três benchmarks de alinhamento automático até 1º de outubro de 2024. O modelo foi treinado usando RLHF (especialmente REINFORCE), Llama-3.1-Nemotron-70B-Reward e HelpSteer2-Preference prompts, com base no modelo Llama-3.1-70B-Instruct."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Focado em raciocínio avançado e resolução de problemas complexos, incluindo tarefas matemáticas e científicas. Muito adequado para aplicativos que exigem compreensão profunda do contexto e gerenciamento de fluxos de trabalho."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 é o novo modelo de raciocínio da OpenAI, que suporta entrada de texto e imagem e gera texto como saída, adequado para tarefas complexas que exigem amplo conhecimento geral. Este modelo possui um contexto de 200K e uma data limite de conhecimento em outubro de 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini é um modelo de raciocínio rápido e econômico, projetado para cenários de programação, matemática e ciências. Este modelo possui um contexto de 128K e uma data limite de conhecimento em outubro de 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini é o mais recente modelo da OpenAI, lançado após o GPT-4 Omni, que suporta entrada de texto e imagem e saída de texto. Como seu modelo compacto mais avançado, é muito mais barato do que outros modelos de ponta recentes e custa mais de 60% menos que o GPT-3.5 Turbo. Ele mantém inteligência de ponta, ao mesmo tempo que oferece uma relação custo-benefício significativa. O GPT-4o mini obteve uma pontuação de 82% no teste MMLU e atualmente está classificado acima do GPT-4 em preferências de chat."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 é o novo modelo de raciocínio da OpenAI, que suporta entrada de texto e imagem e gera texto como saída, adequado para tarefas complexas que exigem amplo conhecimento geral. Este modelo possui um contexto de 200K e uma data limite de conhecimento em outubro de 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini é um modelo de raciocínio rápido e econômico, projetado para cenários de programação, matemática e ciências. Este modelo possui um contexto de 128K e uma data limite de conhecimento em outubro de 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "O modelo de linguagem Taichu possui uma forte capacidade de compreensão de linguagem, além de habilidades em criação de texto, perguntas e respostas, programação de código, cálculos matemáticos, raciocínio lógico, análise de sentimentos e resumo de texto. Inova ao combinar pré-treinamento com grandes dados e conhecimento rico de múltiplas fontes, aprimorando continuamente a tecnologia de algoritmos e absorvendo novos conhecimentos de vocabulário, estrutura, gramática e semântica de grandes volumes de dados textuais, proporcionando aos usuários informações e serviços mais convenientes e uma experiência mais inteligente."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "O modelo de vetorização mais poderoso, adequado para tarefas em inglês e não inglês."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Modelo de Embedding de nova geração, eficiente e econômico, adequado para recuperação de conhecimento, aplicações RAG e outros cenários."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) oferece capacidade de computação aprimorada através de estratégias e arquiteturas de modelo eficientes."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "O mais recente modelo de texto para fala, otimizado para velocidade em cenários em tempo real."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "O mais recente modelo de texto para fala, otimizado para qualidade."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) é adequado para tarefas de instrução refinadas, oferecendo excelente capacidade de processamento de linguagem."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet eleva o padrão da indústria, superando modelos concorrentes e Claude 3 Opus, apresentando um desempenho excepcional em uma ampla gama de avaliações, enquanto mantém a velocidade e o custo de nossos modelos de nível médio."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Modelo de reconhecimento de voz universal, suporta reconhecimento de voz multilíngue, tradução de voz e identificação de idiomas."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 é um modelo de linguagem fornecido pela Microsoft AI, destacando-se em diálogos complexos, multilíngue, raciocínio e assistentes inteligentes."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 демонстрирует превосходные результаты в различных визуально-языковых задачах, включая понимание документов и графиков, понимание текстов сцены, OCR, решение научных и математических задач."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 демонстрирует превосходные результаты в различных визуально-языковых задачах, включая понимание документов и графиков, понимание текстов сцены, OCR, решение научных и математических задач."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Та же модель Phi-3-medium, но с большим размером контекста для RAG или нескольких подсказок."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct — это последняя версия серии языковых моделей, специфичных для кода, выпущенная Alibaba Cloud. Эта модель значительно улучшила способности генерации кода, вывода и исправления на основе Qwen2.5, обучаясь на 5.5 триллионах токенов. Она не только усилила кодирование, но и сохранила преимущества в математике и общих способностях. Модель предоставляет более полную основу для практических приложений, таких как интеллектуальные агенты кода."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math сосредоточен на решении математических задач, предоставляя профессиональные ответы на сложные вопросы."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 — это последняя серия моделей Qwen, поддерживающая контекст до 128k. По сравнению с текущими лучшими открытыми моделями, Qwen2-72B значительно превосходит ведущие модели по многим аспектам, включая понимание естественного языка, знания, код, математику и многоязычность."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "Модель TeleMM — это многомодальная модель, разработанная China Telecom, способная обрабатывать текстовые, графические и другие виды входных данных, поддерживающая функции понимания изображений, анализа графиков и т.д., предоставляя пользователям услуги понимания на разных модальностях. Модель может взаимодействовать с пользователями в многомодальном формате, точно понимая входной контент, отвечая на вопросы, помогая в творчестве и эффективно предоставляя многомодальную информацию и поддержку вдохновения. Она показывает отличные результаты в задачах многомодального восприятия и логического вывода."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large — это крупнейшая в отрасли открытая модель Transformer архитектуры MoE с общим количеством параметров 389 миллиардов и 52 миллиарда активных параметров."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct — это языковая модель с дообучением на инструкциях в серии Qwen2, с параметрами 72B. Эта модель основана на архитектуре Transformer и использует такие технологии, как активационная функция SwiGLU, смещение внимания QKV и групповой запрос внимания. Она может обрабатывать большие объемы входных данных. Эта модель показывает отличные результаты в понимании языка, генерации, многоязычных способностях, кодировании, математике и выводах в различных бенчмарках, превосходя большинство открытых моделей и демонстрируя конкурентоспособность с проприетарными моделями в некоторых задачах."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct — это одна из последних языковых моделей, выпущенных Alibaba Cloud. Эта 72B модель значительно улучшила способности в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ — это высокопроизводительная большая языковая модель, специально разработанная для реальных бизнес-сценариев и сложных приложений."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "Вторая генерация модели DALL·E, поддерживающая более реалистичную и точную генерацию изображений с разрешением в 4 раза выше, чем у первой генерации."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "Последняя модель DALL·E, выпущенная в ноябре 2023 года. Поддерживает более реалистичную и точную генерацию изображений с более сильной детализацией."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct предлагает высокую надежность в обработке команд, поддерживая приложения в различных отраслях."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 — это мощная и экономически эффективная языковая модель с гибридными экспертами (MoE). Она была предварительно обучена на высококачественном корпусе из 8.1 триллиона токенов и дополнительно улучшена с помощью контролируемой дообучения (SFT) и обучения с подкреплением (RL). По сравнению с DeepSeek 67B, DeepSeek-V2 обеспечивает более высокую производительность, экономя 42.5% затрат на обучение, снижая использование KV-кэша на 93.3% и увеличивая максимальную пропускную способность генерации в 5.76 раз. Эта модель поддерживает длину контекста до 128k и показывает отличные результаты в стандартных бенчмарках и оценках открытой генерации."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 объединяет отличительные черты предыдущих версий, улучшая общие и кодировочные способности."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo подходит для различных задач генерации и понимания текста, в настоящее время ссылается на gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, высокоемкий текстовый генеративный модель, подходящая для сложных задач."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo подходит для различных задач генерации и понимания текста, в настоящее время ссылается на gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o — это динамическая модель, которая обновляется в реальном времени для поддержания актуальной версии. Она сочетает в себе мощное понимание языка и генерацию текста, подходя для широкого спектра приложений, включая обслуживание клиентов, образование и техническую поддержку."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "Модель GPT-4o Audio, поддерживающая аудиовход и аудиовыход."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini — это последняя модель, выпущенная OpenAI после GPT-4 Omni, поддерживающая ввод изображений и текстов с выводом текста. Как их самый продвинутый компактный модель, она значительно дешевле других недавних передовых моделей и более чем на 60% дешевле GPT-3.5 Turbo. Она сохраняет передовой уровень интеллекта при значительном соотношении цена-качество. GPT-4o mini набрала 82% на тесте MMLU и в настоящее время занимает более высокое место в предпочтениях чата по сравнению с GPT-4."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Реальная версия GPT-4o-mini, поддерживающая аудио и текстовый ввод и вывод в реальном времени."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Реальная версия GPT-4o, поддерживающая аудио и текстовый ввод и вывод в реальном времени."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Реальная версия GPT-4o, поддерживающая аудио и текстовый ввод и вывод в реальном времени."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Реальная версия GPT-4o, поддерживающая аудио и текстовый ввод и вывод в реальном времени."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Модель улучшена в точности, соблюдении инструкций и многоязычных возможностях."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 предназначена для выполнения задач, объединяющих визуальные и текстовые данные. Она отлично справляется с задачами по описанию изображений и визуальному вопросу-ответу, преодолевая разрыв между генерацией языка и визуальным пониманием."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 — это самая современная многоязычная открытая языковая модель серии Llama, позволяющая получить производительность, сопоставимую с 405B моделью, по очень низкой цене. Основана на структуре Transformer и улучшена с помощью контролируемой донастройки (SFT) и обучения с подкреплением на основе человеческой обратной связи (RLHF) для повышения полезности и безопасности. Ее версия с оптимизацией под инструкции специально разработана для многоязычного диалога и показывает лучшие результаты по сравнению с многими открытыми и закрытыми чат-моделями на нескольких отраслевых бенчмарках. Дата окончания знаний — декабрь 2023 года."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 предназначена для выполнения задач, объединяющих визуальные и текстовые данные. Она отлично справляется с задачами по описанию изображений и визуальному вопросу-ответу, преодолевая разрыв между генерацией языка и визуальным пониманием."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B — это обновленная версия Nous Hermes 2, содержащая последние внутренние разработанные наборы данных."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B - это специализированная языковая модель от NVIDIA, предназначенная для повышения степени полезности ответов, генерируемых LLM, к пользовательским запросам."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B — это крупная языковая модель, созданная NVIDIA, предназначенная для повышения полезности ответов, генерируемых LLM, на запросы пользователей. Эта модель показала отличные результаты в таких бенчмарках, как Arena Hard, AlpacaEval 2 LC и GPT-4-Turbo MT-Bench, и на 1 октября 2024 года занимает первое место во всех трех автоматических тестах на согласование. Модель обучалась с использованием RLHF (в частности, REINFORCE), Llama-3.1-Nemotron-70B-Reward и HelpSteer2-Preference на основе модели Llama-3.1-70B-Instruct."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Сосредоточена на высокоуровневом выводе и решении сложных задач, включая математические и научные задачи. Идеально подходит для приложений, требующих глубокого понимания контекста и управления рабочими процессами."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 — это новая модель вывода от OpenAI, поддерживающая ввод изображений и текста с выводом текста, предназначенная для сложных задач, требующих обширных общих знаний. Эта модель имеет контекст 200K и срок знания до октября 2023 года."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini — это быстрое и экономичное модель вывода, разработанная для программирования, математики и научных приложений. Модель имеет контекст 128K и срок знания до октября 2023 года."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini — это последняя модель от OpenAI, выпущенная после GPT-4 Omni, поддерживающая ввод изображений и текста с выводом текста. Как их самый продвинутый компактный модель, она значительно дешевле других недавних передовых моделей и более чем на 60% дешевле GPT-3.5 Turbo. Она сохраняет передовой уровень интеллекта при значительном соотношении цена-качество. GPT-4o mini набрала 82% в тесте MMLU и в настоящее время занимает более высокое место по предпочтениям в чате, чем GPT-4."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 — это новая модель вывода от OpenAI, поддерживающая ввод изображений и текста с выводом текста, предназначенная для сложных задач, требующих обширных общих знаний. Эта модель имеет контекст 200K и срок знания до октября 2023 года."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini — это быстрое и экономичное модель вывода, разработанная для программирования, математики и научных приложений. Модель имеет контекст 128K и срок знания до октября 2023 года."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Модель языка TaiChu обладает выдающимися способностями к пониманию языка, а также к созданию текстов, ответам на вопросы, программированию, математическим вычислениям, логическому выводу, анализу эмоций и резюмированию текстов. Инновационно сочетает предобучение на больших данных с богатством многопоточных знаний, постоянно совершенствуя алгоритмические технологии и поглощая новые знания о словах, структуре, грамматике и семантике из огромных объемов текстовых данных, обеспечивая пользователям более удобную информацию и услуги, а также более интеллектуальный опыт."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "Самая мощная модель векторизации, подходящая для английских и неанглийских задач."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Эффективная и экономичная новая генерация модели Embedding, подходящая для поиска знаний, приложений RAG и других сценариев."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) обеспечивает повышенные вычислительные возможности благодаря эффективным стратегиям и архитектуре модели."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "Последняя модель преобразования текста в речь, оптимизированная для скорости в реальных сценариях."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "Последняя модель преобразования текста в речь, оптимизированная для качества."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) подходит для детализированных командных задач, обеспечивая отличные возможности обработки языка."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet устанавливает новые отраслевые стандарты, превосходя модели конкурентов и Claude 3 Opus, демонстрируя отличные результаты в широком спектре оценок, при этом обладая скоростью и стоимостью наших моделей среднего уровня."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Универсальная модель распознавания речи, поддерживающая многоязычное распознавание речи, перевод речи и распознавание языка."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 — это языковая модель, предоставляемая Microsoft AI, которая особенно хорошо проявляет себя в сложных диалогах, многоязычных задачах, выводе и интеллектуальных помощниках."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2, belgelere ve grafiklere anlama, sahne metni anlama, OCR, bilimsel ve matematik soruları çözme gibi çeşitli görsel dil görevlerinde mükemmel performans sergilemiştir."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2, belgelere ve grafiklere anlama, sahne metni anlama, OCR, bilimsel ve matematik soruları çözme gibi çeşitli görsel dil görevlerinde mükemmel performans sergilemiştir."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Aynı Phi-3-medium modeli, ancak RAG veya az sayıda örnek isteme için daha büyük bir bağlam boyutuna sahiptir."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct, Alibaba Cloud tarafından yayınlanan kod odaklı büyük dil modeli serisinin en son versiyonudur. Bu model, Qwen2.5 temelinde, 5.5 trilyon token ile eğitilerek kod üretimi, akıl yürütme ve düzeltme yeteneklerini önemli ölçüde artırmıştır. Hem kodlama yeteneklerini geliştirmiş hem de matematik ve genel yetenek avantajlarını korumuştur. Model, kod akıllı ajanları gibi pratik uygulamalar için daha kapsamlı bir temel sunmaktadır."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math, matematik alanındaki sorunları çözmeye odaklanır ve yüksek zorlukta sorulara profesyonel yanıtlar sunar."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2, Qwen modelinin en yeni serisidir ve 128k bağlamı destekler. Mevcut en iyi açık kaynak modellerle karşılaştırıldığında, Qwen2-72B doğal dil anlama, bilgi, kod, matematik ve çok dilli yetenekler açısından mevcut lider modelleri önemli ölçüde aşmaktadır."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "TeleMM çok modlu büyük model, Çin Telekom tarafından geliştirilen çok modlu anlama büyük modelidir. Metin, görüntü gibi çeşitli modlu girdileri işleyebilmekte ve görüntü anlama, grafik analizi gibi işlevleri desteklemektedir. Kullanıcılara çok modlu anlama hizmeti sunmakta ve kullanıcılarla çok modlu etkileşimde bulunarak, girdileri doğru bir şekilde anlamakta, soruları yanıtlamakta, yaratımda yardımcı olmakta ve çok modlu bilgi ve ilham desteği sunmaktadır. İnce ayrıntılı algılama, mantıksal akıl yürütme gibi çok modlu görevlerde mükemmel performans sergilemektedir."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large, sektördeki en büyük açık kaynaklı Transformer mimarisi MoE modelidir ve toplam 389 milyar parametre ile 52 milyar etkin parametreye sahiptir."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct, Qwen2 serisindeki talimat ince ayar büyük dil modelidir ve parametre ölçeği 72B'dir. Bu model, Transformer mimarisi temelinde, SwiGLU aktivasyon fonksiyonu, dikkat QKV önyargısı ve grup sorgu dikkati gibi teknikler kullanmaktadır. Büyük ölçekli girişleri işleyebilme yeteneğine sahiptir. Bu model, dil anlama, üretim, çok dilli yetenek, kodlama, matematik ve akıl yürütme gibi birçok standart testte mükemmel performans sergilemekte ve çoğu açık kaynak modelini geride bırakmakta, bazı görevlerde özel modellere karşı rekabet edebilir."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct, Alibaba Cloud tarafından yayınlanan en son büyük dil modeli serilerinden biridir. Bu 72B modeli, kodlama ve matematik gibi alanlarda önemli ölçüde geliştirilmiş yeteneklere sahiptir. Model ayrıca, Çince, İngilizce gibi 29'dan fazla dili kapsayan çok dilli destek sunmaktadır. Model, talimat takibi, yapılandırılmış verileri anlama ve yapılandırılmış çıktı (özellikle JSON) üretme konularında önemli iyileştirmeler göstermektedir."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+, gerçek işletme senaryoları ve karmaşık uygulamalar için tasarlanmış yüksek performanslı bir büyük dil modelidir."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "İkinci nesil DALL·E modeli, daha gerçekçi ve doğru görüntü üretimi destekler, çözünürlüğü birinci neslin 4 katıdır."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "En son DALL·E modeli, Kasım 2023'te piyasaya sürüldü. Daha gerçekçi ve doğru görüntü üretimi destekler, daha güçlü detay ifade yeteneğine sahiptir."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct, yüksek güvenilirlikte talimat işleme yetenekleri sunar ve çok çeşitli endüstri uygulamalarını destekler."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2, güçlü ve maliyet etkin bir karışık uzman (MoE) dil modelidir. 8.1 trilyon token yüksek kaliteli veri kümesi üzerinde önceden eğitilmiş ve denetimli ince ayar (SFT) ve pekiştirmeli öğrenme (RL) ile model yetenekleri daha da geliştirilmiştir. DeepSeek 67B ile karşılaştırıldığında, DeepSeek-V2 daha güçlü performans sunarken, eğitim maliyetlerini %42.5 oranında azaltmış, KV önbelleğini %93.3 oranında azaltmış ve maksimum üretim verimliliğini 5.76 kat artırmıştır. Bu model, 128k bağlam uzunluğunu desteklemekte ve standart testlerde ve açık üretim değerlendirmelerinde mükemmel performans sergilemektedir."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5, önceki sürümlerin mükemmel özelliklerini bir araya getirir, genel ve kodlama yeteneklerini artırır."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo, çeşitli metin üretimi ve anlama görevleri için uygundur, şu anda gpt-3.5-turbo-0125'e işaret ediyor."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, yüksek kapasiteli metin üretim modeli, karmaşık görevler için uygundur."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo, çeşitli metin üretimi ve anlama görevleri için uygundur, şu anda gpt-3.5-turbo-0125'e işaret ediyor."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o, güncel en son sürümü korumak için gerçek zamanlı olarak güncellenen dinamik bir modeldir. Müşteri hizmetleri, eğitim ve teknik destek gibi büyük ölçekli uygulama senaryoları için güçlü dil anlama ve üretme yeteneklerini bir araya getirir."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "GPT-4o Ses modeli, sesli giriş ve çıkış desteği sunar."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini, OpenAI'nin GPT-4 Omni'den sonra tanıttığı en yeni modeldir. Görsel ve metin girişi destekler ve metin çıktısı verir. En gelişmiş küçük model olarak, diğer son zamanlardaki öncü modellere göre çok daha ucuzdur ve GPT-3.5 Turbo'dan %60'tan fazla daha ucuzdur. En son teknolojiyi korurken, önemli bir maliyet etkinliği sunar. GPT-4o mini, MMLU testinde %82 puan almış olup, şu anda sohbet tercihleri açısından GPT-4'ün üzerinde yer almaktadır."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "GPT-4o-mini gerçek zamanlı versiyonu, ses ve metin için gerçek zamanlı giriş ve çıkış desteği sunar."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "GPT-4o gerçek zamanlı versiyonu, ses ve metin için gerçek zamanlı giriş ve çıkış desteği sunar."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "GPT-4o gerçek zamanlı versiyonu, ses ve metin için gerçek zamanlı giriş ve çıkış desteği sunar."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "GPT-4o gerçek zamanlı versiyonu, ses ve metin için gerçek zamanlı giriş ve çıkış desteği sunar."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Bu model, doğruluk, talimat takibi ve çok dilli yetenekler açısından geliştirilmiştir."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2, görsel ve metin verilerini bir arada işleme amacıyla tasarlanmıştır. Görüntü betimleme ve görsel soru yanıtlama gibi görevlerde mükemmel performans sergiler, dil üretimi ve görsel akıl yürütme arasındaki boşluğu kapar."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3, Llama serisinin en gelişmiş çok dilli açık kaynak büyük dil modelidir, 405B modelinin performansını çok düşük maliyetle deneyimleme imkanı sunar. Transformer yapısına dayanır ve denetimli ince ayar (SFT) ve insan geri bildirimi ile güçlendirilmiş öğrenme (RLHF) ile kullanılabilirlik ve güvenliği artırılmıştır. Talimat ayarlı versiyonu çok dilli diyaloglar için optimize edilmiştir ve birçok endüstri standardında birçok açık kaynak ve kapalı sohbet modelinden daha iyi performans göstermektedir. Bilgi kesim tarihi 2023 Aralık'tır."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2, görsel ve metin verilerini bir arada işleme amacıyla tasarlanmıştır. Görüntü betimleme ve görsel soru yanıtlama gibi görevlerde mükemmel performans sergiler, dil üretimi ve görsel akıl yürütme arasındaki boşluğu kapar."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B, Nous Hermes 2'nin güncellenmiş versiyonudur ve en son iç geliştirme veri setlerini içermektedir."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B, NVIDIA tarafından özelleştirilmiş büyük bir dil modelidir, LLM tarafından üretilen yanıtların kullanıcı sorgularına daha iyi yardımcı olmasını sağlamak için tasarlanmıştır."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B, NVIDIA tarafından özelleştirilmiş büyük bir dil modelidir ve LLM tarafından üretilen yanıtların kullanıcı sorgularına yardımcı olma düzeyini artırmayı amaçlamaktadır. Bu model, Arena Hard, AlpacaEval 2 LC ve GPT-4-Turbo MT-Bench gibi standart testlerde mükemmel performans sergilemiştir ve 1 Ekim 2024 itibarıyla tüm üç otomatik hizalama testinde birinci sıradadır. Model, Llama-3.1-70B-Instruct modelinin temelinde RLHF (özellikle REINFORCE), Llama-3.1-Nemotron-70B-Reward ve HelpSteer2-Preference ipuçları kullanılarak eğitilmiştir."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Gelişmiş çıkarım ve karmaşık sorunları çözmeye odaklanır, matematik ve bilim görevlerini içerir. Derin bağlam anlayışı ve aracılık iş akışları gerektiren uygulamalar için son derece uygundur."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1, OpenAI'nin yeni çıkarım modelidir, metin ve görsel girişi destekler ve metin çıktısı verir, geniş genel bilgi gerektiren karmaşık görevler için uygundur. Bu model, 200K bağlam ve 2023 Ekim bilgi kesim tarihi ile donatılmıştır."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini, programlama, matematik ve bilim uygulama senaryoları için tasarlanmış hızlı ve ekonomik bir akıl yürütme modelidir. Bu model, 128K bağlam ve Ekim 2023 bilgi kesim tarihi ile donatılmıştır."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini, OpenAI'nin GPT-4 Omni'den sonra sunduğu en son modeldir; görsel ve metin girişi destekler ve metin çıktısı verir. En gelişmiş küçük model olarak, diğer son zamanlardaki öncü modellere göre çok daha ucuzdur ve GPT-3.5 Turbo'dan %60'tan fazla daha ucuzdur. En son teknolojiyi korurken, önemli bir maliyet etkinliği sunar. GPT-4o mini, MMLU testinde %82 puan almış olup, şu anda sohbet tercihleri açısından GPT-4'ün üzerinde bir sıralamaya sahiptir."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1, OpenAI'nin yeni çıkarım modelidir, metin ve görsel girişi destekler ve metin çıktısı verir, geniş genel bilgi gerektiren karmaşık görevler için uygundur. Bu model, 200K bağlam ve 2023 Ekim bilgi kesim tarihi ile donatılmıştır."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini, programlama, matematik ve bilim uygulama senaryoları için tasarlanmış hızlı ve ekonomik bir akıl yürütme modelidir. Bu model, 128K bağlam ve Ekim 2023 bilgi kesim tarihi ile donatılmıştır."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Zidong Taichu dil büyük modeli, güçlü dil anlama yeteneği ile metin oluşturma, bilgi sorgulama, kod programlama, matematik hesaplama, mantıksal akıl yürütme, duygu analizi, metin özeti gibi yeteneklere sahiptir. Yenilikçi bir şekilde büyük veri ön eğitimi ile çok kaynaklı zengin bilgiyi birleştirir, algoritma teknolojisini sürekli olarak geliştirir ve büyük metin verilerinden kelime, yapı, dil bilgisi, anlam gibi yeni bilgileri sürekli olarak edinir, modelin performansını sürekli olarak evrimleştirir. Kullanıcılara daha kolay bilgi ve hizmetler sunar ve daha akıllı bir deneyim sağlar."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "En güçlü vektörleştirme modeli, İngilizce ve diğer dillerdeki görevler için uygundur."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Verimli ve ekonomik yeni nesil Embedding modeli, bilgi arama, RAG uygulamaları gibi senaryolar için uygundur."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B), etkili stratejiler ve model mimarisi ile artırılmış hesaplama yetenekleri sunar."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "En son metinden sese model, gerçek zamanlı senaryolar için hız optimizasyonu yapılmıştır."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "En son metinden sese model, kaliteyi optimize etmek için tasarlanmıştır."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B), ince ayar gerektiren talimat görevleri için uygundur ve mükemmel dil işleme yetenekleri sunar."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet, endüstri standartlarını yükselterek, rakip modelleri ve Claude 3 Opus'u aşan performans sergilemekte; geniş değerlendirmelerde mükemmel sonuçlar verirken, orta seviye modellerimizin hız ve maliyetine sahiptir."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Genel ses tanıma modeli, çok dilli ses tanıma, ses çevirisi ve dil tanıma desteği sunar."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2, Microsoft AI tarafından sunulan bir dil modelidir, karmaşık diyaloglar, çok dilli, akıl yürütme ve akıllı asistan alanlarında özellikle başarılıdır."
|
1321
1339
|
},
|