@lobehub/chat 1.36.8 → 1.36.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +33 -0
- package/changelog/v1.json +12 -0
- package/locales/ar/models.json +78 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +78 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +78 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +78 -0
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +78 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +78 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +78 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +78 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +78 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +78 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +78 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/modelProvider.json +9 -9
- package/locales/pl-PL/models.json +78 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +78 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +78 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +78 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +78 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +88 -10
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +78 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/app/(backend)/api/webhooks/clerk/route.ts +18 -3
- package/src/database/server/models/__tests__/nextauth.test.ts +33 -0
- package/src/libs/next-auth/adapter/index.ts +8 -2
- package/src/server/services/user/index.test.ts +200 -0
- package/src/server/services/user/index.ts +24 -32
- package/vitest.config.ts +1 -1
@@ -55,6 +55,24 @@
|
|
55
55
|
"Baichuan4-Turbo": {
|
56
56
|
"description": "모델 능력이 국내 1위이며, 지식 백과, 긴 텍스트, 생성 창작 등 중국어 작업에서 해외 주류 모델을 초월합니다. 또한 업계 선도적인 다중 모달 능력을 갖추고 있으며, 여러 권위 있는 평가 기준에서 우수한 성과를 보입니다."
|
57
57
|
},
|
58
|
+
"Doubao-lite-128k": {
|
59
|
+
"description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 128k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
60
|
+
},
|
61
|
+
"Doubao-lite-32k": {
|
62
|
+
"description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 32k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
63
|
+
},
|
64
|
+
"Doubao-lite-4k": {
|
65
|
+
"description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 4k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
66
|
+
},
|
67
|
+
"Doubao-pro-128k": {
|
68
|
+
"description": "가장 효과적인 주력 모델로, 복잡한 작업 처리에 적합하며, 참고 질문, 요약, 창작, 텍스트 분류, 역할 수행 등 많은 장면에서 뛰어난 성과를 보입니다. 128k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
69
|
+
},
|
70
|
+
"Doubao-pro-32k": {
|
71
|
+
"description": "가장 효과적인 주력 모델로, 복잡한 작업 처리에 적합하며, 참고 질문, 요약, 창작, 텍스트 분류, 역할 수행 등 많은 장면에서 뛰어난 성과를 보입니다. 32k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
72
|
+
},
|
73
|
+
"Doubao-pro-4k": {
|
74
|
+
"description": "가장 효과적인 주력 모델로, 복잡한 작업 처리에 적합하며, 참고 질문, 요약, 창작, 텍스트 분류, 역할 수행 등 많은 장면에서 뛰어난 성과를 보입니다. 4k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
75
|
+
},
|
58
76
|
"ERNIE-3.5-128K": {
|
59
77
|
"description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중문 및 영문 코퍼스를 포함하고 있으며, 강력한 일반 능력을 갖추고 있어 대부분의 대화형 질문 응답, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 또한 바이두 검색 플러그인과의 자동 연동을 지원하여 질문 응답 정보의 시의성을 보장합니다."
|
60
78
|
},
|
@@ -242,6 +260,21 @@
|
|
242
260
|
"SenseChat-Turbo": {
|
243
261
|
"description": "빠른 질문 응답 및 모델 미세 조정 시나리오에 적합합니다."
|
244
262
|
},
|
263
|
+
"Skylark2-lite-8k": {
|
264
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-lite 모델은 높은 응답 속도를 자랑하며, 실시간 요구가 높은, 비용에 민감하고, 모델 정확도에 대한 요구가 낮은 장면에 적합하며, 컨텍스트 윈도우 길이는 8k입니다."
|
265
|
+
},
|
266
|
+
"Skylark2-pro-32k": {
|
267
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro 버전은 높은 모델 정확도를 자랑하며, 전문 분야 문서 생성, 소설 창작, 고품질 번역 등 복잡한 텍스트 생성 장면에 적합하며, 컨텍스트 윈도우 길이는 32k입니다."
|
268
|
+
},
|
269
|
+
"Skylark2-pro-4k": {
|
270
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro 모델은 높은 모델 정확도를 자랑하며, 전문 분야 문서 생성, 소설 창작, 고품질 번역 등 복잡한 텍스트 생성 장면에 적합하며, 컨텍스트 윈도우 길이는 4k입니다."
|
271
|
+
},
|
272
|
+
"Skylark2-pro-character-4k": {
|
273
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro-character 모델은 우수한 역할 수행 및 채팅 능력을 갖추고 있으며, 사용자 프롬프트 요구에 따라 다양한 역할을 수행하고 자연스러운 대화를 이어갈 수 있습니다. 채팅봇, 가상 비서 및 온라인 고객 서비스 등을 구축하는 데 적합하며 높은 응답 속도를 자랑합니다."
|
274
|
+
},
|
275
|
+
"Skylark2-pro-turbo-8k": {
|
276
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro-turbo-8k는 더 빠른 추론과 낮은 비용을 자랑하며, 컨텍스트 윈도우 길이는 8k입니다."
|
277
|
+
},
|
245
278
|
"THUDM/chatglm3-6b": {
|
246
279
|
"description": "ChatGLM3-6B는 Zhizhu AI가 개발한 ChatGLM 시리즈의 오픈 소스 모델입니다. 이 모델은 이전 모델의 우수한 특성을 유지하면서 대화의 유창함과 배포 장벽을 낮추는 새로운 기능을 도입했습니다. 더 다양한 훈련 데이터, 충분한 훈련 단계 및 합리적인 훈련 전략을 채택하여 10B 이하의 사전 훈련 모델 중에서 뛰어난 성능을 보입니다. ChatGLM3-6B는 다중 회전 대화, 도구 호출, 코드 실행 및 에이전트 작업과 같은 복잡한 시나리오를 지원합니다. 대화 모델 외에도 기본 모델 ChatGLM-6B-Base 및 긴 텍스트 대화 모델 ChatGLM3-6B-32K도 오픈 소스되었습니다. 이 모델은 학술 연구에 완전히 개방되어 있으며, 등록 후 무료 상업적 사용도 허용됩니다."
|
247
280
|
},
|
@@ -476,6 +509,9 @@
|
|
476
509
|
"cohere-command-r-plus": {
|
477
510
|
"description": "Command R+는 기업급 작업을 처리하기 위해 설계된 최첨단 RAG 최적화 모델입니다."
|
478
511
|
},
|
512
|
+
"command-light": {
|
513
|
+
"description": ""
|
514
|
+
},
|
479
515
|
"command-r": {
|
480
516
|
"description": "Command R은 대화 및 긴 컨텍스트 작업에 최적화된 LLM으로, 동적 상호작용 및 지식 관리에 특히 적합합니다."
|
481
517
|
},
|
@@ -539,6 +575,9 @@
|
|
539
575
|
"gemini-1.5-flash-8b-exp-0924": {
|
540
576
|
"description": "Gemini 1.5 Flash 8B 0924는 최신 실험 모델로, 텍스트 및 다중 모달 사용 사례에서 상당한 성능 향상을 보여줍니다."
|
541
577
|
},
|
578
|
+
"gemini-1.5-flash-exp-0827": {
|
579
|
+
"description": "Gemini 1.5 Flash 0827은 다양한 복잡한 작업에 적합한 최적화된 다중 모달 처리 능력을 제공합니다."
|
580
|
+
},
|
542
581
|
"gemini-1.5-flash-latest": {
|
543
582
|
"description": "Gemini 1.5 Flash는 Google의 최신 다중 모달 AI 모델로, 빠른 처리 능력을 갖추고 있으며 텍스트, 이미지 및 비디오 입력을 지원하여 다양한 작업에 효율적으로 확장할 수 있습니다."
|
544
583
|
},
|
@@ -548,6 +587,12 @@
|
|
548
587
|
"gemini-1.5-pro-002": {
|
549
588
|
"description": "Gemini 1.5 Pro 002는 최신 생산 준비 모델로, 특히 수학, 긴 문맥 및 시각적 작업에서 더 높은 품질의 출력을 제공합니다."
|
550
589
|
},
|
590
|
+
"gemini-1.5-pro-exp-0801": {
|
591
|
+
"description": "Gemini 1.5 Pro 0801은 뛰어난 다중 모달 처리 능력을 제공하여 애플리케이션 개발에 더 큰 유연성을 제공합니다."
|
592
|
+
},
|
593
|
+
"gemini-1.5-pro-exp-0827": {
|
594
|
+
"description": "Gemini 1.5 Pro 0827은 최신 최적화 기술을 결합하여 보다 효율적인 다중 모달 데이터 처리 능력을 제공합니다."
|
595
|
+
},
|
551
596
|
"gemini-1.5-pro-latest": {
|
552
597
|
"description": "Gemini 1.5 Pro는 최대 200만 개의 토큰을 지원하며, 중형 다중 모달 모델의 이상적인 선택으로 복잡한 작업에 대한 다각적인 지원을 제공합니다."
|
553
598
|
},
|
@@ -557,6 +602,9 @@
|
|
557
602
|
"gemini-exp-1121": {
|
558
603
|
"description": "Gemini Exp 1121은 Google의 최신 실험적 다중 모달 AI 모델로, 빠른 처리 능력을 갖추고 있으며 텍스트, 이미지 및 비디오 입력을 지원하여 다양한 작업에 효율적으로 확장할 수 있습니다."
|
559
604
|
},
|
605
|
+
"gemini-exp-1206": {
|
606
|
+
"description": "Gemini Exp 1206은 Google의 최신 실험적 다중 모달 AI 모델로, 이전 버전에 비해 품질이 개선되었습니다."
|
607
|
+
},
|
560
608
|
"gemma-7b-it": {
|
561
609
|
"description": "Gemma 7B는 중소 규모 작업 처리에 적합하며, 비용 효과성을 갖추고 있습니다."
|
562
610
|
},
|
@@ -647,6 +695,12 @@
|
|
647
695
|
"gpt-3.5-turbo-instruct": {
|
648
696
|
"description": "GPT 3.5 Turbo는 다양한 텍스트 생성 및 이해 작업에 적합하며, 현재 gpt-3.5-turbo-0125를 가리킵니다."
|
649
697
|
},
|
698
|
+
"gpt-35-turbo": {
|
699
|
+
"description": "GPT 3.5 Turbo는 OpenAI에서 제공하는 효율적인 모델로, 채팅 및 텍스트 생성 작업에 적합하며, 병렬 함수 호출을 지원합니다."
|
700
|
+
},
|
701
|
+
"gpt-35-turbo-16k": {
|
702
|
+
"description": "GPT 3.5 Turbo 16k는 복잡한 작업에 적합한 고용량 텍스트 생성 모델입니다."
|
703
|
+
},
|
650
704
|
"gpt-4": {
|
651
705
|
"description": "GPT-4는 더 큰 컨텍스트 창을 제공하여 더 긴 텍스트 입력을 처리할 수 있으며, 광범위한 정보 통합 및 데이터 분석이 필요한 상황에 적합합니다."
|
652
706
|
},
|
@@ -689,6 +743,9 @@
|
|
689
743
|
"gpt-4o-2024-08-06": {
|
690
744
|
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 응용 프로그램에 적합합니다."
|
691
745
|
},
|
746
|
+
"gpt-4o-2024-11-20": {
|
747
|
+
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 애플리케이션에 적합합니다."
|
748
|
+
},
|
692
749
|
"gpt-4o-mini": {
|
693
750
|
"description": "GPT-4o mini는 OpenAI가 GPT-4 Omni 이후에 출시한 최신 모델로, 텍스트와 이미지를 입력받아 텍스트를 출력합니다. 이 모델은 최신의 소형 모델로, 최근의 다른 최첨단 모델보다 훨씬 저렴하며, GPT-3.5 Turbo보다 60% 이상 저렴합니다. 최첨단의 지능을 유지하면서도 뛰어난 가성비를 자랑합니다. GPT-4o mini는 MMLU 테스트에서 82%의 점수를 기록했으며, 현재 채팅 선호도에서 GPT-4보다 높은 순위를 차지하고 있습니다."
|
694
751
|
},
|
@@ -707,6 +764,9 @@
|
|
707
764
|
"hunyuan-functioncall": {
|
708
765
|
"description": "혼원 최신 MOE 구조의 FunctionCall 모델로, 고품질 FunctionCall 데이터 훈련을 거쳤으며, 컨텍스트 윈도우는 32K에 도달하고 여러 차원의 평가 지표에서 선두에 있습니다."
|
709
766
|
},
|
767
|
+
"hunyuan-large": {
|
768
|
+
"description": ""
|
769
|
+
},
|
710
770
|
"hunyuan-lite": {
|
711
771
|
"description": "MOE 구조로 업그레이드되었으며, 컨텍스트 윈도우는 256k로 설정되어 NLP, 코드, 수학, 산업 등 여러 평가 집합에서 많은 오픈 소스 모델을 선도하고 있습니다."
|
712
772
|
},
|
@@ -787,6 +847,9 @@
|
|
787
847
|
"llama-3.2-90b-vision-preview": {
|
788
848
|
"description": "Llama 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
|
789
849
|
},
|
850
|
+
"llama-3.3-70b-versatile": {
|
851
|
+
"description": "Meta Llama 3.3 다국어 대형 언어 모델(LLM)은 70B(텍스트 입력/텍스트 출력)에서 사전 학습 및 지침 조정 생성 모델입니다. Llama 3.3의 지침 조정 순수 텍스트 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 많은 오픈 소스 및 폐쇄형 채팅 모델보다 일반 산업 기준에서 우수한 성능을 보입니다."
|
852
|
+
},
|
790
853
|
"llama3-70b-8192": {
|
791
854
|
"description": "Meta Llama 3 70B는 비할 데 없는 복잡성 처리 능력을 제공하며, 높은 요구 사항을 가진 프로젝트에 맞춤형으로 설계되었습니다."
|
792
855
|
},
|
@@ -1094,12 +1157,21 @@
|
|
1094
1157
|
"qwen-math-turbo-latest": {
|
1095
1158
|
"description": "통의 천문 수학 모델은 수학 문제 해결을 위해 특별히 설계된 언어 모델입니다."
|
1096
1159
|
},
|
1160
|
+
"qwen-max": {
|
1161
|
+
"description": "통의천문 천억 수준 초대형 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원하며, 현재 통의천문 2.5 제품 버전 뒤의 API 모델입니다."
|
1162
|
+
},
|
1097
1163
|
"qwen-max-latest": {
|
1098
1164
|
"description": "통의 천문 1000억급 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원하며, 현재 통의 천문 2.5 제품 버전의 API 모델입니다."
|
1099
1165
|
},
|
1166
|
+
"qwen-plus": {
|
1167
|
+
"description": "통의천문 초대형 언어 모델의 강화 버전으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1168
|
+
},
|
1100
1169
|
"qwen-plus-latest": {
|
1101
1170
|
"description": "통의 천문 초대규모 언어 모델의 강화판으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1102
1171
|
},
|
1172
|
+
"qwen-turbo": {
|
1173
|
+
"description": "통의천문 초대형 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1174
|
+
},
|
1103
1175
|
"qwen-turbo-latest": {
|
1104
1176
|
"description": "통의 천문 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1105
1177
|
},
|
@@ -1136,12 +1208,18 @@
|
|
1136
1208
|
"qwen2.5-7b-instruct": {
|
1137
1209
|
"description": "통의 천문 2.5 외부 오픈 소스 7B 규모 모델입니다."
|
1138
1210
|
},
|
1211
|
+
"qwen2.5-coder-1.5b-instruct": {
|
1212
|
+
"description": "통의천문 코드 모델 오픈 소스 버전입니다."
|
1213
|
+
},
|
1139
1214
|
"qwen2.5-coder-32b-instruct": {
|
1140
1215
|
"description": "통의 천문 코드 모델 오픈 소스 버전입니다."
|
1141
1216
|
},
|
1142
1217
|
"qwen2.5-coder-7b-instruct": {
|
1143
1218
|
"description": "통의 천문 코드 모델 오픈 소스 버전입니다."
|
1144
1219
|
},
|
1220
|
+
"qwen2.5-math-1.5b-instruct": {
|
1221
|
+
"description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 갖추고 있습니다."
|
1222
|
+
},
|
1145
1223
|
"qwen2.5-math-72b-instruct": {
|
1146
1224
|
"description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
|
1147
1225
|
},
|
@@ -34,6 +34,9 @@
|
|
34
34
|
"groq": {
|
35
35
|
"description": "Groq의 LPU 추론 엔진은 최신 독립 대형 언어 모델(LLM) 벤치마크 테스트에서 뛰어난 성능을 보이며, 놀라운 속도와 효율성으로 AI 솔루션의 기준을 재정의하고 있습니다. Groq는 즉각적인 추론 속도의 대표주자로, 클라우드 기반 배포에서 우수한 성능을 보여줍니다."
|
36
36
|
},
|
37
|
+
"higress": {
|
38
|
+
"description": ""
|
39
|
+
},
|
37
40
|
"huggingface": {
|
38
41
|
"description": "HuggingFace Inference API는 수천 개의 모델을 탐색할 수 있는 빠르고 무료의 방법을 제공합니다. 새로운 애플리케이션을 프로토타입 하거나 머신러닝의 기능을 시도하는 경우, 이 API는 여러 분야의 고성능 모델에 즉시 접근할 수 있게 해줍니다."
|
39
42
|
},
|
@@ -55,6 +55,24 @@
|
|
55
55
|
"Baichuan4-Turbo": {
|
56
56
|
"description": "Modelcapaciteiten zijn nationaal de beste, overtreft buitenlandse mainstream modellen in kennisencyclopedie, lange teksten en creatieve generatie in Chinese taken. Beschikt ook over toonaangevende multimodale capaciteiten en presteert uitstekend op verschillende autoritatieve evaluatiebenchmarks."
|
57
57
|
},
|
58
|
+
"Doubao-lite-128k": {
|
59
|
+
"description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 128k."
|
60
|
+
},
|
61
|
+
"Doubao-lite-32k": {
|
62
|
+
"description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 32k."
|
63
|
+
},
|
64
|
+
"Doubao-lite-4k": {
|
65
|
+
"description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 4k."
|
66
|
+
},
|
67
|
+
"Doubao-pro-128k": {
|
68
|
+
"description": "Het meest effectieve hoofmodel, geschikt voor het verwerken van complexe taken, met goede resultaten in referentievraag, samenvattingen, creatie, tekstclassificatie, rollenspellen en meer. Ondersteunt inferentie en fine-tuning met een contextvenster van 128k."
|
69
|
+
},
|
70
|
+
"Doubao-pro-32k": {
|
71
|
+
"description": "Het meest effectieve hoofmodel, geschikt voor het verwerken van complexe taken, met goede resultaten in referentievraag, samenvattingen, creatie, tekstclassificatie, rollenspellen en meer. Ondersteunt inferentie en fine-tuning met een contextvenster van 32k."
|
72
|
+
},
|
73
|
+
"Doubao-pro-4k": {
|
74
|
+
"description": "Het meest effectieve hoofmodel, geschikt voor het verwerken van complexe taken, met goede resultaten in referentievraag, samenvattingen, creatie, tekstclassificatie, rollenspellen en meer. Ondersteunt inferentie en fine-tuning met een contextvenster van 4k."
|
75
|
+
},
|
58
76
|
"ERNIE-3.5-128K": {
|
59
77
|
"description": "De door Baidu ontwikkelde vlaggenschip grote taalmodel, dat een enorme hoeveelheid Chinese en Engelse gegevens dekt, met krachtige algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met de Baidu zoekplug-in, wat de actualiteit van vraag- en antwoordinformatie waarborgt."
|
60
78
|
},
|
@@ -242,6 +260,21 @@
|
|
242
260
|
"SenseChat-Turbo": {
|
243
261
|
"description": "Geschikt voor snelle vraag-en-antwoord en modelafstemming."
|
244
262
|
},
|
263
|
+
"Skylark2-lite-8k": {
|
264
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-lite model heeft een hoge responssnelheid, geschikt voor scenario's met hoge realtimevereisten, kostenbewustzijn en lagere modelnauwkeurigheidsvereisten, met een contextvenster lengte van 8k."
|
265
|
+
},
|
266
|
+
"Skylark2-pro-32k": {
|
267
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro versie heeft een hoge modelnauwkeurigheid, geschikt voor complexere tekstgeneratiescenario's zoals professionele copywriting, romanproductie, en hoogwaardig vertalen, met een contextvenster lengte van 32k."
|
268
|
+
},
|
269
|
+
"Skylark2-pro-4k": {
|
270
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro model heeft een hoge modelnauwkeurigheid, geschikt voor complexere tekstgeneratiescenario's zoals professionele copywriting, romanproductie, en hoogwaardig vertalen, met een contextvenster lengte van 4k."
|
271
|
+
},
|
272
|
+
"Skylark2-pro-character-4k": {
|
273
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro-character model heeft uitstekende rolspelin en chatmogelijkheden, en is goed in het aannemen van verschillende rollen op basis van gebruikersprompt, met een natuurlijk vloeiende conversatie. Ideaal voor het bouwen van chatbots, virtuele assistenten en online klantenservice met hoge responssnelheden."
|
274
|
+
},
|
275
|
+
"Skylark2-pro-turbo-8k": {
|
276
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro-turbo-8k biedt snellere inferentie en lagere kosten, met een contextvenster lengte van 8k."
|
277
|
+
},
|
245
278
|
"THUDM/chatglm3-6b": {
|
246
279
|
"description": "ChatGLM3-6B is het open-source model van de ChatGLM-serie, ontwikkeld door Zhipu AI. Dit model behoudt de uitstekende kenmerken van de vorige generatie, zoals vloeiende gesprekken en lage implementatiedrempels, terwijl het nieuwe functies introduceert. Het maakt gebruik van meer diverse trainingsdata, een groter aantal trainingsstappen en een meer redelijke trainingsstrategie, en presteert uitstekend onder de voorgetrainde modellen van minder dan 10B. ChatGLM3-6B ondersteunt complexe scenario's zoals meerdaagse gesprekken, tool-aanroepen, code-uitvoering en agenttaken. Naast het gespreksmodel zijn ook het basismodel ChatGLM-6B-Base en het lange tekstgespreksmodel ChatGLM3-6B-32K open-source gemaakt. Dit model is volledig open voor academisch onderzoek en staat ook gratis commercieel gebruik toe na registratie."
|
247
280
|
},
|
@@ -476,6 +509,9 @@
|
|
476
509
|
"cohere-command-r-plus": {
|
477
510
|
"description": "Command R+ is een state-of-the-art RAG-geoptimaliseerd model ontworpen om enterprise-grade workloads aan te pakken."
|
478
511
|
},
|
512
|
+
"command-light": {
|
513
|
+
"description": ""
|
514
|
+
},
|
479
515
|
"command-r": {
|
480
516
|
"description": "Command R is geoptimaliseerd voor conversatie- en lange contexttaken, bijzonder geschikt voor dynamische interactie en kennisbeheer."
|
481
517
|
},
|
@@ -539,6 +575,9 @@
|
|
539
575
|
"gemini-1.5-flash-8b-exp-0924": {
|
540
576
|
"description": "Gemini 1.5 Flash 8B 0924 is het nieuwste experimentele model, met aanzienlijke prestatieverbeteringen in tekst- en multimodale toepassingen."
|
541
577
|
},
|
578
|
+
"gemini-1.5-flash-exp-0827": {
|
579
|
+
"description": "Gemini 1.5 Flash 0827 biedt geoptimaliseerde multimodale verwerkingscapaciteiten, geschikt voor verschillende complexe taak scenario's."
|
580
|
+
},
|
542
581
|
"gemini-1.5-flash-latest": {
|
543
582
|
"description": "Gemini 1.5 Flash is Google's nieuwste multimodale AI-model, met snelle verwerkingscapaciteiten, ondersteunt tekst-, beeld- en video-invoer, en is geschikt voor efficiënte opschaling van verschillende taken."
|
544
583
|
},
|
@@ -548,6 +587,12 @@
|
|
548
587
|
"gemini-1.5-pro-002": {
|
549
588
|
"description": "Gemini 1.5 Pro 002 is het nieuwste productieklare model, dat hogere kwaliteit output biedt, met name op het gebied van wiskunde, lange contexten en visuele taken."
|
550
589
|
},
|
590
|
+
"gemini-1.5-pro-exp-0801": {
|
591
|
+
"description": "Gemini 1.5 Pro 0801 biedt uitstekende multimodale verwerkingscapaciteiten, wat grotere flexibiliteit in applicatieontwikkeling mogelijk maakt."
|
592
|
+
},
|
593
|
+
"gemini-1.5-pro-exp-0827": {
|
594
|
+
"description": "Gemini 1.5 Pro 0827 combineert de nieuwste optimalisatietechnologieën en biedt efficiëntere multimodale gegevensverwerkingscapaciteiten."
|
595
|
+
},
|
551
596
|
"gemini-1.5-pro-latest": {
|
552
597
|
"description": "Gemini 1.5 Pro ondersteunt tot 2 miljoen tokens en is de ideale keuze voor middelgrote multimodale modellen, geschikt voor veelzijdige ondersteuning van complexe taken."
|
553
598
|
},
|
@@ -557,6 +602,9 @@
|
|
557
602
|
"gemini-exp-1121": {
|
558
603
|
"description": "Gemini Exp 1121 is Google's nieuwste experimentele multimodale AI-model, dat snel kan verwerken en ondersteuning biedt voor tekst-, beeld- en video-invoer, geschikt voor efficiënte opschaling van verschillende taken."
|
559
604
|
},
|
605
|
+
"gemini-exp-1206": {
|
606
|
+
"description": "Gemini Exp 1206 is Google's nieuwste experimentele multimodale AI-model, met een aanzienlijke kwaliteitsverbetering ten opzichte van eerdere versies."
|
607
|
+
},
|
560
608
|
"gemma-7b-it": {
|
561
609
|
"description": "Gemma 7B is geschikt voor het verwerken van middelgrote taken, met een goede kosteneffectiviteit."
|
562
610
|
},
|
@@ -647,6 +695,12 @@
|
|
647
695
|
"gpt-3.5-turbo-instruct": {
|
648
696
|
"description": "GPT 3.5 Turbo, geschikt voor verschillende tekstgeneratie- en begrijptaken, wijst momenteel naar gpt-3.5-turbo-0125."
|
649
697
|
},
|
698
|
+
"gpt-35-turbo": {
|
699
|
+
"description": "GPT 3.5 Turbo, een efficiënt model aangeboden door OpenAI, geschikt voor chat- en tekstgeneratietaken, met ondersteuning voor parallelle functieaanroepen."
|
700
|
+
},
|
701
|
+
"gpt-35-turbo-16k": {
|
702
|
+
"description": "GPT 3.5 Turbo 16k, een tekstgeneratiemodel met hoge capaciteit, geschikt voor complexe taken."
|
703
|
+
},
|
650
704
|
"gpt-4": {
|
651
705
|
"description": "GPT-4 biedt een groter contextvenster en kan langere tekstinvoer verwerken, geschikt voor scenario's die uitgebreide informatie-integratie en data-analyse vereisen."
|
652
706
|
},
|
@@ -689,6 +743,9 @@
|
|
689
743
|
"gpt-4o-2024-08-06": {
|
690
744
|
"description": "ChatGPT-4o is een dynamisch model dat in realtime wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip- en generatiecapaciteiten, geschikt voor grootschalige toepassingsscenario's, waaronder klantenservice, onderwijs en technische ondersteuning."
|
691
745
|
},
|
746
|
+
"gpt-4o-2024-11-20": {
|
747
|
+
"description": "ChatGPT-4o is een dynamisch model dat in real-time wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip en generatiemogelijkheden, geschikt voor grootschalige toepassingen zoals klantenservice, onderwijs en technische ondersteuning."
|
748
|
+
},
|
692
749
|
"gpt-4o-mini": {
|
693
750
|
"description": "GPT-4o mini is het nieuwste model van OpenAI, gelanceerd na GPT-4 Omni, en ondersteunt zowel tekst- als beeldinvoer met tekstuitvoer. Als hun meest geavanceerde kleine model is het veel goedkoper dan andere recente toonaangevende modellen en meer dan 60% goedkoper dan GPT-3.5 Turbo. Het behoudt de meest geavanceerde intelligentie met een aanzienlijke prijs-kwaliteitverhouding. GPT-4o mini behaalde 82% op de MMLU-test en staat momenteel hoger in chatvoorkeuren dan GPT-4."
|
694
751
|
},
|
@@ -707,6 +764,9 @@
|
|
707
764
|
"hunyuan-functioncall": {
|
708
765
|
"description": "Het nieuwste MOE-architectuur FunctionCall-model van Hunyuan, getraind op hoogwaardige FunctionCall-gegevens, met een contextvenster van 32K, en staat voorop in meerdere dimensies van evaluatie-indicatoren."
|
709
766
|
},
|
767
|
+
"hunyuan-large": {
|
768
|
+
"description": ""
|
769
|
+
},
|
710
770
|
"hunyuan-lite": {
|
711
771
|
"description": "Geüpgraded naar een MOE-structuur, met een contextvenster van 256k, en leidt in verschillende evaluatiesets op het gebied van NLP, code, wiskunde en industrie ten opzichte van vele open-source modellen."
|
712
772
|
},
|
@@ -787,6 +847,9 @@
|
|
787
847
|
"llama-3.2-90b-vision-preview": {
|
788
848
|
"description": "Llama 3.2 is ontworpen om taken te verwerken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redeneervaardigheden."
|
789
849
|
},
|
850
|
+
"llama-3.3-70b-versatile": {
|
851
|
+
"description": "Meta Llama 3.3 is een meertalige grote taalmodel (LLM) met 70B (tekstinvoer/tekstuitvoer) dat is voorgetraind en aangepast voor instructies. Het pure tekstmodel van Llama 3.3 is geoptimaliseerd voor meertalige gespreksgebruik en scoort beter dan veel beschikbare open-source en gesloten chatmodellen op gangbare industrie benchmarks."
|
852
|
+
},
|
790
853
|
"llama3-70b-8192": {
|
791
854
|
"description": "Meta Llama 3 70B biedt ongeëvenaarde complexiteitsverwerkingscapaciteiten, op maat gemaakt voor veeleisende projecten."
|
792
855
|
},
|
@@ -1094,12 +1157,21 @@
|
|
1094
1157
|
"qwen-math-turbo-latest": {
|
1095
1158
|
"description": "Het Tongyi Qianwen wiskundemodel is speciaal ontworpen voor het oplossen van wiskundige problemen."
|
1096
1159
|
},
|
1160
|
+
"qwen-max": {
|
1161
|
+
"description": "Qwen is een enorme versie van het grootschalige taalmodel, dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels en momenteel de API-modellen achter de Qwen 2.5-productversie vertegenwoordigt."
|
1162
|
+
},
|
1097
1163
|
"qwen-max-latest": {
|
1098
1164
|
"description": "Het Tongyi Qianwen model met een schaal van honderden miljarden, ondersteunt invoer in verschillende talen, waaronder Chinees en Engels, en is de API-model achter de huidige Tongyi Qianwen 2.5 productversie."
|
1099
1165
|
},
|
1166
|
+
"qwen-plus": {
|
1167
|
+
"description": "Qwen is een verbeterde versie van het grootschalige taalmodel dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels."
|
1168
|
+
},
|
1100
1169
|
"qwen-plus-latest": {
|
1101
1170
|
"description": "De verbeterde versie van het Tongyi Qianwen supergrote taalmodel ondersteunt invoer in verschillende talen, waaronder Chinees en Engels."
|
1102
1171
|
},
|
1172
|
+
"qwen-turbo": {
|
1173
|
+
"description": "Qwen is een grootschalig taalmodel dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels."
|
1174
|
+
},
|
1103
1175
|
"qwen-turbo-latest": {
|
1104
1176
|
"description": "De Tongyi Qianwen supergrote taalmodel ondersteunt invoer in verschillende talen, waaronder Chinees en Engels."
|
1105
1177
|
},
|
@@ -1136,12 +1208,18 @@
|
|
1136
1208
|
"qwen2.5-7b-instruct": {
|
1137
1209
|
"description": "Het 7B model van Tongyi Qianwen 2.5 is open source beschikbaar."
|
1138
1210
|
},
|
1211
|
+
"qwen2.5-coder-1.5b-instruct": {
|
1212
|
+
"description": "Qwen-code model open source versie."
|
1213
|
+
},
|
1139
1214
|
"qwen2.5-coder-32b-instruct": {
|
1140
1215
|
"description": "Open source versie van het Tongyi Qianwen code model."
|
1141
1216
|
},
|
1142
1217
|
"qwen2.5-coder-7b-instruct": {
|
1143
1218
|
"description": "De open source versie van het Tongyi Qianwen codeermodel."
|
1144
1219
|
},
|
1220
|
+
"qwen2.5-math-1.5b-instruct": {
|
1221
|
+
"description": "Qwen-Math model beschikt over krachtige wiskundige probleemoplossende mogelijkheden."
|
1222
|
+
},
|
1145
1223
|
"qwen2.5-math-72b-instruct": {
|
1146
1224
|
"description": "Het Qwen-Math model heeft krachtige capaciteiten voor het oplossen van wiskundige problemen."
|
1147
1225
|
},
|
@@ -34,6 +34,9 @@
|
|
34
34
|
"groq": {
|
35
35
|
"description": "De LPU-inferentie-engine van Groq presteert uitstekend in de nieuwste onafhankelijke benchmarktests voor grote taalmodellen (LLM), en herdefinieert de normen voor AI-oplossingen met zijn verbazingwekkende snelheid en efficiëntie. Groq is een vertegenwoordiger van onmiddellijke inferentiesnelheid en toont goede prestaties in cloudgebaseerde implementaties."
|
36
36
|
},
|
37
|
+
"higress": {
|
38
|
+
"description": ""
|
39
|
+
},
|
37
40
|
"huggingface": {
|
38
41
|
"description": "HuggingFace Inference API biedt een snelle en gratis manier om duizenden modellen te verkennen voor verschillende taken. Of u nu prototypes voor nieuwe applicaties ontwerpt of de mogelijkheden van machine learning uitprobeert, deze API geeft u directe toegang tot hoogpresterende modellen in meerdere domeinen."
|
39
42
|
},
|
@@ -119,17 +119,17 @@
|
|
119
119
|
},
|
120
120
|
"title": "Zainstaluj i uruchom aplikację Ollama lokalnie",
|
121
121
|
"windowsTab": "Windows (wersja podglądowa)"
|
122
|
-
},
|
123
|
-
"unlock": {
|
124
|
-
"cancel": "Anuluj pobieranie",
|
125
|
-
"confirm": "Pobierz",
|
126
|
-
"description": "Wprowadź etykietę modelu Ollama, aby kontynuować sesję",
|
127
|
-
"downloaded": "{{completed}} / {{total}}",
|
128
|
-
"starting": "Rozpoczynanie pobierania...",
|
129
|
-
"title": "Pobierz określony model Ollama"
|
130
122
|
}
|
131
123
|
},
|
132
|
-
"title": "Ollama"
|
124
|
+
"title": "Ollama",
|
125
|
+
"unlock": {
|
126
|
+
"cancel": "Anuluj pobieranie",
|
127
|
+
"confirm": "Pobierz",
|
128
|
+
"description": "Wprowadź etykietę swojego modelu Ollama, aby zakończyć i kontynuować rozmowę",
|
129
|
+
"downloaded": "{{completed}} / {{total}}",
|
130
|
+
"starting": "Rozpoczynam pobieranie...",
|
131
|
+
"title": "Pobierz określony model Ollama"
|
132
|
+
}
|
133
133
|
},
|
134
134
|
"sensenova": {
|
135
135
|
"sensenovaAccessKeyID": {
|
@@ -55,6 +55,24 @@
|
|
55
55
|
"Baichuan4-Turbo": {
|
56
56
|
"description": "Model o najlepszych możliwościach w kraju, przewyższający zagraniczne modele w zadaniach związanych z wiedzą encyklopedyczną, długimi tekstami i twórczością w języku chińskim. Posiada również wiodące w branży możliwości multimodalne, osiągając doskonałe wyniki w wielu autorytatywnych testach."
|
57
57
|
},
|
58
|
+
"Doubao-lite-128k": {
|
59
|
+
"description": "Doubao-lite cechuje się ekstremalną szybkością reakcji i lepszym stosunkiem jakości do ceny, oferując klientom elastyczność w różnych scenariuszach. Obsługuje wnioskowanie i dostosowywanie z kontekstem 128k."
|
60
|
+
},
|
61
|
+
"Doubao-lite-32k": {
|
62
|
+
"description": "Doubao-lite cechuje się ekstremalną szybkością reakcji i lepszym stosunkiem jakości do ceny, oferując klientom elastyczność w różnych scenariuszach. Obsługuje wnioskowanie i dostosowywanie z kontekstem 32k."
|
63
|
+
},
|
64
|
+
"Doubao-lite-4k": {
|
65
|
+
"description": "Doubao-lite cechuje się ekstremalną szybkością reakcji i lepszym stosunkiem jakości do ceny, oferując klientom elastyczność w różnych scenariuszach. Obsługuje wnioskowanie i dostosowywanie z kontekstem 4k."
|
66
|
+
},
|
67
|
+
"Doubao-pro-128k": {
|
68
|
+
"description": "Model o najlepszych wynikach, odpowiedni do złożonych zadań, z doskonałymi wynikami w scenariuszach takich jak odpowiedzi referencyjne, podsumowania, twórczość, klasyfikacja tekstu i odgrywanie ról. Obsługuje wnioskowanie i dostosowywanie z kontekstem 128k."
|
69
|
+
},
|
70
|
+
"Doubao-pro-32k": {
|
71
|
+
"description": "Model o najlepszych wynikach, odpowiedni do złożonych zadań, z doskonałymi wynikami w scenariuszach takich jak odpowiedzi referencyjne, podsumowania, twórczość, klasyfikacja tekstu i odgrywanie ról. Obsługuje wnioskowanie i dostosowywanie z kontekstem 32k."
|
72
|
+
},
|
73
|
+
"Doubao-pro-4k": {
|
74
|
+
"description": "Model o najlepszych wynikach, odpowiedni do złożonych zadań, z doskonałymi wynikami w scenariuszach takich jak odpowiedzi referencyjne, podsumowania, twórczość, klasyfikacja tekstu i odgrywanie ról. Obsługuje wnioskowanie i dostosowywanie z kontekstem 4k."
|
75
|
+
},
|
58
76
|
"ERNIE-3.5-128K": {
|
59
77
|
"description": "Flagowy model dużego języka opracowany przez Baidu, obejmujący ogromne zbiory danych w języku chińskim i angielskim, charakteryzujący się silnymi zdolnościami ogólnymi, zdolny do spełnienia wymagań w większości scenariuszy związanych z pytaniami i odpowiedziami, generowaniem treści oraz aplikacjami wtyczek; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji w odpowiedziach."
|
60
78
|
},
|
@@ -242,6 +260,21 @@
|
|
242
260
|
"SenseChat-Turbo": {
|
243
261
|
"description": "Idealny do szybkich odpowiedzi i scenariuszy dostosowywania modelu."
|
244
262
|
},
|
263
|
+
"Skylark2-lite-8k": {
|
264
|
+
"description": "Model drugiej generacji Skylark (Skylark2) o wysokiej szybkości reakcji, odpowiedni do scenariuszy wymagających wysokiej reaktywności, wrażliwych na koszty, z mniejszymi wymaganiami co do precyzji modelu, z długością okna kontekstowego 8k."
|
265
|
+
},
|
266
|
+
"Skylark2-pro-32k": {
|
267
|
+
"description": "Model drugiej generacji Skylark (Skylark2) o wysokiej precyzji, odpowiedni do bardziej złożonych scenariuszy generowania tekstu, takich jak generowanie treści w profesjonalnych dziedzinach, tworzenie powieści oraz tłumaczenia wysokiej jakości, z długością okna kontekstowego 32k."
|
268
|
+
},
|
269
|
+
"Skylark2-pro-4k": {
|
270
|
+
"description": "Model drugiej generacji Skylark (Skylark2) o wysokiej precyzji, odpowiedni do bardziej złożonych scenariuszy generowania tekstu, takich jak generowanie treści w profesjonalnych dziedzinach, tworzenie powieści oraz tłumaczenia wysokiej jakości, z długością okna kontekstowego 4k."
|
271
|
+
},
|
272
|
+
"Skylark2-pro-character-4k": {
|
273
|
+
"description": "Model drugiej generacji Skylark (Skylark2) z doskonałymi umiejętnościami w odgrywaniu ról i czatowaniu. Doskonale reaguje na prompty użytkowników, odgrywając różne role w naturalny sposób, idealny do budowy chatbotów, wirtualnych asystentów i obsługi klienta online, cechujący się wysoką szybkością reakcji."
|
274
|
+
},
|
275
|
+
"Skylark2-pro-turbo-8k": {
|
276
|
+
"description": "Model drugiej generacji Skylark (Skylark2) z szybszym wnioskowaniem i niższymi kosztami, z długością okna kontekstowego 8k."
|
277
|
+
},
|
245
278
|
"THUDM/chatglm3-6b": {
|
246
279
|
"description": "ChatGLM3-6B to otwarty model z serii ChatGLM, opracowany przez Zhipu AI. Model ten zachowuje doskonałe cechy poprzednich modeli, takie jak płynność rozmowy i niski próg wdrożenia, jednocześnie wprowadzając nowe funkcje. Wykorzystuje bardziej zróżnicowane dane treningowe, większą liczbę kroków treningowych i bardziej rozsądne strategie treningowe, osiągając doskonałe wyniki w modelach pretrenowanych poniżej 10B. ChatGLM3-6B obsługuje złożone scenariusze, takie jak wieloetapowe rozmowy, wywoływanie narzędzi, wykonywanie kodu i zadania agenta. Oprócz modelu konwersacyjnego, udostępniono również podstawowy model ChatGLM-6B-Base oraz model do rozmów długotematycznych ChatGLM3-6B-32K. Model jest całkowicie otwarty dla badań akademickich i pozwala na bezpłatne wykorzystanie komercyjne po rejestracji."
|
247
280
|
},
|
@@ -476,6 +509,9 @@
|
|
476
509
|
"cohere-command-r-plus": {
|
477
510
|
"description": "Command R+ to model zoptymalizowany pod kątem RAG, zaprojektowany do obsługi obciążeń roboczych na poziomie przedsiębiorstwa."
|
478
511
|
},
|
512
|
+
"command-light": {
|
513
|
+
"description": ""
|
514
|
+
},
|
479
515
|
"command-r": {
|
480
516
|
"description": "Command R to LLM zoptymalizowany do dialogów i zadań z długim kontekstem, szczególnie odpowiedni do dynamicznej interakcji i zarządzania wiedzą."
|
481
517
|
},
|
@@ -539,6 +575,9 @@
|
|
539
575
|
"gemini-1.5-flash-8b-exp-0924": {
|
540
576
|
"description": "Gemini 1.5 Flash 8B 0924 to najnowszy eksperymentalny model, który wykazuje znaczące poprawy wydajności w zastosowaniach tekstowych i multimodalnych."
|
541
577
|
},
|
578
|
+
"gemini-1.5-flash-exp-0827": {
|
579
|
+
"description": "Gemini 1.5 Flash 0827 oferuje zoptymalizowane możliwości przetwarzania multimodalnego, odpowiednie dla wielu złożonych scenariuszy."
|
580
|
+
},
|
542
581
|
"gemini-1.5-flash-latest": {
|
543
582
|
"description": "Gemini 1.5 Flash to najnowszy model AI Google o wielu modalnościach, który charakteryzuje się szybkim przetwarzaniem i obsługuje wejścia tekstowe, obrazowe i wideo, co czyni go odpowiednim do efektywnego rozszerzania w różnych zadaniach."
|
544
583
|
},
|
@@ -548,6 +587,12 @@
|
|
548
587
|
"gemini-1.5-pro-002": {
|
549
588
|
"description": "Gemini 1.5 Pro 002 to najnowszy model gotowy do produkcji, oferujący wyższą jakość wyników, ze szczególnym uwzględnieniem zadań matematycznych, długich kontekstów i zadań wizualnych."
|
550
589
|
},
|
590
|
+
"gemini-1.5-pro-exp-0801": {
|
591
|
+
"description": "Gemini 1.5 Pro 0801 oferuje doskonałe możliwości przetwarzania multimodalnego, zapewniając większą elastyczność w rozwoju aplikacji."
|
592
|
+
},
|
593
|
+
"gemini-1.5-pro-exp-0827": {
|
594
|
+
"description": "Gemini 1.5 Pro 0827 łączy najnowsze technologie optymalizacji, oferując bardziej efektywne możliwości przetwarzania danych multimodalnych."
|
595
|
+
},
|
551
596
|
"gemini-1.5-pro-latest": {
|
552
597
|
"description": "Gemini 1.5 Pro obsługuje do 2 milionów tokenów, co czyni go idealnym wyborem dla średniej wielkości modeli multimodalnych, odpowiednim do wszechstronnej obsługi złożonych zadań."
|
553
598
|
},
|
@@ -557,6 +602,9 @@
|
|
557
602
|
"gemini-exp-1121": {
|
558
603
|
"description": "Gemini Exp 1121 to najnowszy eksperymentalny model AI Google, który charakteryzuje się szybkim przetwarzaniem i obsługuje wejścia tekstowe, obrazowe i wideo, co czyni go wydajnym narzędziem do rozwiązywania różnych zadań."
|
559
604
|
},
|
605
|
+
"gemini-exp-1206": {
|
606
|
+
"description": "Gemini Exp 1206 to najnowszy eksperymentalny model AI Google w multimodalności, z zauważalnym poprawieniem jakości w porównaniu do wcześniejszych wersji."
|
607
|
+
},
|
560
608
|
"gemma-7b-it": {
|
561
609
|
"description": "Gemma 7B nadaje się do przetwarzania zadań średniej i małej skali, łącząc efektywność kosztową."
|
562
610
|
},
|
@@ -647,6 +695,12 @@
|
|
647
695
|
"gpt-3.5-turbo-instruct": {
|
648
696
|
"description": "GPT 3.5 Turbo, odpowiedni do różnych zadań generowania i rozumienia tekstu, obecnie wskazuje na gpt-3.5-turbo-0125."
|
649
697
|
},
|
698
|
+
"gpt-35-turbo": {
|
699
|
+
"description": "GPT 3.5 Turbo to wydajny model dostarczany przez OpenAI, idealny do obsługi zadań związanych z czatowaniem i generowaniem tekstu, wspierający równoległe wywołania funkcji."
|
700
|
+
},
|
701
|
+
"gpt-35-turbo-16k": {
|
702
|
+
"description": "GPT 3.5 Turbo 16k, model do generowania tekstu o dużej pojemności, odpowiedni do bardziej złożonych zadań."
|
703
|
+
},
|
650
704
|
"gpt-4": {
|
651
705
|
"description": "GPT-4 oferuje większe okno kontekstowe, zdolne do przetwarzania dłuższych wejść tekstowych, co czyni go odpowiednim do scenariuszy wymagających szerokiej integracji informacji i analizy danych."
|
652
706
|
},
|
@@ -689,6 +743,9 @@
|
|
689
743
|
"gpt-4o-2024-08-06": {
|
690
744
|
"description": "ChatGPT-4o to dynamiczny model, który jest na bieżąco aktualizowany, aby utrzymać najnowszą wersję. Łączy potężne zdolności rozumienia i generowania języka, co czyni go odpowiednim do zastosowań na dużą skalę, w tym obsługi klienta, edukacji i wsparcia technicznego."
|
691
745
|
},
|
746
|
+
"gpt-4o-2024-11-20": {
|
747
|
+
"description": "ChatGPT-4o to dynamiczny model, aktualizowany w czasie rzeczywistym, aby być zawsze na bieżąco z najnowszą wersją. Łączy potężne zdolności rozumienia i generowania języka, idealny do zastosowań w dużej skali, w tym obsłudze klienta, edukacji i wsparciu technicznym."
|
748
|
+
},
|
692
749
|
"gpt-4o-mini": {
|
693
750
|
"description": "GPT-4o mini to najnowszy model OpenAI, wprowadzony po GPT-4 Omni, obsługujący wejścia tekstowe i wizualne oraz generujący tekst. Jako ich najnowocześniejszy model w małej skali, jest znacznie tańszy niż inne niedawno wprowadzone modele, a jego cena jest o ponad 60% niższa niż GPT-3.5 Turbo. Utrzymuje najnowocześniejszą inteligencję, jednocześnie oferując znaczną wartość za pieniądze. GPT-4o mini uzyskał wynik 82% w teście MMLU i obecnie zajmuje wyższą pozycję w preferencjach czatu niż GPT-4."
|
694
751
|
},
|
@@ -707,6 +764,9 @@
|
|
707
764
|
"hunyuan-functioncall": {
|
708
765
|
"description": "Najnowocześniejszy model FunctionCall w architekturze MOE Hunyuan, przeszkolony na wysokiej jakości danych FunctionCall, z oknem kontekstowym o długości 32K, osiągający wiodące wyniki w wielu wymiarach oceny."
|
709
766
|
},
|
767
|
+
"hunyuan-large": {
|
768
|
+
"description": ""
|
769
|
+
},
|
710
770
|
"hunyuan-lite": {
|
711
771
|
"description": "Zaktualizowana do struktury MOE, z oknem kontekstowym o długości 256k, prowadzi w wielu zestawach testowych w NLP, kodowaniu, matematyce i innych dziedzinach w porównaniu do wielu modeli open source."
|
712
772
|
},
|
@@ -787,6 +847,9 @@
|
|
787
847
|
"llama-3.2-90b-vision-preview": {
|
788
848
|
"description": "Llama 3.2 jest zaprojektowana do obsługi zadań łączących dane wizualne i tekstowe. Wykazuje doskonałe wyniki w zadaniach takich jak opisywanie obrazów i wizualne pytania i odpowiedzi, przekraczając przepaść między generowaniem języka a wnioskowaniem wizualnym."
|
789
849
|
},
|
850
|
+
"llama-3.3-70b-versatile": {
|
851
|
+
"description": "Meta Llama 3.3 to wielojęzyczny model językowy (LLM) 70B, pretrenowany i dostosowany do poleceń. Model Llama 3.3, dostosowany do poleceń, jest zoptymalizowany do zastosowań w dialogach wielojęzycznych i przewyższa wiele dostępnych modeli czatu, zarówno open source, jak i zamkniętych, w popularnych branżowych benchmarkach."
|
852
|
+
},
|
790
853
|
"llama3-70b-8192": {
|
791
854
|
"description": "Meta Llama 3 70B oferuje niezrównane możliwości przetwarzania złożoności, dostosowane do projektów o wysokich wymaganiach."
|
792
855
|
},
|
@@ -1094,12 +1157,21 @@
|
|
1094
1157
|
"qwen-math-turbo-latest": {
|
1095
1158
|
"description": "Model matematyczny Qwen, stworzony specjalnie do rozwiązywania problemów matematycznych."
|
1096
1159
|
},
|
1160
|
+
"qwen-max": {
|
1161
|
+
"description": "Qwen Max to model językowy o skali miliardowej, obsługujący chiński, angielski i inne języki. Aktualna wersja API modelu na bazie Qwen 2.5."
|
1162
|
+
},
|
1097
1163
|
"qwen-max-latest": {
|
1098
1164
|
"description": "Model językowy Qwen Max o skali miliardów parametrów, obsługujący różne języki, w tym chiński i angielski, będący API modelu za produktem Qwen 2.5."
|
1099
1165
|
},
|
1166
|
+
"qwen-plus": {
|
1167
|
+
"description": "Qwen Plus to ulepszona wersja ogromnego modelu językowego, wspierająca różne języki, w tym chiński i angielski."
|
1168
|
+
},
|
1100
1169
|
"qwen-plus-latest": {
|
1101
1170
|
"description": "Wzmocniona wersja modelu językowego Qwen Plus, obsługująca różne języki, w tym chiński i angielski."
|
1102
1171
|
},
|
1172
|
+
"qwen-turbo": {
|
1173
|
+
"description": "Qwen Turbo to ogromny model językowy, który obsługuje różne języki, w tym chiński i angielski."
|
1174
|
+
},
|
1103
1175
|
"qwen-turbo-latest": {
|
1104
1176
|
"description": "Model językowy Qwen Turbo, obsługujący różne języki, w tym chiński i angielski."
|
1105
1177
|
},
|
@@ -1136,12 +1208,18 @@
|
|
1136
1208
|
"qwen2.5-7b-instruct": {
|
1137
1209
|
"description": "Model Qwen 2.5 o skali 7B, udostępniony na zasadzie open source."
|
1138
1210
|
},
|
1211
|
+
"qwen2.5-coder-1.5b-instruct": {
|
1212
|
+
"description": "Otwarta wersja modelu kodowania Qwen."
|
1213
|
+
},
|
1139
1214
|
"qwen2.5-coder-32b-instruct": {
|
1140
1215
|
"description": "Otwarta wersja modelu kodowania Qwen."
|
1141
1216
|
},
|
1142
1217
|
"qwen2.5-coder-7b-instruct": {
|
1143
1218
|
"description": "Otwarta wersja modelu kodowania Qwen."
|
1144
1219
|
},
|
1220
|
+
"qwen2.5-math-1.5b-instruct": {
|
1221
|
+
"description": "Model Qwen-Math ma silne umiejętności rozwiązywania problemów matematycznych."
|
1222
|
+
},
|
1145
1223
|
"qwen2.5-math-72b-instruct": {
|
1146
1224
|
"description": "Model Qwen-Math, który ma silne zdolności rozwiązywania problemów matematycznych."
|
1147
1225
|
},
|
@@ -34,6 +34,9 @@
|
|
34
34
|
"groq": {
|
35
35
|
"description": "Silnik inferencyjny LPU firmy Groq wyróżnia się w najnowszych niezależnych testach benchmarkowych dużych modeli językowych (LLM), redefiniując standardy rozwiązań AI dzięki niesamowitej szybkości i wydajności. Groq jest reprezentantem natychmiastowej szybkości inferencji, wykazując dobrą wydajność w wdrożeniach opartych na chmurze."
|
36
36
|
},
|
37
|
+
"higress": {
|
38
|
+
"description": ""
|
39
|
+
},
|
37
40
|
"huggingface": {
|
38
41
|
"description": "HuggingFace Inference API oferuje szybki i bezpłatny sposób na eksplorację tysięcy modeli, które nadają się do różnych zadań. Niezależnie od tego, czy prototypujesz nową aplikację, czy próbujesz funkcji uczenia maszynowego, to API zapewnia natychmiastowy dostęp do wysokowydajnych modeli z wielu dziedzin."
|
39
42
|
},
|