@lobehub/chat 1.45.16 → 1.46.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.env.example +4 -1
- package/CHANGELOG.md +51 -0
- package/README.ja-JP.md +2 -2
- package/README.md +2 -2
- package/README.zh-CN.md +2 -2
- package/changelog/v1.json +18 -0
- package/docs/self-hosting/advanced/knowledge-base.mdx +9 -0
- package/docs/self-hosting/advanced/knowledge-base.zh-CN.mdx +9 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +4 -4
- package/src/app/(main)/settings/provider/(detail)/[id]/index.tsx +0 -1
- package/src/config/aiModels/index.ts +3 -0
- package/src/config/aiModels/lmstudio.ts +27 -0
- package/src/config/aiModels/minimax.ts +50 -0
- package/src/config/knowledge.ts +2 -0
- package/src/config/modelProviders/index.ts +6 -3
- package/src/config/modelProviders/lmstudio.ts +25 -0
- package/src/const/settings/knowledge.ts +25 -0
- package/src/const/settings/llm.ts +9 -0
- package/src/database/schemas/ragEvals.ts +2 -2
- package/src/libs/agent-runtime/AgentRuntime.ts +7 -0
- package/src/libs/agent-runtime/bedrock/index.ts +64 -3
- package/src/libs/agent-runtime/lmstudio/index.test.ts +255 -0
- package/src/libs/agent-runtime/lmstudio/index.ts +11 -0
- package/src/libs/agent-runtime/minimax/index.ts +39 -183
- package/src/libs/agent-runtime/ollama/index.ts +37 -1
- package/src/libs/agent-runtime/types/type.ts +1 -0
- package/src/libs/agent-runtime/utils/streams/index.ts +0 -1
- package/src/server/globalConfig/index.ts +6 -0
- package/src/server/globalConfig/parseFilesConfig.test.ts +17 -0
- package/src/server/globalConfig/parseFilesConfig.ts +57 -0
- package/src/server/routers/async/file.ts +8 -8
- package/src/server/routers/lambda/chunk.ts +12 -16
- package/src/types/knowledgeBase/index.ts +8 -0
- package/src/types/user/settings/filesConfig.ts +9 -0
- package/src/types/user/settings/keyVaults.ts +1 -0
- package/src/app/(backend)/webapi/chat/minimax/route.test.ts +0 -26
- package/src/app/(backend)/webapi/chat/minimax/route.ts +0 -6
- package/src/libs/agent-runtime/minimax/index.test.ts +0 -275
- package/src/libs/agent-runtime/utils/streams/minimax.test.ts +0 -27
- package/src/libs/agent-runtime/utils/streams/minimax.ts +0 -57
@@ -1,184 +1,40 @@
|
|
1
|
-
import {
|
2
|
-
import
|
3
|
-
|
4
|
-
import
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
if (!data.base_resp?.status_code || data.base_resp?.status_code < 1000) {
|
30
|
-
return;
|
31
|
-
}
|
32
|
-
if (data.base_resp?.status_code === 1004) {
|
33
|
-
throw AgentRuntimeError.chat({
|
34
|
-
error: {
|
35
|
-
code: data.base_resp.status_code,
|
36
|
-
message: data.base_resp.status_msg,
|
37
|
-
},
|
38
|
-
errorType: AgentRuntimeErrorType.InvalidProviderAPIKey,
|
39
|
-
provider: ModelProvider.Minimax,
|
40
|
-
});
|
41
|
-
}
|
42
|
-
throw AgentRuntimeError.chat({
|
43
|
-
error: {
|
44
|
-
code: data.base_resp.status_code,
|
45
|
-
message: data.base_resp.status_msg,
|
46
|
-
},
|
47
|
-
errorType: AgentRuntimeErrorType.ProviderBizError,
|
48
|
-
provider: ModelProvider.Minimax,
|
49
|
-
});
|
50
|
-
}
|
51
|
-
|
52
|
-
function parseMinimaxResponse(chunk: string): MinimaxResponse | undefined {
|
53
|
-
let body = chunk;
|
54
|
-
if (body.startsWith('data:')) {
|
55
|
-
body = body.slice(5).trim();
|
56
|
-
}
|
57
|
-
if (isEmpty(body)) {
|
58
|
-
return;
|
59
|
-
}
|
60
|
-
return JSON.parse(body) as MinimaxResponse;
|
61
|
-
}
|
62
|
-
|
63
|
-
export class LobeMinimaxAI implements LobeRuntimeAI {
|
64
|
-
apiKey: string;
|
65
|
-
|
66
|
-
constructor({ apiKey }: { apiKey?: string } = {}) {
|
67
|
-
if (!apiKey) throw AgentRuntimeError.createError(AgentRuntimeErrorType.InvalidProviderAPIKey);
|
68
|
-
|
69
|
-
this.apiKey = apiKey;
|
70
|
-
}
|
71
|
-
|
72
|
-
async chat(payload: ChatStreamPayload, options?: ChatCompetitionOptions): Promise<Response> {
|
73
|
-
try {
|
74
|
-
const response = await fetch('https://api.minimax.chat/v1/text/chatcompletion_v2', {
|
75
|
-
body: JSON.stringify(this.buildCompletionsParams(payload)),
|
76
|
-
headers: {
|
77
|
-
'Authorization': `Bearer ${this.apiKey}`,
|
78
|
-
'Content-Type': 'application/json',
|
79
|
-
},
|
80
|
-
method: 'POST',
|
81
|
-
});
|
82
|
-
if (!response.body || !response.ok) {
|
83
|
-
throw AgentRuntimeError.chat({
|
84
|
-
error: {
|
85
|
-
status: response.status,
|
86
|
-
statusText: response.statusText,
|
1
|
+
import { ModelProvider } from '../types';
|
2
|
+
import { LobeOpenAICompatibleFactory } from '../utils/openaiCompatibleFactory';
|
3
|
+
|
4
|
+
import Minimax from '@/config/modelProviders/minimax';
|
5
|
+
|
6
|
+
export const getMinimaxMaxOutputs = (modelId: string): number | undefined => {
|
7
|
+
const model = Minimax.chatModels.find(model => model.id === modelId);
|
8
|
+
return model ? model.maxOutput : undefined;
|
9
|
+
};
|
10
|
+
|
11
|
+
export const LobeMinimaxAI = LobeOpenAICompatibleFactory({
|
12
|
+
baseURL: 'https://api.minimax.chat/v1',
|
13
|
+
chatCompletion: {
|
14
|
+
handlePayload: (payload) => {
|
15
|
+
const { temperature, top_p, ...params } = payload;
|
16
|
+
|
17
|
+
return {
|
18
|
+
...params,
|
19
|
+
frequency_penalty: undefined,
|
20
|
+
max_tokens: payload.max_tokens !== undefined ? payload.max_tokens : getMinimaxMaxOutputs(payload.model),
|
21
|
+
presence_penalty: undefined,
|
22
|
+
stream: true,
|
23
|
+
temperature: temperature === undefined || temperature <= 0 ? undefined : temperature / 2,
|
24
|
+
tools: params.tools?.map((tool) => ({
|
25
|
+
function: {
|
26
|
+
description: tool.function.description,
|
27
|
+
name: tool.function.name,
|
28
|
+
parameters: JSON.stringify(tool.function.parameters),
|
87
29
|
},
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
}
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
// wait for the first response, and throw error if minix returns an error
|
101
|
-
await this.parseFirstResponse(prod2.getReader());
|
102
|
-
|
103
|
-
return StreamingResponse(MinimaxStream(prod), { headers: options?.headers });
|
104
|
-
} catch (error) {
|
105
|
-
console.log('error', error);
|
106
|
-
const err = error as Error | ChatCompletionErrorPayload;
|
107
|
-
if ('provider' in err) {
|
108
|
-
throw error;
|
109
|
-
}
|
110
|
-
const errorResult = {
|
111
|
-
cause: err.cause,
|
112
|
-
message: err.message,
|
113
|
-
name: err.name,
|
114
|
-
stack: err.stack,
|
115
|
-
};
|
116
|
-
throw AgentRuntimeError.chat({
|
117
|
-
error: errorResult,
|
118
|
-
errorType: AgentRuntimeErrorType.ProviderBizError,
|
119
|
-
provider: ModelProvider.Minimax,
|
120
|
-
});
|
121
|
-
}
|
122
|
-
}
|
123
|
-
|
124
|
-
// the document gives the default value of max tokens, but abab6.5 and abab6.5s
|
125
|
-
// will meet length finished error, and output is truncationed
|
126
|
-
// so here fill the max tokens number to fix it
|
127
|
-
// https://www.minimaxi.com/document/guides/chat-model/V2
|
128
|
-
private getMaxTokens(model: string): number | undefined {
|
129
|
-
switch (model) {
|
130
|
-
case 'abab6.5t-chat':
|
131
|
-
case 'abab6.5g-chat':
|
132
|
-
case 'abab5.5s-chat':
|
133
|
-
case 'abab5.5-chat': {
|
134
|
-
return 4096;
|
135
|
-
}
|
136
|
-
case 'abab6.5s-chat': {
|
137
|
-
return 8192;
|
138
|
-
}
|
139
|
-
}
|
140
|
-
}
|
141
|
-
|
142
|
-
private buildCompletionsParams(payload: ChatStreamPayload) {
|
143
|
-
const { temperature, top_p, ...params } = payload;
|
144
|
-
|
145
|
-
return {
|
146
|
-
...params,
|
147
|
-
frequency_penalty: undefined,
|
148
|
-
max_tokens:
|
149
|
-
payload.max_tokens !== undefined ? payload.max_tokens : this.getMaxTokens(payload.model),
|
150
|
-
presence_penalty: undefined,
|
151
|
-
stream: true,
|
152
|
-
temperature: temperature === undefined || temperature <= 0 ? undefined : temperature / 2,
|
153
|
-
|
154
|
-
tools: params.tools?.map((tool) => ({
|
155
|
-
function: {
|
156
|
-
description: tool.function.description,
|
157
|
-
name: tool.function.name,
|
158
|
-
parameters: JSON.stringify(tool.function.parameters),
|
159
|
-
},
|
160
|
-
type: 'function',
|
161
|
-
})),
|
162
|
-
top_p: top_p === 0 ? undefined : top_p,
|
163
|
-
};
|
164
|
-
}
|
165
|
-
|
166
|
-
private async parseFirstResponse(reader: ReadableStreamDefaultReader<Uint8Array>) {
|
167
|
-
const decoder = new TextDecoder();
|
168
|
-
|
169
|
-
const { value } = await reader.read();
|
170
|
-
const chunkValue = decoder.decode(value, { stream: true });
|
171
|
-
let data;
|
172
|
-
try {
|
173
|
-
data = parseMinimaxResponse(chunkValue);
|
174
|
-
} catch {
|
175
|
-
// parse error, skip it
|
176
|
-
return;
|
177
|
-
}
|
178
|
-
if (data) {
|
179
|
-
throwIfErrorResponse(data);
|
180
|
-
}
|
181
|
-
}
|
182
|
-
}
|
183
|
-
|
184
|
-
export default LobeMinimaxAI;
|
30
|
+
type: 'function',
|
31
|
+
})),
|
32
|
+
top_p: top_p !== undefined && top_p > 0 && top_p <= 1 ? top_p : undefined,
|
33
|
+
} as any;
|
34
|
+
},
|
35
|
+
},
|
36
|
+
debug: {
|
37
|
+
chatCompletion: () => process.env.DEBUG_MINIMAX_CHAT_COMPLETION === '1',
|
38
|
+
},
|
39
|
+
provider: ModelProvider.Minimax,
|
40
|
+
});
|
@@ -6,7 +6,13 @@ import { ChatModelCard } from '@/types/llm';
|
|
6
6
|
|
7
7
|
import { LobeRuntimeAI } from '../BaseAI';
|
8
8
|
import { AgentRuntimeErrorType } from '../error';
|
9
|
-
import {
|
9
|
+
import {
|
10
|
+
ChatCompetitionOptions,
|
11
|
+
ChatStreamPayload,
|
12
|
+
Embeddings,
|
13
|
+
EmbeddingsPayload,
|
14
|
+
ModelProvider,
|
15
|
+
} from '../types';
|
10
16
|
import { AgentRuntimeError } from '../utils/createError';
|
11
17
|
import { debugStream } from '../utils/debugStream';
|
12
18
|
import { StreamingResponse } from '../utils/response';
|
@@ -84,6 +90,18 @@ export class LobeOllamaAI implements LobeRuntimeAI {
|
|
84
90
|
}
|
85
91
|
}
|
86
92
|
|
93
|
+
async embeddings(payload: EmbeddingsPayload): Promise<Embeddings[]> {
|
94
|
+
const input = Array.isArray(payload.input) ? payload.input : [payload.input];
|
95
|
+
const promises = input.map((inputText: string) =>
|
96
|
+
this.invokeEmbeddingModel({
|
97
|
+
dimensions: payload.dimensions,
|
98
|
+
input: inputText,
|
99
|
+
model: payload.model,
|
100
|
+
}),
|
101
|
+
);
|
102
|
+
return await Promise.all(promises);
|
103
|
+
}
|
104
|
+
|
87
105
|
async models(): Promise<ChatModelCard[]> {
|
88
106
|
const list = await this.client.list();
|
89
107
|
return list.models.map((model) => ({
|
@@ -91,6 +109,24 @@ export class LobeOllamaAI implements LobeRuntimeAI {
|
|
91
109
|
}));
|
92
110
|
}
|
93
111
|
|
112
|
+
private invokeEmbeddingModel = async (payload: EmbeddingsPayload): Promise<Embeddings> => {
|
113
|
+
try {
|
114
|
+
const responseBody = await this.client.embeddings({
|
115
|
+
model: payload.model,
|
116
|
+
prompt: payload.input as string,
|
117
|
+
});
|
118
|
+
return responseBody.embedding;
|
119
|
+
} catch (error) {
|
120
|
+
const e = error as { message: string; name: string; status_code: number };
|
121
|
+
|
122
|
+
throw AgentRuntimeError.chat({
|
123
|
+
error: { message: e.message, name: e.name, status_code: e.status_code },
|
124
|
+
errorType: AgentRuntimeErrorType.OllamaBizError,
|
125
|
+
provider: ModelProvider.Ollama,
|
126
|
+
});
|
127
|
+
}
|
128
|
+
};
|
129
|
+
|
94
130
|
private buildOllamaMessages(messages: OpenAIChatMessage[]) {
|
95
131
|
return messages.map((message) => this.convertContentToOllamaMessage(message));
|
96
132
|
}
|
@@ -1,6 +1,7 @@
|
|
1
1
|
import { appEnv, getAppConfig } from '@/config/app';
|
2
2
|
import { authEnv } from '@/config/auth';
|
3
3
|
import { fileEnv } from '@/config/file';
|
4
|
+
import { knowledgeEnv } from '@/config/knowledge';
|
4
5
|
import { langfuseEnv } from '@/config/langfuse';
|
5
6
|
import { enableNextAuth } from '@/const/auth';
|
6
7
|
import { parseSystemAgent } from '@/server/globalConfig/parseSystemAgent';
|
@@ -9,6 +10,7 @@ import { GlobalServerConfig } from '@/types/serverConfig';
|
|
9
10
|
import { genServerLLMConfig } from './_deprecated';
|
10
11
|
import { genServerAiProvidersConfig } from './genServerAiProviderConfig';
|
11
12
|
import { parseAgentConfig } from './parseDefaultAgent';
|
13
|
+
import { parseFilesConfig } from './parseFilesConfig';
|
12
14
|
|
13
15
|
export const getServerGlobalConfig = () => {
|
14
16
|
const { ACCESS_CODES, DEFAULT_AGENT_CONFIG } = getAppConfig();
|
@@ -73,3 +75,7 @@ export const getServerDefaultAgentConfig = () => {
|
|
73
75
|
|
74
76
|
return parseAgentConfig(DEFAULT_AGENT_CONFIG) || {};
|
75
77
|
};
|
78
|
+
|
79
|
+
export const getServerDefaultFilesConfig = () => {
|
80
|
+
return parseFilesConfig(knowledgeEnv.DEFAULT_FILES_CONFIG);
|
81
|
+
};
|
@@ -0,0 +1,17 @@
|
|
1
|
+
import { describe, expect, it } from 'vitest';
|
2
|
+
|
3
|
+
import { parseFilesConfig } from './parseFilesConfig';
|
4
|
+
|
5
|
+
describe('parseFilesConfig', () => {
|
6
|
+
// 测试embeddings配置是否被正确解析
|
7
|
+
it('parses embeddings configuration correctly', () => {
|
8
|
+
const envStr =
|
9
|
+
'embedding_model=openai/embedding-text-3-large,reranker_model=cohere/rerank-english-v3.0,query_model=full_text';
|
10
|
+
const expected = {
|
11
|
+
embeddingModel: { provider: 'openai', model: 'embedding-text-3-large' },
|
12
|
+
rerankerModel: { provider: 'cohere', model: 'rerank-english-v3.0' },
|
13
|
+
queryModel: 'full_text',
|
14
|
+
};
|
15
|
+
expect(parseFilesConfig(envStr)).toEqual(expected);
|
16
|
+
});
|
17
|
+
});
|
@@ -0,0 +1,57 @@
|
|
1
|
+
import { DEFAULT_FILES_CONFIG } from '@/const/settings/knowledge';
|
2
|
+
import { SystemEmbeddingConfig } from '@/types/knowledgeBase';
|
3
|
+
import { FilesConfig } from '@/types/user/settings/filesConfig';
|
4
|
+
|
5
|
+
const protectedKeys = Object.keys({
|
6
|
+
embedding_model: null,
|
7
|
+
query_model: null,
|
8
|
+
reranker_model: null,
|
9
|
+
});
|
10
|
+
|
11
|
+
export const parseFilesConfig = (envString: string = ''): SystemEmbeddingConfig => {
|
12
|
+
if (!envString) return DEFAULT_FILES_CONFIG;
|
13
|
+
const config: FilesConfig = {} as any;
|
14
|
+
|
15
|
+
// 处理全角逗号和多余空格
|
16
|
+
let envValue = envString.replaceAll(',', ',').trim();
|
17
|
+
|
18
|
+
const pairs = envValue.split(',');
|
19
|
+
|
20
|
+
for (const pair of pairs) {
|
21
|
+
const [key, value] = pair.split('=').map((s) => s.trim());
|
22
|
+
|
23
|
+
if (key && value) {
|
24
|
+
const [provider, ...modelParts] = value.split('/');
|
25
|
+
const model = modelParts.join('/');
|
26
|
+
|
27
|
+
if ((!provider || !model) && key !== 'query_model') {
|
28
|
+
throw new Error('Missing model or provider value');
|
29
|
+
}
|
30
|
+
|
31
|
+
if (key === 'query_model' && value === '') {
|
32
|
+
throw new Error('Missing query mode value');
|
33
|
+
}
|
34
|
+
|
35
|
+
if (protectedKeys.includes(key)) {
|
36
|
+
switch (key) {
|
37
|
+
case 'embedding_model': {
|
38
|
+
config.embeddingModel = { model: model.trim(), provider: provider.trim() };
|
39
|
+
break;
|
40
|
+
}
|
41
|
+
case 'reranker_model': {
|
42
|
+
config.rerankerModel = { model: model.trim(), provider: provider.trim() };
|
43
|
+
break;
|
44
|
+
}
|
45
|
+
case 'query_model': {
|
46
|
+
config.queryModel = value;
|
47
|
+
break;
|
48
|
+
}
|
49
|
+
}
|
50
|
+
}
|
51
|
+
} else {
|
52
|
+
throw new Error('Invalid environment variable format');
|
53
|
+
}
|
54
|
+
}
|
55
|
+
|
56
|
+
return config;
|
57
|
+
};
|
@@ -5,15 +5,15 @@ import { z } from 'zod';
|
|
5
5
|
|
6
6
|
import { serverDBEnv } from '@/config/db';
|
7
7
|
import { fileEnv } from '@/config/file';
|
8
|
-
import {
|
8
|
+
import { DEFAULT_FILE_EMBEDDING_MODEL_ITEM } from '@/const/settings/knowledge';
|
9
9
|
import { NewChunkItem, NewEmbeddingsItem } from '@/database/schemas';
|
10
10
|
import { serverDB } from '@/database/server';
|
11
11
|
import { ASYNC_TASK_TIMEOUT, AsyncTaskModel } from '@/database/server/models/asyncTask';
|
12
12
|
import { ChunkModel } from '@/database/server/models/chunk';
|
13
13
|
import { EmbeddingModel } from '@/database/server/models/embedding';
|
14
14
|
import { FileModel } from '@/database/server/models/file';
|
15
|
-
import { ModelProvider } from '@/libs/agent-runtime';
|
16
15
|
import { asyncAuthedProcedure, asyncRouter as router } from '@/libs/trpc/async';
|
16
|
+
import { getServerDefaultFilesConfig } from '@/server/globalConfig';
|
17
17
|
import { initAgentRuntimeWithUserPayload } from '@/server/modules/AgentRuntime';
|
18
18
|
import { S3 } from '@/server/modules/S3';
|
19
19
|
import { ChunkService } from '@/server/services/chunk';
|
@@ -44,7 +44,6 @@ export const fileRouter = router({
|
|
44
44
|
.input(
|
45
45
|
z.object({
|
46
46
|
fileId: z.string(),
|
47
|
-
model: z.string().default(DEFAULT_EMBEDDING_MODEL),
|
48
47
|
taskId: z.string(),
|
49
48
|
}),
|
50
49
|
)
|
@@ -57,6 +56,9 @@ export const fileRouter = router({
|
|
57
56
|
|
58
57
|
const asyncTask = await ctx.asyncTaskModel.findById(input.taskId);
|
59
58
|
|
59
|
+
const { model, provider } =
|
60
|
+
getServerDefaultFilesConfig().embeddingModel || DEFAULT_FILE_EMBEDDING_MODEL_ITEM;
|
61
|
+
|
60
62
|
if (!asyncTask) throw new TRPCError({ code: 'BAD_REQUEST', message: 'Async Task not found' });
|
61
63
|
|
62
64
|
try {
|
@@ -84,13 +86,12 @@ export const fileRouter = router({
|
|
84
86
|
|
85
87
|
const chunks = await ctx.chunkModel.getChunksTextByFileId(input.fileId);
|
86
88
|
const requestArray = chunk(chunks, CHUNK_SIZE);
|
87
|
-
|
88
89
|
try {
|
89
90
|
await pMap(
|
90
91
|
requestArray,
|
91
92
|
async (chunks, index) => {
|
92
93
|
const agentRuntime = await initAgentRuntimeWithUserPayload(
|
93
|
-
|
94
|
+
provider,
|
94
95
|
ctx.jwtPayload,
|
95
96
|
);
|
96
97
|
|
@@ -98,11 +99,10 @@ export const fileRouter = router({
|
|
98
99
|
console.log(`执行第 ${number} 个任务`);
|
99
100
|
|
100
101
|
console.time(`任务[${number}]: embeddings`);
|
101
|
-
|
102
102
|
const embeddings = await agentRuntime.embeddings({
|
103
103
|
dimensions: 1024,
|
104
104
|
input: chunks.map((c) => c.text),
|
105
|
-
model
|
105
|
+
model,
|
106
106
|
});
|
107
107
|
console.timeEnd(`任务[${number}]: embeddings`);
|
108
108
|
|
@@ -111,7 +111,7 @@ export const fileRouter = router({
|
|
111
111
|
chunkId: chunks[idx].id,
|
112
112
|
embeddings: e,
|
113
113
|
fileId: input.fileId,
|
114
|
-
model
|
114
|
+
model,
|
115
115
|
})) || [];
|
116
116
|
|
117
117
|
console.time(`任务[${number}]: insert db`);
|
@@ -1,7 +1,7 @@
|
|
1
1
|
import { inArray } from 'drizzle-orm/expressions';
|
2
2
|
import { z } from 'zod';
|
3
3
|
|
4
|
-
import {
|
4
|
+
import { DEFAULT_FILE_EMBEDDING_MODEL_ITEM } from '@/const/settings/knowledge';
|
5
5
|
import { knowledgeBaseFiles } from '@/database/schemas';
|
6
6
|
import { serverDB } from '@/database/server';
|
7
7
|
import { AsyncTaskModel } from '@/database/server/models/asyncTask';
|
@@ -9,9 +9,9 @@ import { ChunkModel } from '@/database/server/models/chunk';
|
|
9
9
|
import { EmbeddingModel } from '@/database/server/models/embedding';
|
10
10
|
import { FileModel } from '@/database/server/models/file';
|
11
11
|
import { MessageModel } from '@/database/server/models/message';
|
12
|
-
import { ModelProvider } from '@/libs/agent-runtime';
|
13
12
|
import { authedProcedure, router } from '@/libs/trpc';
|
14
13
|
import { keyVaults } from '@/libs/trpc/middleware/keyVaults';
|
14
|
+
import { getServerDefaultFilesConfig } from '@/server/globalConfig';
|
15
15
|
import { initAgentRuntimeWithUserPayload } from '@/server/modules/AgentRuntime';
|
16
16
|
import { ChunkService } from '@/server/services/chunk';
|
17
17
|
import { SemanticSearchSchema } from '@/types/rag';
|
@@ -101,21 +101,18 @@ export const chunkRouter = router({
|
|
101
101
|
.input(
|
102
102
|
z.object({
|
103
103
|
fileIds: z.array(z.string()).optional(),
|
104
|
-
model: z.string().default(DEFAULT_EMBEDDING_MODEL),
|
105
104
|
query: z.string(),
|
106
105
|
}),
|
107
106
|
)
|
108
107
|
.mutation(async ({ ctx, input }) => {
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
ctx.jwtPayload,
|
113
|
-
);
|
108
|
+
const { model, provider } =
|
109
|
+
getServerDefaultFilesConfig().embeddingModel || DEFAULT_FILE_EMBEDDING_MODEL_ITEM;
|
110
|
+
const agentRuntime = await initAgentRuntimeWithUserPayload(provider, ctx.jwtPayload);
|
114
111
|
|
115
112
|
const embeddings = await agentRuntime.embeddings({
|
116
113
|
dimensions: 1024,
|
117
114
|
input: input.query,
|
118
|
-
model
|
115
|
+
model,
|
119
116
|
});
|
120
117
|
console.timeEnd('embedding');
|
121
118
|
|
@@ -130,27 +127,25 @@ export const chunkRouter = router({
|
|
130
127
|
.input(SemanticSearchSchema)
|
131
128
|
.mutation(async ({ ctx, input }) => {
|
132
129
|
const item = await ctx.messageModel.findMessageQueriesById(input.messageId);
|
130
|
+
const { model, provider } =
|
131
|
+
getServerDefaultFilesConfig().embeddingModel || DEFAULT_FILE_EMBEDDING_MODEL_ITEM;
|
133
132
|
let embedding: number[];
|
134
133
|
let ragQueryId: string;
|
135
|
-
|
136
134
|
// if there is no message rag or it's embeddings, then we need to create one
|
137
135
|
if (!item || !item.embeddings) {
|
138
136
|
// TODO: need to support customize
|
139
|
-
const agentRuntime = await initAgentRuntimeWithUserPayload(
|
140
|
-
ModelProvider.OpenAI,
|
141
|
-
ctx.jwtPayload,
|
142
|
-
);
|
137
|
+
const agentRuntime = await initAgentRuntimeWithUserPayload(provider, ctx.jwtPayload);
|
143
138
|
|
144
139
|
const embeddings = await agentRuntime.embeddings({
|
145
140
|
dimensions: 1024,
|
146
141
|
input: input.rewriteQuery,
|
147
|
-
model
|
142
|
+
model,
|
148
143
|
});
|
149
144
|
|
150
145
|
embedding = embeddings![0];
|
151
146
|
const embeddingsId = await ctx.embeddingModel.create({
|
152
147
|
embeddings: embedding,
|
153
|
-
model
|
148
|
+
model,
|
154
149
|
});
|
155
150
|
|
156
151
|
const result = await ctx.messageModel.createMessageQuery({
|
@@ -182,6 +177,7 @@ export const chunkRouter = router({
|
|
182
177
|
fileIds: finalFileIds,
|
183
178
|
query: input.rewriteQuery,
|
184
179
|
});
|
180
|
+
// TODO: need to rerank the chunks
|
185
181
|
console.timeEnd('semanticSearch');
|
186
182
|
|
187
183
|
return { chunks, queryId: ragQueryId };
|
@@ -1,3 +1,5 @@
|
|
1
|
+
import { FilesConfigItem } from '../user/settings/filesConfig';
|
2
|
+
|
1
3
|
export enum KnowledgeBaseTabs {
|
2
4
|
Files = 'files',
|
3
5
|
Settings = 'Settings',
|
@@ -43,3 +45,9 @@ export interface KnowledgeItem {
|
|
43
45
|
name: string;
|
44
46
|
type: KnowledgeType;
|
45
47
|
}
|
48
|
+
|
49
|
+
export interface SystemEmbeddingConfig {
|
50
|
+
embeddingModel: FilesConfigItem;
|
51
|
+
queryModel: string;
|
52
|
+
rerankerModel: FilesConfigItem;
|
53
|
+
}
|
@@ -44,6 +44,7 @@ export interface UserKeyVaults {
|
|
44
44
|
huggingface?: OpenAICompatibleKeyVault;
|
45
45
|
hunyuan?: OpenAICompatibleKeyVault;
|
46
46
|
internlm?: OpenAICompatibleKeyVault;
|
47
|
+
lmstudio?: OpenAICompatibleKeyVault;
|
47
48
|
lobehub?: any;
|
48
49
|
minimax?: OpenAICompatibleKeyVault;
|
49
50
|
mistral?: OpenAICompatibleKeyVault;
|
@@ -1,26 +0,0 @@
|
|
1
|
-
// @vitest-environment edge-runtime
|
2
|
-
import { describe, expect, it, vi } from 'vitest';
|
3
|
-
|
4
|
-
import { POST as UniverseRoute } from '../[provider]/route';
|
5
|
-
import { POST, runtime } from './route';
|
6
|
-
|
7
|
-
// 模拟 '../[provider]/route'
|
8
|
-
vi.mock('../[provider]/route', () => ({
|
9
|
-
POST: vi.fn().mockResolvedValue('mocked response'),
|
10
|
-
}));
|
11
|
-
|
12
|
-
describe('Configuration tests', () => {
|
13
|
-
it('should have runtime set to "edge"', () => {
|
14
|
-
expect(runtime).toBe('nodejs');
|
15
|
-
});
|
16
|
-
});
|
17
|
-
|
18
|
-
describe('Minimax POST function tests', () => {
|
19
|
-
it('should call UniverseRoute with correct parameters', async () => {
|
20
|
-
const mockRequest = new Request('https://example.com', { method: 'POST' });
|
21
|
-
await POST(mockRequest);
|
22
|
-
expect(UniverseRoute).toHaveBeenCalledWith(mockRequest, {
|
23
|
-
params: Promise.resolve({ provider: 'minimax' }),
|
24
|
-
});
|
25
|
-
});
|
26
|
-
});
|