@lobehub/chat 1.45.1 → 1.45.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,31 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.45.2](https://github.com/lobehub/lobe-chat/compare/v1.45.1...v1.45.2)
|
6
|
+
|
7
|
+
<sup>Released on **2025-01-09**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Update siliconcloud model list.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Update siliconcloud model list, closes [#5360](https://github.com/lobehub/lobe-chat/issues/5360) ([69085ac](https://github.com/lobehub/lobe-chat/commit/69085ac))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
5
30
|
### [Version 1.45.1](https://github.com/lobehub/lobe-chat/compare/v1.45.0...v1.45.1)
|
6
31
|
|
7
32
|
<sup>Released on **2025-01-09**</sup>
|
package/changelog/v1.json
CHANGED
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.45.
|
3
|
+
"version": "1.45.2",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -1,20 +1,6 @@
|
|
1
1
|
import { AIChatModelCard } from '@/types/aiModel';
|
2
2
|
|
3
3
|
const siliconcloudChatModels: AIChatModelCard[] = [
|
4
|
-
{
|
5
|
-
contextWindowTokens: 32_768,
|
6
|
-
description:
|
7
|
-
'Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。',
|
8
|
-
displayName: 'Hunyuan A52B Instruct',
|
9
|
-
enabled: true,
|
10
|
-
id: 'Tencent/Hunyuan-A52B-Instruct',
|
11
|
-
pricing: {
|
12
|
-
currency: 'CNY',
|
13
|
-
input: 21,
|
14
|
-
output: 21,
|
15
|
-
},
|
16
|
-
type: 'chat',
|
17
|
-
},
|
18
4
|
{
|
19
5
|
abilities: {
|
20
6
|
functionCall: true,
|
@@ -32,19 +18,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
|
|
32
18
|
},
|
33
19
|
type: 'chat',
|
34
20
|
},
|
35
|
-
{
|
36
|
-
contextWindowTokens: 32_768,
|
37
|
-
description:
|
38
|
-
'DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色',
|
39
|
-
displayName: 'DeepSeek V2 Chat',
|
40
|
-
id: 'deepseek-ai/DeepSeek-V2-Chat',
|
41
|
-
pricing: {
|
42
|
-
currency: 'CNY',
|
43
|
-
input: 1.33,
|
44
|
-
output: 1.33,
|
45
|
-
},
|
46
|
-
type: 'chat',
|
47
|
-
},
|
48
21
|
{
|
49
22
|
contextWindowTokens: 32_768,
|
50
23
|
description:
|
@@ -238,19 +211,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
|
|
238
211
|
},
|
239
212
|
type: 'chat',
|
240
213
|
},
|
241
|
-
{
|
242
|
-
contextWindowTokens: 4096,
|
243
|
-
description:
|
244
|
-
'Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务',
|
245
|
-
displayName: 'Qwen2.5 Math 72B Instruct',
|
246
|
-
id: 'Qwen/Qwen2.5-Math-72B-Instruct',
|
247
|
-
pricing: {
|
248
|
-
currency: 'CNY',
|
249
|
-
input: 4.13,
|
250
|
-
output: 4.13,
|
251
|
-
},
|
252
|
-
type: 'chat',
|
253
|
-
},
|
254
214
|
{
|
255
215
|
contextWindowTokens: 32_768,
|
256
216
|
description:
|
@@ -303,19 +263,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
|
|
303
263
|
},
|
304
264
|
type: 'chat',
|
305
265
|
},
|
306
|
-
{
|
307
|
-
contextWindowTokens: 32_768,
|
308
|
-
description:
|
309
|
-
'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
|
310
|
-
displayName: 'Qwen2 72B Instruct (Vendor-A)',
|
311
|
-
id: 'Vendor-A/Qwen/Qwen2-7B-Instruct',
|
312
|
-
pricing: {
|
313
|
-
currency: 'CNY',
|
314
|
-
input: 1,
|
315
|
-
output: 1,
|
316
|
-
},
|
317
|
-
type: 'chat',
|
318
|
-
},
|
319
266
|
{
|
320
267
|
abilities: {
|
321
268
|
vision: true,
|
@@ -414,22 +361,6 @@ const siliconcloudChatModels: AIChatModelCard[] = [
|
|
414
361
|
},
|
415
362
|
type: 'chat',
|
416
363
|
},
|
417
|
-
{
|
418
|
-
abilities: {
|
419
|
-
vision: true,
|
420
|
-
},
|
421
|
-
contextWindowTokens: 8192,
|
422
|
-
description:
|
423
|
-
'InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平',
|
424
|
-
displayName: 'InternVL2 Llama3 76B',
|
425
|
-
id: 'OpenGVLab/InternVL2-Llama3-76B',
|
426
|
-
pricing: {
|
427
|
-
currency: 'CNY',
|
428
|
-
input: 4.13,
|
429
|
-
output: 4.13,
|
430
|
-
},
|
431
|
-
type: 'chat',
|
432
|
-
},
|
433
364
|
{
|
434
365
|
abilities: {
|
435
366
|
functionCall: true,
|
@@ -617,12 +548,15 @@ const siliconcloudChatModels: AIChatModelCard[] = [
|
|
617
548
|
type: 'chat',
|
618
549
|
},
|
619
550
|
{
|
551
|
+
abilities: {
|
552
|
+
functionCall: true,
|
553
|
+
},
|
620
554
|
contextWindowTokens: 32_768,
|
621
555
|
description:
|
622
|
-
'Llama
|
623
|
-
displayName: 'Llama 3.
|
556
|
+
'Llama 3.3 是 Llama 系列最先进的多语言开源大型语言模型,以极低成本体验媲美 405B 模型的性能。基于 Transformer 结构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)提升有用性和安全性。其指令调优版本专为多语言对话优化,在多项行业基准上表现优于众多开源和封闭聊天模型。知识截止日期为 2023 年 12 月',
|
557
|
+
displayName: 'Llama 3.3 70B Instruct',
|
624
558
|
enabled: true,
|
625
|
-
id: '
|
559
|
+
id: 'meta-llama/Llama-3.3-70B-Instruct',
|
626
560
|
pricing: {
|
627
561
|
currency: 'CNY',
|
628
562
|
input: 4.13,
|
@@ -3,19 +3,6 @@ import { ModelProviderCard } from '@/types/llm';
|
|
3
3
|
// ref :https://siliconflow.cn/zh-cn/pricing
|
4
4
|
const SiliconCloud: ModelProviderCard = {
|
5
5
|
chatModels: [
|
6
|
-
{
|
7
|
-
contextWindowTokens: 32_768,
|
8
|
-
description:
|
9
|
-
'Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。',
|
10
|
-
displayName: 'Hunyuan A52B Instruct',
|
11
|
-
enabled: true,
|
12
|
-
id: 'Tencent/Hunyuan-A52B-Instruct',
|
13
|
-
pricing: {
|
14
|
-
currency: 'CNY',
|
15
|
-
input: 21,
|
16
|
-
output: 21,
|
17
|
-
},
|
18
|
-
},
|
19
6
|
{
|
20
7
|
contextWindowTokens: 32_768,
|
21
8
|
description:
|
@@ -30,18 +17,6 @@ const SiliconCloud: ModelProviderCard = {
|
|
30
17
|
output: 1.33,
|
31
18
|
},
|
32
19
|
},
|
33
|
-
{
|
34
|
-
contextWindowTokens: 32_768,
|
35
|
-
description:
|
36
|
-
'DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色',
|
37
|
-
displayName: 'DeepSeek V2 Chat',
|
38
|
-
id: 'deepseek-ai/DeepSeek-V2-Chat',
|
39
|
-
pricing: {
|
40
|
-
currency: 'CNY',
|
41
|
-
input: 1.33,
|
42
|
-
output: 1.33,
|
43
|
-
},
|
44
|
-
},
|
45
20
|
{
|
46
21
|
contextWindowTokens: 32_768,
|
47
22
|
description:
|
@@ -208,18 +183,6 @@ const SiliconCloud: ModelProviderCard = {
|
|
208
183
|
output: 1.26,
|
209
184
|
},
|
210
185
|
},
|
211
|
-
{
|
212
|
-
contextWindowTokens: 4096,
|
213
|
-
description:
|
214
|
-
'Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务',
|
215
|
-
displayName: 'Qwen2.5 Math 72B Instruct',
|
216
|
-
id: 'Qwen/Qwen2.5-Math-72B-Instruct',
|
217
|
-
pricing: {
|
218
|
-
currency: 'CNY',
|
219
|
-
input: 4.13,
|
220
|
-
output: 4.13,
|
221
|
-
},
|
222
|
-
},
|
223
186
|
{
|
224
187
|
contextWindowTokens: 32_768,
|
225
188
|
description:
|
@@ -280,18 +243,6 @@ const SiliconCloud: ModelProviderCard = {
|
|
280
243
|
output: 4.13,
|
281
244
|
},
|
282
245
|
},
|
283
|
-
{
|
284
|
-
contextWindowTokens: 32_768,
|
285
|
-
description:
|
286
|
-
'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
|
287
|
-
displayName: 'Qwen2 72B Instruct (Vendor-A)',
|
288
|
-
id: 'Vendor-A/Qwen/Qwen2-7B-Instruct',
|
289
|
-
pricing: {
|
290
|
-
currency: 'CNY',
|
291
|
-
input: 1,
|
292
|
-
output: 1,
|
293
|
-
},
|
294
|
-
},
|
295
246
|
{
|
296
247
|
contextWindowTokens: 32_768,
|
297
248
|
description:
|
@@ -372,19 +323,6 @@ const SiliconCloud: ModelProviderCard = {
|
|
372
323
|
},
|
373
324
|
vision: true,
|
374
325
|
},
|
375
|
-
{
|
376
|
-
contextWindowTokens: 8192,
|
377
|
-
description:
|
378
|
-
'InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平',
|
379
|
-
displayName: 'InternVL2 Llama3 76B',
|
380
|
-
id: 'OpenGVLab/InternVL2-Llama3-76B',
|
381
|
-
pricing: {
|
382
|
-
currency: 'CNY',
|
383
|
-
input: 4.13,
|
384
|
-
output: 4.13,
|
385
|
-
},
|
386
|
-
vision: true,
|
387
|
-
},
|
388
326
|
{
|
389
327
|
contextWindowTokens: 131_072,
|
390
328
|
description:
|
@@ -553,10 +491,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
553
491
|
{
|
554
492
|
contextWindowTokens: 32_768,
|
555
493
|
description:
|
556
|
-
'Llama
|
557
|
-
displayName: 'Llama 3.
|
494
|
+
'Llama 3.3 是 Llama 系列最先进的多语言开源大型语言模型,以极低成本体验媲美 405B 模型的性能。基于 Transformer 结构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)提升有用性和安全性。其指令调优版本专为多语言对话优化,在多项行业基准上表现优于众多开源和封闭聊天模型。知识截止日期为 2023 年 12 月',
|
495
|
+
displayName: 'Llama 3.3 70B Instruct',
|
558
496
|
enabled: true,
|
559
|
-
|
497
|
+
functionCall: true,
|
498
|
+
id: 'meta-llama/Llama-3.3-70B-Instruct',
|
560
499
|
pricing: {
|
561
500
|
currency: 'CNY',
|
562
501
|
input: 4.13,
|