@lobehub/chat 1.36.7 → 1.36.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +58 -0
- package/changelog/v1.json +21 -0
- package/locales/ar/models.json +78 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +78 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +78 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +78 -0
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +78 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +78 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +78 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +78 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +78 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +78 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +78 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/modelProvider.json +9 -9
- package/locales/pl-PL/models.json +78 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +78 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +78 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +78 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +78 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +88 -10
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +78 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/app/(backend)/api/webhooks/clerk/route.ts +18 -3
- package/src/config/modelProviders/zhipu.ts +14 -0
- package/src/database/server/models/__tests__/nextauth.test.ts +33 -0
- package/src/libs/next-auth/adapter/index.ts +8 -2
- package/src/server/services/user/index.test.ts +200 -0
- package/src/server/services/user/index.ts +24 -32
- package/vitest.config.ts +1 -1
@@ -55,6 +55,24 @@
|
|
55
55
|
"Baichuan4-Turbo": {
|
56
56
|
"description": "モデル能力は国内で第一であり、知識百科、長文、生成創作などの中国語タスクで海外の主流モデルを超えています。また、業界をリードするマルチモーダル能力を持ち、多くの権威ある評価基準で優れたパフォーマンスを示しています。"
|
57
57
|
},
|
58
|
+
"Doubao-lite-128k": {
|
59
|
+
"description": "Doubao-liteは、極めて高速な応答速度と優れたコストパフォーマンスを備え、顧客のさまざまなシーンに柔軟な選択肢を提供します。128kコンテキストウィンドウの推論と微調整をサポートしています。"
|
60
|
+
},
|
61
|
+
"Doubao-lite-32k": {
|
62
|
+
"description": "Doubao-liteは、極めて高速な応答速度と優れたコストパフォーマンスを備え、顧客のさまざまなシーンに柔軟な選択肢を提供します。32kコンテキストウィンドウの推論と微調整をサポートしています。"
|
63
|
+
},
|
64
|
+
"Doubao-lite-4k": {
|
65
|
+
"description": "Doubao-liteは、極めて高速な応答速度と優れたコストパフォーマンスを備え、顧客のさまざまなシーンに柔軟な選択肢を提供します。4kコンテキストウィンドウの推論と微調整をサポートしています。"
|
66
|
+
},
|
67
|
+
"Doubao-pro-128k": {
|
68
|
+
"description": "最も効果的な主力モデルで、複雑なタスクの処理に適しており、参考質問応答、要約、創作、テキスト分類、ロールプレイングなどのシーンで素晴らしい結果を出します。128kコンテキストウィンドウの推論と微調整をサポートしています。"
|
69
|
+
},
|
70
|
+
"Doubao-pro-32k": {
|
71
|
+
"description": "最も効果的な主力モデルで、複雑なタスクの処理に適しており、参考質問応答、要約、創作、テキスト分類、ロールプレイングなどのシーンで素晴らしい結果を出します。32kコンテキストウィンドウの推論と微調整をサポートしています。"
|
72
|
+
},
|
73
|
+
"Doubao-pro-4k": {
|
74
|
+
"description": "最も効果的な主力モデルで、複雑なタスクの処理に適しており、参考質問応答、要約、創作、テキスト分類、ロールプレイングなどのシーンで素晴らしい結果を出します。4kコンテキストウィンドウの推論と微調整をサポートしています。"
|
75
|
+
},
|
58
76
|
"ERNIE-3.5-128K": {
|
59
77
|
"description": "百度が独自に開発したフラッグシップの大規模言語モデルで、膨大な中英語のコーパスをカバーし、強力な汎用能力を持っています。ほとんどの対話型質問応答、創作生成、プラグインアプリケーションの要件を満たすことができます。また、百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
|
60
78
|
},
|
@@ -242,6 +260,21 @@
|
|
242
260
|
"SenseChat-Turbo": {
|
243
261
|
"description": "迅速な質問応答やモデルの微調整シーンに適しています。"
|
244
262
|
},
|
263
|
+
"Skylark2-lite-8k": {
|
264
|
+
"description": "雲雀(Skylark)第2世代モデル、Skylark2-liteモデルは高い応答速度を持ち、リアルタイム性が求められ、コストに敏感で、モデルの精度要求がそれほど高くないシーンに適しています。コンテキストウィンドウ長は8kです。"
|
265
|
+
},
|
266
|
+
"Skylark2-pro-32k": {
|
267
|
+
"description": "雲雀(Skylark)第2世代モデル、Skylark2-proバージョンは高いモデル精度を持ち、専門分野の文書生成、小説創作、高品質翻訳などの複雑なテキスト生成シーンに適しています。コンテキストウィンドウ長は32kです。"
|
268
|
+
},
|
269
|
+
"Skylark2-pro-4k": {
|
270
|
+
"description": "雲雀(Skylark)第2世代モデル、Skylark2-proモデルは高いモデル精度を持ち、専門分野の文書生成、小説創作、高品質翻訳などの複雑なテキスト生成シーンに適しています。コンテキストウィンドウ長は4kです。"
|
271
|
+
},
|
272
|
+
"Skylark2-pro-character-4k": {
|
273
|
+
"description": "雲雀(Skylark)第2世代モデル、Skylark2-pro-characterモデルは、優れたロールプレイングとチャット能力を持ち、ユーザーのプロンプト要件に基づいて異なるキャラクターを演じながらチャットを行うのが得意です。キャラクターのスタイルが際立ち、対話の内容は自然で流暢です。チャットボット、仮想アシスタント、オンラインカスタマーサービスなどのシーンに適しており、高速な応答を実現します。"
|
274
|
+
},
|
275
|
+
"Skylark2-pro-turbo-8k": {
|
276
|
+
"description": "雲雀(Skylark)第2世代モデル、Skylark2-pro-turbo-8kは、推論がより速く、コストが低く、コンテキストウィンドウ長は8kです。"
|
277
|
+
},
|
245
278
|
"THUDM/chatglm3-6b": {
|
246
279
|
"description": "ChatGLM3-6BはChatGLMシリーズのオープンモデルで、智譜AIによって開発されました。このモデルは前の世代の優れた特性を保持し、対話の流暢さとデプロイのハードルの低さを維持しつつ、新しい特性を導入しています。より多様な訓練データ、より十分な訓練ステップ、より合理的な訓練戦略を採用し、10B未満の事前訓練モデルの中で優れたパフォーマンスを示しています。ChatGLM3-6Bは多輪対話、ツール呼び出し、コード実行、エージェントタスクなどの複雑なシーンをサポートしています。対話モデルの他に、基礎モデルChatGLM-6B-Baseと長文対話モデルChatGLM3-6B-32Kもオープンソースとして提供されています。このモデルは学術研究に完全にオープンで、登録後は無料の商業利用も許可されています。"
|
247
280
|
},
|
@@ -476,6 +509,9 @@
|
|
476
509
|
"cohere-command-r-plus": {
|
477
510
|
"description": "Command R+は、企業グレードのワークロードに対応するために設計された最先端のRAG最適化モデルです。"
|
478
511
|
},
|
512
|
+
"command-light": {
|
513
|
+
"description": ""
|
514
|
+
},
|
479
515
|
"command-r": {
|
480
516
|
"description": "Command Rは、対話と長いコンテキストタスクに最適化されたLLMであり、特に動的なインタラクションと知識管理に適しています。"
|
481
517
|
},
|
@@ -539,6 +575,9 @@
|
|
539
575
|
"gemini-1.5-flash-8b-exp-0924": {
|
540
576
|
"description": "Gemini 1.5 Flash 8B 0924は最新の実験モデルで、テキストおよびマルチモーダルのユースケースにおいて顕著な性能向上を実現しています。"
|
541
577
|
},
|
578
|
+
"gemini-1.5-flash-exp-0827": {
|
579
|
+
"description": "Gemini 1.5 Flash 0827は、最適化されたマルチモーダル処理能力を提供し、多様な複雑なタスクシナリオに適用可能です。"
|
580
|
+
},
|
542
581
|
"gemini-1.5-flash-latest": {
|
543
582
|
"description": "Gemini 1.5 Flashは、Googleの最新のマルチモーダルAIモデルであり、高速処理能力を備え、テキスト、画像、動画の入力をサポートし、さまざまなタスクの効率的な拡張に適しています。"
|
544
583
|
},
|
@@ -548,6 +587,12 @@
|
|
548
587
|
"gemini-1.5-pro-002": {
|
549
588
|
"description": "Gemini 1.5 Pro 002は最新の生産準備モデルで、特に数学、長いコンテキスト、視覚タスクにおいて質の高い出力を提供し、顕著な向上を見せています。"
|
550
589
|
},
|
590
|
+
"gemini-1.5-pro-exp-0801": {
|
591
|
+
"description": "Gemini 1.5 Pro 0801は、優れたマルチモーダル処理能力を提供し、アプリケーション開発により大きな柔軟性をもたらします。"
|
592
|
+
},
|
593
|
+
"gemini-1.5-pro-exp-0827": {
|
594
|
+
"description": "Gemini 1.5 Pro 0827は、最新の最適化技術を組み合わせ、より効率的なマルチモーダルデータ処理能力をもたらします。"
|
595
|
+
},
|
551
596
|
"gemini-1.5-pro-latest": {
|
552
597
|
"description": "Gemini 1.5 Proは、最大200万トークンをサポートする中型マルチモーダルモデルの理想的な選択肢であり、複雑なタスクに対する多面的なサポートを提供します。"
|
553
598
|
},
|
@@ -557,6 +602,9 @@
|
|
557
602
|
"gemini-exp-1121": {
|
558
603
|
"description": "Gemini Exp 1121は、Googleの最新の実験的なマルチモーダルAIモデルで、高速処理能力を備え、テキスト、画像、動画の入力をサポートし、さまざまなタスクに対して効率的に拡張できます。"
|
559
604
|
},
|
605
|
+
"gemini-exp-1206": {
|
606
|
+
"description": "Gemini Exp 1206は、Googleの最新の実験的なマルチモーダルAIモデルで、過去のバージョンと比較して品質が向上しています。"
|
607
|
+
},
|
560
608
|
"gemma-7b-it": {
|
561
609
|
"description": "Gemma 7Bは、中小規模のタスク処理に適しており、コスト効果を兼ね備えています。"
|
562
610
|
},
|
@@ -647,6 +695,12 @@
|
|
647
695
|
"gpt-3.5-turbo-instruct": {
|
648
696
|
"description": "GPT 3.5 Turboは、さまざまなテキスト生成と理解タスクに適しており、現在はgpt-3.5-turbo-0125を指しています。"
|
649
697
|
},
|
698
|
+
"gpt-35-turbo": {
|
699
|
+
"description": "GPT 3.5 Turboは、OpenAIが提供する効率的なモデルで、チャットやテキスト生成タスクに適しており、並行関数呼び出しをサポートしています。"
|
700
|
+
},
|
701
|
+
"gpt-35-turbo-16k": {
|
702
|
+
"description": "GPT 3.5 Turbo 16kは、高容量のテキスト生成モデルで、複雑なタスクに適しています。"
|
703
|
+
},
|
650
704
|
"gpt-4": {
|
651
705
|
"description": "GPT-4は、より大きなコンテキストウィンドウを提供し、より長いテキスト入力を処理できるため、広範な情報統合やデータ分析が必要なシナリオに適しています。"
|
652
706
|
},
|
@@ -689,6 +743,9 @@
|
|
689
743
|
"gpt-4o-2024-08-06": {
|
690
744
|
"description": "ChatGPT-4oは、リアルタイムで更新される動的モデルで、常に最新のバージョンを維持します。強力な言語理解と生成能力を組み合わせており、顧客サービス、教育、技術サポートなどの大規模なアプリケーションシナリオに適しています。"
|
691
745
|
},
|
746
|
+
"gpt-4o-2024-11-20": {
|
747
|
+
"description": "ChatGPT-4oは動的モデルで、リアルタイムで更新され、常に最新バージョンを保持します。 powerfulな言語理解と生成能力を組み合わせており、カスタマーサービス、教育、技術サポートなどの大規模なアプリケーションに適しています。"
|
748
|
+
},
|
692
749
|
"gpt-4o-mini": {
|
693
750
|
"description": "GPT-4o miniは、OpenAIがGPT-4 Omniの後に発表した最新のモデルで、画像とテキストの入力をサポートし、テキストを出力します。最先端の小型モデルとして、最近の他の先進モデルよりもはるかに安価で、GPT-3.5 Turboよりも60%以上安価です。最先端の知能を維持しつつ、コストパフォーマンスが大幅に向上しています。GPT-4o miniはMMLUテストで82%のスコアを獲得し、現在チャットの好みではGPT-4よりも高い評価を得ています。"
|
694
751
|
},
|
@@ -707,6 +764,9 @@
|
|
707
764
|
"hunyuan-functioncall": {
|
708
765
|
"description": "混元の最新のMOEアーキテクチャFunctionCallモデルで、高品質のFunctionCallデータトレーニングを経て、コンテキストウィンドウは32Kに達し、複数の次元の評価指標でリーダーシップを発揮しています。"
|
709
766
|
},
|
767
|
+
"hunyuan-large": {
|
768
|
+
"description": ""
|
769
|
+
},
|
710
770
|
"hunyuan-lite": {
|
711
771
|
"description": "MOE構造にアップグレードされ、コンテキストウィンドウは256kで、NLP、コード、数学、業界などの多くの評価セットで多くのオープンソースモデルをリードしています。"
|
712
772
|
},
|
@@ -787,6 +847,9 @@
|
|
787
847
|
"llama-3.2-90b-vision-preview": {
|
788
848
|
"description": "Llama 3.2は、視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
789
849
|
},
|
850
|
+
"llama-3.3-70b-versatile": {
|
851
|
+
"description": "Meta Llama 3.3は、70B(テキスト入力/テキスト出力)の事前学習と指示調整による生成モデルを持つ多言語大規模言語モデル(LLM)です。Llama 3.3の指示調整済みのプレーンテキストモデルは、多言語の対話ユースケースに最適化されており、一般的な業界ベンチマークで多くの利用可能なオープンソースおよびクローズドチャットモデルを上回っています。"
|
852
|
+
},
|
790
853
|
"llama3-70b-8192": {
|
791
854
|
"description": "Meta Llama 3 70Bは、比類のない複雑性処理能力を提供し、高要求プロジェクトに特化しています。"
|
792
855
|
},
|
@@ -1094,12 +1157,21 @@
|
|
1094
1157
|
"qwen-math-turbo-latest": {
|
1095
1158
|
"description": "通義千問の数学モデルは、数学の問題解決に特化した言語モデルです。"
|
1096
1159
|
},
|
1160
|
+
"qwen-max": {
|
1161
|
+
"description": "通義千問の千億レベルの超大規模言語モデルで、中国語、英語などさまざまな言語の入力をサポートしています。現在、通義千問2.5製品バージョンの背後にあるAPIモデルです。"
|
1162
|
+
},
|
1097
1163
|
"qwen-max-latest": {
|
1098
1164
|
"description": "通義千問の千億レベルの超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートし、現在の通義千問2.5製品バージョンの背後にあるAPIモデルです。"
|
1099
1165
|
},
|
1166
|
+
"qwen-plus": {
|
1167
|
+
"description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などさまざまな言語の入力をサポートしています。"
|
1168
|
+
},
|
1100
1169
|
"qwen-plus-latest": {
|
1101
1170
|
"description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などの異なる言語入力をサポートしています。"
|
1102
1171
|
},
|
1172
|
+
"qwen-turbo": {
|
1173
|
+
"description": "通義千問の超大規模言語モデルで、中国語、英語などさまざまな言語の入力をサポートしています。"
|
1174
|
+
},
|
1103
1175
|
"qwen-turbo-latest": {
|
1104
1176
|
"description": "通義千問の超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートしています。"
|
1105
1177
|
},
|
@@ -1136,12 +1208,18 @@
|
|
1136
1208
|
"qwen2.5-7b-instruct": {
|
1137
1209
|
"description": "通義千問2.5の対外オープンソースの7B規模のモデルです。"
|
1138
1210
|
},
|
1211
|
+
"qwen2.5-coder-1.5b-instruct": {
|
1212
|
+
"description": "通義千問コードモデルのオープンソース版です。"
|
1213
|
+
},
|
1139
1214
|
"qwen2.5-coder-32b-instruct": {
|
1140
1215
|
"description": "通義千問コードモデルのオープンソース版。"
|
1141
1216
|
},
|
1142
1217
|
"qwen2.5-coder-7b-instruct": {
|
1143
1218
|
"description": "通義千問のコードモデルのオープンソース版です。"
|
1144
1219
|
},
|
1220
|
+
"qwen2.5-math-1.5b-instruct": {
|
1221
|
+
"description": "Qwen-Mathモデルは、強力な数学的問題解決能力を備えています。"
|
1222
|
+
},
|
1145
1223
|
"qwen2.5-math-72b-instruct": {
|
1146
1224
|
"description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
|
1147
1225
|
},
|
@@ -34,6 +34,9 @@
|
|
34
34
|
"groq": {
|
35
35
|
"description": "GroqのLPU推論エンジンは、最新の独立した大規模言語モデル(LLM)ベンチマークテストで卓越したパフォーマンスを示し、その驚異的な速度と効率でAIソリューションの基準を再定義しています。Groqは、即時推論速度の代表であり、クラウドベースの展開で良好なパフォーマンスを発揮しています。"
|
36
36
|
},
|
37
|
+
"higress": {
|
38
|
+
"description": ""
|
39
|
+
},
|
37
40
|
"huggingface": {
|
38
41
|
"description": "HuggingFace Inference APIは、数千のモデルをさまざまなタスクに対して探索するための迅速かつ無料の方法を提供します。新しいアプリケーションのプロトタイプを作成している場合でも、機械学習の機能を試している場合でも、このAPIは複数の分野の高性能モデルに即座にアクセスできるようにします。"
|
39
42
|
},
|
@@ -55,6 +55,24 @@
|
|
55
55
|
"Baichuan4-Turbo": {
|
56
56
|
"description": "모델 능력이 국내 1위이며, 지식 백과, 긴 텍스트, 생성 창작 등 중국어 작업에서 해외 주류 모델을 초월합니다. 또한 업계 선도적인 다중 모달 능력을 갖추고 있으며, 여러 권위 있는 평가 기준에서 우수한 성과를 보입니다."
|
57
57
|
},
|
58
|
+
"Doubao-lite-128k": {
|
59
|
+
"description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 128k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
60
|
+
},
|
61
|
+
"Doubao-lite-32k": {
|
62
|
+
"description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 32k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
63
|
+
},
|
64
|
+
"Doubao-lite-4k": {
|
65
|
+
"description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 4k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
66
|
+
},
|
67
|
+
"Doubao-pro-128k": {
|
68
|
+
"description": "가장 효과적인 주력 모델로, 복잡한 작업 처리에 적합하며, 참고 질문, 요약, 창작, 텍스트 분류, 역할 수행 등 많은 장면에서 뛰어난 성과를 보입니다. 128k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
69
|
+
},
|
70
|
+
"Doubao-pro-32k": {
|
71
|
+
"description": "가장 효과적인 주력 모델로, 복잡한 작업 처리에 적합하며, 참고 질문, 요약, 창작, 텍스트 분류, 역할 수행 등 많은 장면에서 뛰어난 성과를 보입니다. 32k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
72
|
+
},
|
73
|
+
"Doubao-pro-4k": {
|
74
|
+
"description": "가장 효과적인 주력 모델로, 복잡한 작업 처리에 적합하며, 참고 질문, 요약, 창작, 텍스트 분류, 역할 수행 등 많은 장면에서 뛰어난 성과를 보입니다. 4k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
|
75
|
+
},
|
58
76
|
"ERNIE-3.5-128K": {
|
59
77
|
"description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중문 및 영문 코퍼스를 포함하고 있으며, 강력한 일반 능력을 갖추고 있어 대부분의 대화형 질문 응답, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 또한 바이두 검색 플러그인과의 자동 연동을 지원하여 질문 응답 정보의 시의성을 보장합니다."
|
60
78
|
},
|
@@ -242,6 +260,21 @@
|
|
242
260
|
"SenseChat-Turbo": {
|
243
261
|
"description": "빠른 질문 응답 및 모델 미세 조정 시나리오에 적합합니다."
|
244
262
|
},
|
263
|
+
"Skylark2-lite-8k": {
|
264
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-lite 모델은 높은 응답 속도를 자랑하며, 실시간 요구가 높은, 비용에 민감하고, 모델 정확도에 대한 요구가 낮은 장면에 적합하며, 컨텍스트 윈도우 길이는 8k입니다."
|
265
|
+
},
|
266
|
+
"Skylark2-pro-32k": {
|
267
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro 버전은 높은 모델 정확도를 자랑하며, 전문 분야 문서 생성, 소설 창작, 고품질 번역 등 복잡한 텍스트 생성 장면에 적합하며, 컨텍스트 윈도우 길이는 32k입니다."
|
268
|
+
},
|
269
|
+
"Skylark2-pro-4k": {
|
270
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro 모델은 높은 모델 정확도를 자랑하며, 전문 분야 문서 생성, 소설 창작, 고품질 번역 등 복잡한 텍스트 생성 장면에 적합하며, 컨텍스트 윈도우 길이는 4k입니다."
|
271
|
+
},
|
272
|
+
"Skylark2-pro-character-4k": {
|
273
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro-character 모델은 우수한 역할 수행 및 채팅 능력을 갖추고 있으며, 사용자 프롬프트 요구에 따라 다양한 역할을 수행하고 자연스러운 대화를 이어갈 수 있습니다. 채팅봇, 가상 비서 및 온라인 고객 서비스 등을 구축하는 데 적합하며 높은 응답 속도를 자랑합니다."
|
274
|
+
},
|
275
|
+
"Skylark2-pro-turbo-8k": {
|
276
|
+
"description": "구름제비(Skylark) 2세대 모델로, Skylark2-pro-turbo-8k는 더 빠른 추론과 낮은 비용을 자랑하며, 컨텍스트 윈도우 길이는 8k입니다."
|
277
|
+
},
|
245
278
|
"THUDM/chatglm3-6b": {
|
246
279
|
"description": "ChatGLM3-6B는 Zhizhu AI가 개발한 ChatGLM 시리즈의 오픈 소스 모델입니다. 이 모델은 이전 모델의 우수한 특성을 유지하면서 대화의 유창함과 배포 장벽을 낮추는 새로운 기능을 도입했습니다. 더 다양한 훈련 데이터, 충분한 훈련 단계 및 합리적인 훈련 전략을 채택하여 10B 이하의 사전 훈련 모델 중에서 뛰어난 성능을 보입니다. ChatGLM3-6B는 다중 회전 대화, 도구 호출, 코드 실행 및 에이전트 작업과 같은 복잡한 시나리오를 지원합니다. 대화 모델 외에도 기본 모델 ChatGLM-6B-Base 및 긴 텍스트 대화 모델 ChatGLM3-6B-32K도 오픈 소스되었습니다. 이 모델은 학술 연구에 완전히 개방되어 있으며, 등록 후 무료 상업적 사용도 허용됩니다."
|
247
280
|
},
|
@@ -476,6 +509,9 @@
|
|
476
509
|
"cohere-command-r-plus": {
|
477
510
|
"description": "Command R+는 기업급 작업을 처리하기 위해 설계된 최첨단 RAG 최적화 모델입니다."
|
478
511
|
},
|
512
|
+
"command-light": {
|
513
|
+
"description": ""
|
514
|
+
},
|
479
515
|
"command-r": {
|
480
516
|
"description": "Command R은 대화 및 긴 컨텍스트 작업에 최적화된 LLM으로, 동적 상호작용 및 지식 관리에 특히 적합합니다."
|
481
517
|
},
|
@@ -539,6 +575,9 @@
|
|
539
575
|
"gemini-1.5-flash-8b-exp-0924": {
|
540
576
|
"description": "Gemini 1.5 Flash 8B 0924는 최신 실험 모델로, 텍스트 및 다중 모달 사용 사례에서 상당한 성능 향상을 보여줍니다."
|
541
577
|
},
|
578
|
+
"gemini-1.5-flash-exp-0827": {
|
579
|
+
"description": "Gemini 1.5 Flash 0827은 다양한 복잡한 작업에 적합한 최적화된 다중 모달 처리 능력을 제공합니다."
|
580
|
+
},
|
542
581
|
"gemini-1.5-flash-latest": {
|
543
582
|
"description": "Gemini 1.5 Flash는 Google의 최신 다중 모달 AI 모델로, 빠른 처리 능력을 갖추고 있으며 텍스트, 이미지 및 비디오 입력을 지원하여 다양한 작업에 효율적으로 확장할 수 있습니다."
|
544
583
|
},
|
@@ -548,6 +587,12 @@
|
|
548
587
|
"gemini-1.5-pro-002": {
|
549
588
|
"description": "Gemini 1.5 Pro 002는 최신 생산 준비 모델로, 특히 수학, 긴 문맥 및 시각적 작업에서 더 높은 품질의 출력을 제공합니다."
|
550
589
|
},
|
590
|
+
"gemini-1.5-pro-exp-0801": {
|
591
|
+
"description": "Gemini 1.5 Pro 0801은 뛰어난 다중 모달 처리 능력을 제공하여 애플리케이션 개발에 더 큰 유연성을 제공합니다."
|
592
|
+
},
|
593
|
+
"gemini-1.5-pro-exp-0827": {
|
594
|
+
"description": "Gemini 1.5 Pro 0827은 최신 최적화 기술을 결합하여 보다 효율적인 다중 모달 데이터 처리 능력을 제공합니다."
|
595
|
+
},
|
551
596
|
"gemini-1.5-pro-latest": {
|
552
597
|
"description": "Gemini 1.5 Pro는 최대 200만 개의 토큰을 지원하며, 중형 다중 모달 모델의 이상적인 선택으로 복잡한 작업에 대한 다각적인 지원을 제공합니다."
|
553
598
|
},
|
@@ -557,6 +602,9 @@
|
|
557
602
|
"gemini-exp-1121": {
|
558
603
|
"description": "Gemini Exp 1121은 Google의 최신 실험적 다중 모달 AI 모델로, 빠른 처리 능력을 갖추고 있으며 텍스트, 이미지 및 비디오 입력을 지원하여 다양한 작업에 효율적으로 확장할 수 있습니다."
|
559
604
|
},
|
605
|
+
"gemini-exp-1206": {
|
606
|
+
"description": "Gemini Exp 1206은 Google의 최신 실험적 다중 모달 AI 모델로, 이전 버전에 비해 품질이 개선되었습니다."
|
607
|
+
},
|
560
608
|
"gemma-7b-it": {
|
561
609
|
"description": "Gemma 7B는 중소 규모 작업 처리에 적합하며, 비용 효과성을 갖추고 있습니다."
|
562
610
|
},
|
@@ -647,6 +695,12 @@
|
|
647
695
|
"gpt-3.5-turbo-instruct": {
|
648
696
|
"description": "GPT 3.5 Turbo는 다양한 텍스트 생성 및 이해 작업에 적합하며, 현재 gpt-3.5-turbo-0125를 가리킵니다."
|
649
697
|
},
|
698
|
+
"gpt-35-turbo": {
|
699
|
+
"description": "GPT 3.5 Turbo는 OpenAI에서 제공하는 효율적인 모델로, 채팅 및 텍스트 생성 작업에 적합하며, 병렬 함수 호출을 지원합니다."
|
700
|
+
},
|
701
|
+
"gpt-35-turbo-16k": {
|
702
|
+
"description": "GPT 3.5 Turbo 16k는 복잡한 작업에 적합한 고용량 텍스트 생성 모델입니다."
|
703
|
+
},
|
650
704
|
"gpt-4": {
|
651
705
|
"description": "GPT-4는 더 큰 컨텍스트 창을 제공하여 더 긴 텍스트 입력을 처리할 수 있으며, 광범위한 정보 통합 및 데이터 분석이 필요한 상황에 적합합니다."
|
652
706
|
},
|
@@ -689,6 +743,9 @@
|
|
689
743
|
"gpt-4o-2024-08-06": {
|
690
744
|
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 응용 프로그램에 적합합니다."
|
691
745
|
},
|
746
|
+
"gpt-4o-2024-11-20": {
|
747
|
+
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 애플리케이션에 적합합니다."
|
748
|
+
},
|
692
749
|
"gpt-4o-mini": {
|
693
750
|
"description": "GPT-4o mini는 OpenAI가 GPT-4 Omni 이후에 출시한 최신 모델로, 텍스트와 이미지를 입력받아 텍스트를 출력합니다. 이 모델은 최신의 소형 모델로, 최근의 다른 최첨단 모델보다 훨씬 저렴하며, GPT-3.5 Turbo보다 60% 이상 저렴합니다. 최첨단의 지능을 유지하면서도 뛰어난 가성비를 자랑합니다. GPT-4o mini는 MMLU 테스트에서 82%의 점수를 기록했으며, 현재 채팅 선호도에서 GPT-4보다 높은 순위를 차지하고 있습니다."
|
694
751
|
},
|
@@ -707,6 +764,9 @@
|
|
707
764
|
"hunyuan-functioncall": {
|
708
765
|
"description": "혼원 최신 MOE 구조의 FunctionCall 모델로, 고품질 FunctionCall 데이터 훈련을 거쳤으며, 컨텍스트 윈도우는 32K에 도달하고 여러 차원의 평가 지표에서 선두에 있습니다."
|
709
766
|
},
|
767
|
+
"hunyuan-large": {
|
768
|
+
"description": ""
|
769
|
+
},
|
710
770
|
"hunyuan-lite": {
|
711
771
|
"description": "MOE 구조로 업그레이드되었으며, 컨텍스트 윈도우는 256k로 설정되어 NLP, 코드, 수학, 산업 등 여러 평가 집합에서 많은 오픈 소스 모델을 선도하고 있습니다."
|
712
772
|
},
|
@@ -787,6 +847,9 @@
|
|
787
847
|
"llama-3.2-90b-vision-preview": {
|
788
848
|
"description": "Llama 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
|
789
849
|
},
|
850
|
+
"llama-3.3-70b-versatile": {
|
851
|
+
"description": "Meta Llama 3.3 다국어 대형 언어 모델(LLM)은 70B(텍스트 입력/텍스트 출력)에서 사전 학습 및 지침 조정 생성 모델입니다. Llama 3.3의 지침 조정 순수 텍스트 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 많은 오픈 소스 및 폐쇄형 채팅 모델보다 일반 산업 기준에서 우수한 성능을 보입니다."
|
852
|
+
},
|
790
853
|
"llama3-70b-8192": {
|
791
854
|
"description": "Meta Llama 3 70B는 비할 데 없는 복잡성 처리 능력을 제공하며, 높은 요구 사항을 가진 프로젝트에 맞춤형으로 설계되었습니다."
|
792
855
|
},
|
@@ -1094,12 +1157,21 @@
|
|
1094
1157
|
"qwen-math-turbo-latest": {
|
1095
1158
|
"description": "통의 천문 수학 모델은 수학 문제 해결을 위해 특별히 설계된 언어 모델입니다."
|
1096
1159
|
},
|
1160
|
+
"qwen-max": {
|
1161
|
+
"description": "통의천문 천억 수준 초대형 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원하며, 현재 통의천문 2.5 제품 버전 뒤의 API 모델입니다."
|
1162
|
+
},
|
1097
1163
|
"qwen-max-latest": {
|
1098
1164
|
"description": "통의 천문 1000억급 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원하며, 현재 통의 천문 2.5 제품 버전의 API 모델입니다."
|
1099
1165
|
},
|
1166
|
+
"qwen-plus": {
|
1167
|
+
"description": "통의천문 초대형 언어 모델의 강화 버전으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1168
|
+
},
|
1100
1169
|
"qwen-plus-latest": {
|
1101
1170
|
"description": "통의 천문 초대규모 언어 모델의 강화판으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1102
1171
|
},
|
1172
|
+
"qwen-turbo": {
|
1173
|
+
"description": "통의천문 초대형 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1174
|
+
},
|
1103
1175
|
"qwen-turbo-latest": {
|
1104
1176
|
"description": "통의 천문 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1105
1177
|
},
|
@@ -1136,12 +1208,18 @@
|
|
1136
1208
|
"qwen2.5-7b-instruct": {
|
1137
1209
|
"description": "통의 천문 2.5 외부 오픈 소스 7B 규모 모델입니다."
|
1138
1210
|
},
|
1211
|
+
"qwen2.5-coder-1.5b-instruct": {
|
1212
|
+
"description": "통의천문 코드 모델 오픈 소스 버전입니다."
|
1213
|
+
},
|
1139
1214
|
"qwen2.5-coder-32b-instruct": {
|
1140
1215
|
"description": "통의 천문 코드 모델 오픈 소스 버전입니다."
|
1141
1216
|
},
|
1142
1217
|
"qwen2.5-coder-7b-instruct": {
|
1143
1218
|
"description": "통의 천문 코드 모델 오픈 소스 버전입니다."
|
1144
1219
|
},
|
1220
|
+
"qwen2.5-math-1.5b-instruct": {
|
1221
|
+
"description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 갖추고 있습니다."
|
1222
|
+
},
|
1145
1223
|
"qwen2.5-math-72b-instruct": {
|
1146
1224
|
"description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
|
1147
1225
|
},
|
@@ -34,6 +34,9 @@
|
|
34
34
|
"groq": {
|
35
35
|
"description": "Groq의 LPU 추론 엔진은 최신 독립 대형 언어 모델(LLM) 벤치마크 테스트에서 뛰어난 성능을 보이며, 놀라운 속도와 효율성으로 AI 솔루션의 기준을 재정의하고 있습니다. Groq는 즉각적인 추론 속도의 대표주자로, 클라우드 기반 배포에서 우수한 성능을 보여줍니다."
|
36
36
|
},
|
37
|
+
"higress": {
|
38
|
+
"description": ""
|
39
|
+
},
|
37
40
|
"huggingface": {
|
38
41
|
"description": "HuggingFace Inference API는 수천 개의 모델을 탐색할 수 있는 빠르고 무료의 방법을 제공합니다. 새로운 애플리케이션을 프로토타입 하거나 머신러닝의 기능을 시도하는 경우, 이 API는 여러 분야의 고성능 모델에 즉시 접근할 수 있게 해줍니다."
|
39
42
|
},
|
@@ -55,6 +55,24 @@
|
|
55
55
|
"Baichuan4-Turbo": {
|
56
56
|
"description": "Modelcapaciteiten zijn nationaal de beste, overtreft buitenlandse mainstream modellen in kennisencyclopedie, lange teksten en creatieve generatie in Chinese taken. Beschikt ook over toonaangevende multimodale capaciteiten en presteert uitstekend op verschillende autoritatieve evaluatiebenchmarks."
|
57
57
|
},
|
58
|
+
"Doubao-lite-128k": {
|
59
|
+
"description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 128k."
|
60
|
+
},
|
61
|
+
"Doubao-lite-32k": {
|
62
|
+
"description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 32k."
|
63
|
+
},
|
64
|
+
"Doubao-lite-4k": {
|
65
|
+
"description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 4k."
|
66
|
+
},
|
67
|
+
"Doubao-pro-128k": {
|
68
|
+
"description": "Het meest effectieve hoofmodel, geschikt voor het verwerken van complexe taken, met goede resultaten in referentievraag, samenvattingen, creatie, tekstclassificatie, rollenspellen en meer. Ondersteunt inferentie en fine-tuning met een contextvenster van 128k."
|
69
|
+
},
|
70
|
+
"Doubao-pro-32k": {
|
71
|
+
"description": "Het meest effectieve hoofmodel, geschikt voor het verwerken van complexe taken, met goede resultaten in referentievraag, samenvattingen, creatie, tekstclassificatie, rollenspellen en meer. Ondersteunt inferentie en fine-tuning met een contextvenster van 32k."
|
72
|
+
},
|
73
|
+
"Doubao-pro-4k": {
|
74
|
+
"description": "Het meest effectieve hoofmodel, geschikt voor het verwerken van complexe taken, met goede resultaten in referentievraag, samenvattingen, creatie, tekstclassificatie, rollenspellen en meer. Ondersteunt inferentie en fine-tuning met een contextvenster van 4k."
|
75
|
+
},
|
58
76
|
"ERNIE-3.5-128K": {
|
59
77
|
"description": "De door Baidu ontwikkelde vlaggenschip grote taalmodel, dat een enorme hoeveelheid Chinese en Engelse gegevens dekt, met krachtige algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met de Baidu zoekplug-in, wat de actualiteit van vraag- en antwoordinformatie waarborgt."
|
60
78
|
},
|
@@ -242,6 +260,21 @@
|
|
242
260
|
"SenseChat-Turbo": {
|
243
261
|
"description": "Geschikt voor snelle vraag-en-antwoord en modelafstemming."
|
244
262
|
},
|
263
|
+
"Skylark2-lite-8k": {
|
264
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-lite model heeft een hoge responssnelheid, geschikt voor scenario's met hoge realtimevereisten, kostenbewustzijn en lagere modelnauwkeurigheidsvereisten, met een contextvenster lengte van 8k."
|
265
|
+
},
|
266
|
+
"Skylark2-pro-32k": {
|
267
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro versie heeft een hoge modelnauwkeurigheid, geschikt voor complexere tekstgeneratiescenario's zoals professionele copywriting, romanproductie, en hoogwaardig vertalen, met een contextvenster lengte van 32k."
|
268
|
+
},
|
269
|
+
"Skylark2-pro-4k": {
|
270
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro model heeft een hoge modelnauwkeurigheid, geschikt voor complexere tekstgeneratiescenario's zoals professionele copywriting, romanproductie, en hoogwaardig vertalen, met een contextvenster lengte van 4k."
|
271
|
+
},
|
272
|
+
"Skylark2-pro-character-4k": {
|
273
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro-character model heeft uitstekende rolspelin en chatmogelijkheden, en is goed in het aannemen van verschillende rollen op basis van gebruikersprompt, met een natuurlijk vloeiende conversatie. Ideaal voor het bouwen van chatbots, virtuele assistenten en online klantenservice met hoge responssnelheden."
|
274
|
+
},
|
275
|
+
"Skylark2-pro-turbo-8k": {
|
276
|
+
"description": "De tweede generatie Skylark (Skylark2) model, Skylark2-pro-turbo-8k biedt snellere inferentie en lagere kosten, met een contextvenster lengte van 8k."
|
277
|
+
},
|
245
278
|
"THUDM/chatglm3-6b": {
|
246
279
|
"description": "ChatGLM3-6B is het open-source model van de ChatGLM-serie, ontwikkeld door Zhipu AI. Dit model behoudt de uitstekende kenmerken van de vorige generatie, zoals vloeiende gesprekken en lage implementatiedrempels, terwijl het nieuwe functies introduceert. Het maakt gebruik van meer diverse trainingsdata, een groter aantal trainingsstappen en een meer redelijke trainingsstrategie, en presteert uitstekend onder de voorgetrainde modellen van minder dan 10B. ChatGLM3-6B ondersteunt complexe scenario's zoals meerdaagse gesprekken, tool-aanroepen, code-uitvoering en agenttaken. Naast het gespreksmodel zijn ook het basismodel ChatGLM-6B-Base en het lange tekstgespreksmodel ChatGLM3-6B-32K open-source gemaakt. Dit model is volledig open voor academisch onderzoek en staat ook gratis commercieel gebruik toe na registratie."
|
247
280
|
},
|
@@ -476,6 +509,9 @@
|
|
476
509
|
"cohere-command-r-plus": {
|
477
510
|
"description": "Command R+ is een state-of-the-art RAG-geoptimaliseerd model ontworpen om enterprise-grade workloads aan te pakken."
|
478
511
|
},
|
512
|
+
"command-light": {
|
513
|
+
"description": ""
|
514
|
+
},
|
479
515
|
"command-r": {
|
480
516
|
"description": "Command R is geoptimaliseerd voor conversatie- en lange contexttaken, bijzonder geschikt voor dynamische interactie en kennisbeheer."
|
481
517
|
},
|
@@ -539,6 +575,9 @@
|
|
539
575
|
"gemini-1.5-flash-8b-exp-0924": {
|
540
576
|
"description": "Gemini 1.5 Flash 8B 0924 is het nieuwste experimentele model, met aanzienlijke prestatieverbeteringen in tekst- en multimodale toepassingen."
|
541
577
|
},
|
578
|
+
"gemini-1.5-flash-exp-0827": {
|
579
|
+
"description": "Gemini 1.5 Flash 0827 biedt geoptimaliseerde multimodale verwerkingscapaciteiten, geschikt voor verschillende complexe taak scenario's."
|
580
|
+
},
|
542
581
|
"gemini-1.5-flash-latest": {
|
543
582
|
"description": "Gemini 1.5 Flash is Google's nieuwste multimodale AI-model, met snelle verwerkingscapaciteiten, ondersteunt tekst-, beeld- en video-invoer, en is geschikt voor efficiënte opschaling van verschillende taken."
|
544
583
|
},
|
@@ -548,6 +587,12 @@
|
|
548
587
|
"gemini-1.5-pro-002": {
|
549
588
|
"description": "Gemini 1.5 Pro 002 is het nieuwste productieklare model, dat hogere kwaliteit output biedt, met name op het gebied van wiskunde, lange contexten en visuele taken."
|
550
589
|
},
|
590
|
+
"gemini-1.5-pro-exp-0801": {
|
591
|
+
"description": "Gemini 1.5 Pro 0801 biedt uitstekende multimodale verwerkingscapaciteiten, wat grotere flexibiliteit in applicatieontwikkeling mogelijk maakt."
|
592
|
+
},
|
593
|
+
"gemini-1.5-pro-exp-0827": {
|
594
|
+
"description": "Gemini 1.5 Pro 0827 combineert de nieuwste optimalisatietechnologieën en biedt efficiëntere multimodale gegevensverwerkingscapaciteiten."
|
595
|
+
},
|
551
596
|
"gemini-1.5-pro-latest": {
|
552
597
|
"description": "Gemini 1.5 Pro ondersteunt tot 2 miljoen tokens en is de ideale keuze voor middelgrote multimodale modellen, geschikt voor veelzijdige ondersteuning van complexe taken."
|
553
598
|
},
|
@@ -557,6 +602,9 @@
|
|
557
602
|
"gemini-exp-1121": {
|
558
603
|
"description": "Gemini Exp 1121 is Google's nieuwste experimentele multimodale AI-model, dat snel kan verwerken en ondersteuning biedt voor tekst-, beeld- en video-invoer, geschikt voor efficiënte opschaling van verschillende taken."
|
559
604
|
},
|
605
|
+
"gemini-exp-1206": {
|
606
|
+
"description": "Gemini Exp 1206 is Google's nieuwste experimentele multimodale AI-model, met een aanzienlijke kwaliteitsverbetering ten opzichte van eerdere versies."
|
607
|
+
},
|
560
608
|
"gemma-7b-it": {
|
561
609
|
"description": "Gemma 7B is geschikt voor het verwerken van middelgrote taken, met een goede kosteneffectiviteit."
|
562
610
|
},
|
@@ -647,6 +695,12 @@
|
|
647
695
|
"gpt-3.5-turbo-instruct": {
|
648
696
|
"description": "GPT 3.5 Turbo, geschikt voor verschillende tekstgeneratie- en begrijptaken, wijst momenteel naar gpt-3.5-turbo-0125."
|
649
697
|
},
|
698
|
+
"gpt-35-turbo": {
|
699
|
+
"description": "GPT 3.5 Turbo, een efficiënt model aangeboden door OpenAI, geschikt voor chat- en tekstgeneratietaken, met ondersteuning voor parallelle functieaanroepen."
|
700
|
+
},
|
701
|
+
"gpt-35-turbo-16k": {
|
702
|
+
"description": "GPT 3.5 Turbo 16k, een tekstgeneratiemodel met hoge capaciteit, geschikt voor complexe taken."
|
703
|
+
},
|
650
704
|
"gpt-4": {
|
651
705
|
"description": "GPT-4 biedt een groter contextvenster en kan langere tekstinvoer verwerken, geschikt voor scenario's die uitgebreide informatie-integratie en data-analyse vereisen."
|
652
706
|
},
|
@@ -689,6 +743,9 @@
|
|
689
743
|
"gpt-4o-2024-08-06": {
|
690
744
|
"description": "ChatGPT-4o is een dynamisch model dat in realtime wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip- en generatiecapaciteiten, geschikt voor grootschalige toepassingsscenario's, waaronder klantenservice, onderwijs en technische ondersteuning."
|
691
745
|
},
|
746
|
+
"gpt-4o-2024-11-20": {
|
747
|
+
"description": "ChatGPT-4o is een dynamisch model dat in real-time wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip en generatiemogelijkheden, geschikt voor grootschalige toepassingen zoals klantenservice, onderwijs en technische ondersteuning."
|
748
|
+
},
|
692
749
|
"gpt-4o-mini": {
|
693
750
|
"description": "GPT-4o mini is het nieuwste model van OpenAI, gelanceerd na GPT-4 Omni, en ondersteunt zowel tekst- als beeldinvoer met tekstuitvoer. Als hun meest geavanceerde kleine model is het veel goedkoper dan andere recente toonaangevende modellen en meer dan 60% goedkoper dan GPT-3.5 Turbo. Het behoudt de meest geavanceerde intelligentie met een aanzienlijke prijs-kwaliteitverhouding. GPT-4o mini behaalde 82% op de MMLU-test en staat momenteel hoger in chatvoorkeuren dan GPT-4."
|
694
751
|
},
|
@@ -707,6 +764,9 @@
|
|
707
764
|
"hunyuan-functioncall": {
|
708
765
|
"description": "Het nieuwste MOE-architectuur FunctionCall-model van Hunyuan, getraind op hoogwaardige FunctionCall-gegevens, met een contextvenster van 32K, en staat voorop in meerdere dimensies van evaluatie-indicatoren."
|
709
766
|
},
|
767
|
+
"hunyuan-large": {
|
768
|
+
"description": ""
|
769
|
+
},
|
710
770
|
"hunyuan-lite": {
|
711
771
|
"description": "Geüpgraded naar een MOE-structuur, met een contextvenster van 256k, en leidt in verschillende evaluatiesets op het gebied van NLP, code, wiskunde en industrie ten opzichte van vele open-source modellen."
|
712
772
|
},
|
@@ -787,6 +847,9 @@
|
|
787
847
|
"llama-3.2-90b-vision-preview": {
|
788
848
|
"description": "Llama 3.2 is ontworpen om taken te verwerken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redeneervaardigheden."
|
789
849
|
},
|
850
|
+
"llama-3.3-70b-versatile": {
|
851
|
+
"description": "Meta Llama 3.3 is een meertalige grote taalmodel (LLM) met 70B (tekstinvoer/tekstuitvoer) dat is voorgetraind en aangepast voor instructies. Het pure tekstmodel van Llama 3.3 is geoptimaliseerd voor meertalige gespreksgebruik en scoort beter dan veel beschikbare open-source en gesloten chatmodellen op gangbare industrie benchmarks."
|
852
|
+
},
|
790
853
|
"llama3-70b-8192": {
|
791
854
|
"description": "Meta Llama 3 70B biedt ongeëvenaarde complexiteitsverwerkingscapaciteiten, op maat gemaakt voor veeleisende projecten."
|
792
855
|
},
|
@@ -1094,12 +1157,21 @@
|
|
1094
1157
|
"qwen-math-turbo-latest": {
|
1095
1158
|
"description": "Het Tongyi Qianwen wiskundemodel is speciaal ontworpen voor het oplossen van wiskundige problemen."
|
1096
1159
|
},
|
1160
|
+
"qwen-max": {
|
1161
|
+
"description": "Qwen is een enorme versie van het grootschalige taalmodel, dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels en momenteel de API-modellen achter de Qwen 2.5-productversie vertegenwoordigt."
|
1162
|
+
},
|
1097
1163
|
"qwen-max-latest": {
|
1098
1164
|
"description": "Het Tongyi Qianwen model met een schaal van honderden miljarden, ondersteunt invoer in verschillende talen, waaronder Chinees en Engels, en is de API-model achter de huidige Tongyi Qianwen 2.5 productversie."
|
1099
1165
|
},
|
1166
|
+
"qwen-plus": {
|
1167
|
+
"description": "Qwen is een verbeterde versie van het grootschalige taalmodel dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels."
|
1168
|
+
},
|
1100
1169
|
"qwen-plus-latest": {
|
1101
1170
|
"description": "De verbeterde versie van het Tongyi Qianwen supergrote taalmodel ondersteunt invoer in verschillende talen, waaronder Chinees en Engels."
|
1102
1171
|
},
|
1172
|
+
"qwen-turbo": {
|
1173
|
+
"description": "Qwen is een grootschalig taalmodel dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels."
|
1174
|
+
},
|
1103
1175
|
"qwen-turbo-latest": {
|
1104
1176
|
"description": "De Tongyi Qianwen supergrote taalmodel ondersteunt invoer in verschillende talen, waaronder Chinees en Engels."
|
1105
1177
|
},
|
@@ -1136,12 +1208,18 @@
|
|
1136
1208
|
"qwen2.5-7b-instruct": {
|
1137
1209
|
"description": "Het 7B model van Tongyi Qianwen 2.5 is open source beschikbaar."
|
1138
1210
|
},
|
1211
|
+
"qwen2.5-coder-1.5b-instruct": {
|
1212
|
+
"description": "Qwen-code model open source versie."
|
1213
|
+
},
|
1139
1214
|
"qwen2.5-coder-32b-instruct": {
|
1140
1215
|
"description": "Open source versie van het Tongyi Qianwen code model."
|
1141
1216
|
},
|
1142
1217
|
"qwen2.5-coder-7b-instruct": {
|
1143
1218
|
"description": "De open source versie van het Tongyi Qianwen codeermodel."
|
1144
1219
|
},
|
1220
|
+
"qwen2.5-math-1.5b-instruct": {
|
1221
|
+
"description": "Qwen-Math model beschikt over krachtige wiskundige probleemoplossende mogelijkheden."
|
1222
|
+
},
|
1145
1223
|
"qwen2.5-math-72b-instruct": {
|
1146
1224
|
"description": "Het Qwen-Math model heeft krachtige capaciteiten voor het oplossen van wiskundige problemen."
|
1147
1225
|
},
|
@@ -34,6 +34,9 @@
|
|
34
34
|
"groq": {
|
35
35
|
"description": "De LPU-inferentie-engine van Groq presteert uitstekend in de nieuwste onafhankelijke benchmarktests voor grote taalmodellen (LLM), en herdefinieert de normen voor AI-oplossingen met zijn verbazingwekkende snelheid en efficiëntie. Groq is een vertegenwoordiger van onmiddellijke inferentiesnelheid en toont goede prestaties in cloudgebaseerde implementaties."
|
36
36
|
},
|
37
|
+
"higress": {
|
38
|
+
"description": ""
|
39
|
+
},
|
37
40
|
"huggingface": {
|
38
41
|
"description": "HuggingFace Inference API biedt een snelle en gratis manier om duizenden modellen te verkennen voor verschillende taken. Of u nu prototypes voor nieuwe applicaties ontwerpt of de mogelijkheden van machine learning uitprobeert, deze API geeft u directe toegang tot hoogpresterende modellen in meerdere domeinen."
|
39
42
|
},
|
@@ -119,17 +119,17 @@
|
|
119
119
|
},
|
120
120
|
"title": "Zainstaluj i uruchom aplikację Ollama lokalnie",
|
121
121
|
"windowsTab": "Windows (wersja podglądowa)"
|
122
|
-
},
|
123
|
-
"unlock": {
|
124
|
-
"cancel": "Anuluj pobieranie",
|
125
|
-
"confirm": "Pobierz",
|
126
|
-
"description": "Wprowadź etykietę modelu Ollama, aby kontynuować sesję",
|
127
|
-
"downloaded": "{{completed}} / {{total}}",
|
128
|
-
"starting": "Rozpoczynanie pobierania...",
|
129
|
-
"title": "Pobierz określony model Ollama"
|
130
122
|
}
|
131
123
|
},
|
132
|
-
"title": "Ollama"
|
124
|
+
"title": "Ollama",
|
125
|
+
"unlock": {
|
126
|
+
"cancel": "Anuluj pobieranie",
|
127
|
+
"confirm": "Pobierz",
|
128
|
+
"description": "Wprowadź etykietę swojego modelu Ollama, aby zakończyć i kontynuować rozmowę",
|
129
|
+
"downloaded": "{{completed}} / {{total}}",
|
130
|
+
"starting": "Rozpoczynam pobieranie...",
|
131
|
+
"title": "Pobierz określony model Ollama"
|
132
|
+
}
|
133
133
|
},
|
134
134
|
"sensenova": {
|
135
135
|
"sensenovaAccessKeyID": {
|