@lobehub/chat 1.36.27 → 1.36.29
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +42 -0
- package/changelog/v1.json +14 -0
- package/locales/ar/common.json +37 -1
- package/locales/ar/models.json +27 -0
- package/locales/bg-BG/common.json +37 -1
- package/locales/bg-BG/models.json +27 -0
- package/locales/de-DE/common.json +37 -1
- package/locales/de-DE/models.json +27 -0
- package/locales/en-US/common.json +37 -1
- package/locales/en-US/models.json +27 -0
- package/locales/es-ES/common.json +37 -1
- package/locales/es-ES/models.json +27 -0
- package/locales/fa-IR/common.json +37 -1
- package/locales/fa-IR/models.json +27 -0
- package/locales/fr-FR/common.json +37 -1
- package/locales/fr-FR/models.json +27 -0
- package/locales/it-IT/common.json +37 -1
- package/locales/it-IT/models.json +27 -0
- package/locales/ja-JP/common.json +37 -1
- package/locales/ja-JP/models.json +27 -0
- package/locales/ko-KR/common.json +37 -1
- package/locales/ko-KR/models.json +27 -0
- package/locales/nl-NL/common.json +37 -1
- package/locales/nl-NL/models.json +27 -0
- package/locales/pl-PL/common.json +37 -1
- package/locales/pl-PL/models.json +27 -0
- package/locales/pt-BR/common.json +37 -1
- package/locales/pt-BR/models.json +27 -0
- package/locales/ru-RU/common.json +37 -1
- package/locales/ru-RU/models.json +27 -0
- package/locales/tr-TR/common.json +37 -1
- package/locales/tr-TR/models.json +27 -0
- package/locales/vi-VN/common.json +37 -1
- package/locales/vi-VN/models.json +27 -0
- package/locales/zh-CN/common.json +37 -1
- package/locales/zh-CN/models.json +28 -1
- package/locales/zh-TW/common.json +37 -1
- package/locales/zh-TW/models.json +27 -0
- package/package.json +1 -1
- package/src/app/loading/Content.tsx +14 -0
- package/src/app/loading/Redirect.tsx +28 -12
- package/src/app/loading/index.tsx +8 -3
- package/src/const/locale.ts +2 -4
- package/src/locales/default/common.ts +37 -1
- package/src/server/modules/AssistantStore/index.test.ts +8 -4
- package/src/server/modules/PluginStore/index.test.ts +2 -2
- package/src/store/global/selectors.ts +5 -1
- package/src/app/loading/Client.tsx +0 -13
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B)는 혁신적인 모델로, 다양한 분야의 응용과 복잡한 작업에 적합합니다."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B는 강력한 비주얼 언어 모델로, 이미지와 텍스트의 다중 모달 처리를 지원하며, 이미지 내용을 정확하게 인식하고 관련 설명이나 답변을 생성할 수 있습니다."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B는 강력한 비주얼 언어 모델로, 이미지와 텍스트의 다중 모달 처리를 지원하며, 이미지 내용을 정확하게 인식하고 관련 설명이나 답변을 생성할 수 있습니다."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct는 Alibaba Cloud에서 발표한 최신 대규모 언어 모델 시리즈 중 하나입니다. 이 72B 모델은 코딩 및 수학 분야에서 상당한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공합니다. 모델은 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 상당한 향상을 보입니다."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2는 Qwen 모델의 최신 시리즈로, 동등한 규모의 최적 오픈 소스 모델은 물론 더 큰 규모의 모델을 초월할 수 있습니다. Qwen2 7B는 여러 평가에서 현저한 우위를 차지하였으며, 특히 코드 및 중국어 이해에서 두드러진 성과를 보였습니다."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct는 140억 매개변수를 가진 대형 언어 모델로, 성능이 우수하며 중국어 및 다국어 시나리오를 최적화하여 스마트 Q&A, 콘텐츠 생성 등의 응용을 지원합니다."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct는 320억 매개변수를 가진 대형 언어 모델로, 성능이 균형 잡혀 있으며 중국어 및 다국어 시나리오를 최적화하여 스마트 Q&A, 콘텐츠 생성 등의 응용을 지원합니다."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct는 16k 컨텍스트를 지원하며, 8K를 초과하는 긴 텍스트를 생성할 수 있습니다. 함수 호출 및 외부 시스템과의 원활한 상호작용을 지원하여 유연성과 확장성을 크게 향상시킵니다. 모델의 지식이 현저히 증가하였고, 인코딩 및 수학 능력이 크게 향상되었으며, 29개 이상의 언어를 지원합니다."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct는 70억 매개변수를 가진 대형 언어 모델로, 함수 호출 및 외부 시스템과의 원활한 상호작용을 지원하여 유연성과 확장성을 크게 향상시킵니다. 중국어 및 다국어 시나리오를 최적화하여 스마트 Q&A, 콘텐츠 생성 등의 응용을 지원합니다."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct는 코드 생성, 코드 이해 및 효율적인 개발 시나리오를 위해 설계된 대형 언어 모델로, 업계 최고의 32B 매개변수 규모를 채택하여 다양한 프로그래밍 요구를 충족합니다."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "기본 버전 모델(V4), 4K 컨텍스트 길이, 일반적인 능력이 강력합니다."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet은 기업 작업 부하에 이상적인 균형을 제공하며, 더 낮은 가격으로 최대 효용을 제공합니다. 신뢰성이 높고 대규모 배포에 적합합니다."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "코드 라쿤은 상상 대형 언어 모델을 기반으로 한 소프트웨어 지능 개발 도우미로, 소프트웨어 요구 분석, 아키텍처 설계, 코드 작성, 소프트웨어 테스트 등 다양한 단계를 포괄하여 사용자 코드 작성 및 프로그래밍 학습 등 다양한 요구를 충족합니다. 코드 라쿤은 Python, Java, JavaScript, C++, Go, SQL 등 90개 이상의 주요 프로그래밍 언어와 VS Code, IntelliJ IDEA 등 주요 IDE를 지원합니다. 실제 응용에서 코드 라쿤은 개발자의 프로그래밍 효율성을 50% 이상 향상시킬 수 있습니다."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4는 강력한 AI 프로그래밍 도우미로, 다양한 프로그래밍 언어에 대한 스마트 Q&A 및 코드 완성을 지원하여 개발 효율성을 높입니다."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini는 OpenAI가 GPT-4 Omni 이후에 출시한 최신 모델로, 텍스트와 이미지를 입력받아 텍스트를 출력합니다. 이 모델은 최신의 소형 모델로, 최근의 다른 최첨단 모델보다 훨씬 저렴하며, GPT-3.5 Turbo보다 60% 이상 저렴합니다. 최첨단의 지능을 유지하면서도 뛰어난 가성비를 자랑합니다. GPT-4o mini는 MMLU 테스트에서 82%의 점수를 기록했으며, 현재 채팅 선호도에서 GPT-4보다 높은 순위를 차지하고 있습니다."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "이 모델은 정확성, 지시 준수 및 다국어 능력에서 개선되었습니다."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "이 모델은 정확성, 지시 준수 및 다국어 능력에서 개선되었습니다."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Grok 2와 유사한 성능을 가지지만, 더 높은 효율성, 속도 및 기능을 제공합니다."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Welkom bij {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "De chatpagina wordt geladen...",
|
14
|
+
"initializing": "De applicatie wordt gestart..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Automatisch genereren",
|
14
17
|
"autoGenerateTooltip": "Automatisch assistentbeschrijving genereren op basis van suggesties",
|
15
18
|
"autoGenerateTooltipDisabled": "Schakel de automatische aanvulling in nadat u een suggestiewoord heeft ingevoerd",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "De functie 'Subonderwerp' is alleen beschikbaar in de serverversie. Als je deze functie wilt gebruiken, schakel dan over naar de serverimplementatiemodus of gebruik LobeChat Cloud.",
|
21
24
|
"cancel": "Annuleren",
|
22
25
|
"changelog": "Wijzigingslogboek",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Initialiseer de PGlite-database"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Het spijt ons, er is een fout opgetreden tijdens het initialiseren van de PGlite-database. Klik op de knop 'Opnieuw proberen'.<br><br> Als de fout aanhoudt, <1>dien een probleem in</1>, dan helpen we je zo snel mogelijk.",
|
32
|
+
"retry": "Opnieuw proberen",
|
33
|
+
"title": "Database-upgrade mislukt"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Er is een fout opgetreden, probeer het opnieuw",
|
37
|
+
"idle": "Wachten op initialisatie...",
|
38
|
+
"initializing": "Bezig met initialiseren...",
|
39
|
+
"loadingDependencies": "Afhankelijkheden laden ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "WASM-module laden ({{progress}}%)...",
|
41
|
+
"migrating": "Bezig met gegevens migreren...",
|
42
|
+
"ready": "Database is gereed"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Schakel de PGlite-clientdatabase in om chatgegevens permanent op te slaan in je browser en gebruik geavanceerde functies zoals de kennisbank.",
|
46
|
+
"enable": "Nu inschakelen",
|
47
|
+
"init": {
|
48
|
+
"desc": "Bezig met het initialiseren van de database, afhankelijk van de netwerksnelheid kan dit 5 tot 30 seconden duren.",
|
49
|
+
"title": "Bezig met het initialiseren van de PGlite-database"
|
50
|
+
},
|
51
|
+
"title": "Schakel de clientdatabase in"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Nu gebruiken",
|
55
|
+
"desc": "Direct gebruiken",
|
56
|
+
"title": "PGlite-database is gereed"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Sluiten",
|
24
60
|
"contact": "Contacteer ons",
|
25
61
|
"copy": "Kopiëren",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) is een innovatief model, geschikt voor toepassingen in meerdere domeinen en complexe taken."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B is een krachtig visueel taalmodel dat multimodale verwerking van afbeeldingen en tekst ondersteunt, in staat om afbeeldingsinhoud nauwkeurig te identificeren en relevante beschrijvingen of antwoorden te genereren."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B is een krachtig visueel taalmodel dat multimodale verwerking van afbeeldingen en tekst ondersteunt, in staat om afbeeldingsinhoud nauwkeurig te identificeren en relevante beschrijvingen of antwoorden te genereren."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 is de nieuwste serie van het Qwen-model, dat in staat is om de beste open-source modellen van gelijke grootte of zelfs grotere modellen te overtreffen. Qwen2 7B heeft aanzienlijke voordelen behaald in verschillende evaluaties, vooral op het gebied van code en begrip van het Chinees."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct is een groot taalmodel met 14 miljard parameters, met uitstekende prestaties, geoptimaliseerd voor Chinese en meertalige scenario's, en ondersteunt toepassingen zoals intelligente vraag-en-antwoord en contentgeneratie."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct is een groot taalmodel met 32 miljard parameters, met een evenwichtige prestatie, geoptimaliseerd voor Chinese en meertalige scenario's, en ondersteunt toepassingen zoals intelligente vraag-en-antwoord en contentgeneratie."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct ondersteunt 16k context en genereert lange teksten van meer dan 8K. Het ondersteunt functieaanroepen en naadloze interactie met externe systemen, wat de flexibiliteit en schaalbaarheid aanzienlijk vergroot. De kennis van het model is duidelijk toegenomen en de coderings- en wiskundige vaardigheden zijn sterk verbeterd, met ondersteuning voor meer dan 29 talen."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct is een groot taalmodel met 7 miljard parameters, dat function calls ondersteunt en naadloos kan interageren met externe systemen, wat de flexibiliteit en schaalbaarheid aanzienlijk vergroot. Geoptimaliseerd voor Chinese en meertalige scenario's, ondersteunt het toepassingen zoals intelligente vraag-en-antwoord en contentgeneratie."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct is een groot taalmodel dat speciaal is ontworpen voor codegeneratie, codebegrip en efficiënte ontwikkelingsscenario's, met een toonaangevende parameteromvang van 32B, dat kan voldoen aan diverse programmeerbehoeften."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Basisversie van het model (V4), met een contextlengte van 4K, heeft sterke algemene capaciteiten."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet biedt een ideale balans tussen intelligentie en snelheid voor bedrijfswerkbelastingen. Het biedt maximale bruikbaarheid tegen een lagere prijs, betrouwbaar en geschikt voor grootschalige implementatie."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Code Raccoon is een software-intelligente ontwikkelingsassistent gebaseerd op het SenseTime grote taalmodel, dat softwarebehoefteanalyse, architectuurontwerp, code schrijven, softwaretesten en andere fasen dekt, en voldoet aan de verschillende behoeften van gebruikers voor code schrijven en programmeerleren. Code Raccoon ondersteunt meer dan 90 populaire programmeertalen zoals Python, Java, JavaScript, C++, Go, SQL en populaire IDE's zoals VS Code en IntelliJ IDEA. In de praktijk kan Code Raccoon ontwikkelaars helpen om de programmeerefficiëntie met meer dan 50% te verhogen."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 is een krachtige AI-programmeerassistent die slimme vraag- en antwoordmogelijkheden en code-aanvulling ondersteunt voor verschillende programmeertalen, waardoor de ontwikkelingssnelheid wordt verhoogd."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini is het nieuwste model van OpenAI, gelanceerd na GPT-4 Omni, en ondersteunt zowel tekst- als beeldinvoer met tekstuitvoer. Als hun meest geavanceerde kleine model is het veel goedkoper dan andere recente toonaangevende modellen en meer dan 60% goedkoper dan GPT-3.5 Turbo. Het behoudt de meest geavanceerde intelligentie met een aanzienlijke prijs-kwaliteitverhouding. GPT-4o mini behaalde 82% op de MMLU-test en staat momenteel hoger in chatvoorkeuren dan GPT-4."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Biedt prestaties vergelijkbaar met Grok 2, maar met hogere efficiëntie, snelheid en functionaliteit."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Witaj w {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Ładowanie strony czatu...",
|
14
|
+
"initializing": "Uruchamianie aplikacji..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Automatyczne generowanie",
|
14
17
|
"autoGenerateTooltip": "Automatyczne uzupełnianie opisu asystenta na podstawie sugestii",
|
15
18
|
"autoGenerateTooltipDisabled": "Proszę wprowadzić słowo kluczowe przed użyciem funkcji automatycznego uzupełniania",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "Funkcja „podtemat” jest dostępna tylko w wersji serwerowej. Aby skorzystać z tej funkcji, przełącz się na tryb wdrożenia serwera lub użyj LobeChat Cloud.",
|
21
24
|
"cancel": "Anuluj",
|
22
25
|
"changelog": "Dziennik zmian",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Inicjalizacja bazy danych PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Przepraszamy, wystąpił błąd podczas inicjalizacji bazy danych PGlite. Proszę kliknąć przycisk „Spróbuj ponownie”.<br><br> Jeśli problem nadal występuje, proszę <1>zgłosić problem</1>, a my jak najszybciej pomożemy w jego rozwiązaniu.",
|
32
|
+
"retry": "Spróbuj ponownie",
|
33
|
+
"title": "Niepowodzenie aktualizacji bazy danych"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Wystąpił błąd, proszę spróbować ponownie",
|
37
|
+
"idle": "Oczekiwanie na inicjalizację...",
|
38
|
+
"initializing": "Inicjalizowanie...",
|
39
|
+
"loadingDependencies": "Ładowanie zależności ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Ładowanie modułu WASM ({{progress}}%)...",
|
41
|
+
"migrating": "Migracja danych...",
|
42
|
+
"ready": "Baza danych gotowa"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Włącz klienta bazy danych PGlite, aby trwale przechowywać dane czatu w przeglądarce i korzystać z zaawansowanych funkcji, takich jak baza wiedzy",
|
46
|
+
"enable": "Włącz teraz",
|
47
|
+
"init": {
|
48
|
+
"desc": "Inicjalizacja bazy danych trwa, w zależności od jakości sieci może zająć od 5 do 30 sekund",
|
49
|
+
"title": "Inicjalizacja bazy danych PGlite"
|
50
|
+
},
|
51
|
+
"title": "Włącz bazę danych klienta"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Użyj teraz",
|
55
|
+
"desc": "Chcę użyć teraz",
|
56
|
+
"title": "Baza danych PGlite jest gotowa"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Zamknij",
|
24
60
|
"contact": "Skontaktuj się z nami",
|
25
61
|
"copy": "Kopiuj",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) to innowacyjny model, idealny do zastosowań w wielu dziedzinach i złożonych zadań."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B to potężny model językowy wizualny, wspierający przetwarzanie multimodalne obrazów i tekstu, zdolny do precyzyjnego rozpoznawania treści obrazów i generowania odpowiednich opisów lub odpowiedzi."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B to potężny model językowy wizualny, wspierający przetwarzanie multimodalne obrazów i tekstu, zdolny do precyzyjnego rozpoznawania treści obrazów i generowania odpowiednich opisów lub odpowiedzi."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 to najnowsza seria modeli Qwen, która przewyższa najlepsze modele open source o podobnej skali, a nawet większe. Qwen2 7B osiągnęła znaczną przewagę w wielu testach, szczególnie w zakresie kodowania i rozumienia języka chińskiego."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct to model językowy z 14 miliardami parametrów, o doskonałej wydajności, optymalizujący scenariusze w języku chińskim i wielojęzyczne, wspierający inteligentne odpowiedzi, generowanie treści i inne zastosowania."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct to model językowy z 32 miliardami parametrów, o zrównoważonej wydajności, optymalizujący scenariusze w języku chińskim i wielojęzyczne, wspierający inteligentne odpowiedzi, generowanie treści i inne zastosowania."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct obsługuje kontekst 16k, generując długie teksty przekraczające 8K. Wspiera wywołania funkcji i bezproblemową interakcję z systemami zewnętrznymi, znacznie zwiększając elastyczność i skalowalność. Wiedza modelu znacznie wzrosła, a jego zdolności w zakresie kodowania i matematyki uległy znacznemu poprawieniu, z obsługą ponad 29 języków."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct to model językowy z 7 miliardami parametrów, wspierający wywołania funkcji i bezproblemową interakcję z systemami zewnętrznymi, znacznie zwiększając elastyczność i skalowalność. Optymalizuje scenariusze w języku chińskim i wielojęzyczne, wspierając inteligentne odpowiedzi, generowanie treści i inne zastosowania."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct to duży model językowy zaprojektowany specjalnie do generowania kodu, rozumienia kodu i efektywnych scenariuszy rozwoju, wykorzystujący wiodącą w branży skalę 32B parametrów, zdolny do zaspokojenia różnorodnych potrzeb programistycznych."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Podstawowa wersja modelu (V4), długość kontekstu 4K, silne zdolności ogólne."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet zapewnia idealną równowagę między inteligencją a szybkością dla obciążeń roboczych w przedsiębiorstwach. Oferuje maksymalną użyteczność przy niższej cenie, jest niezawodny i odpowiedni do dużych wdrożeń."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Code Raccoon to inteligentny asystent do rozwoju oprogramowania oparty na dużym modelu językowym SenseTime, obejmujący analizę wymagań oprogramowania, projektowanie architektury, pisanie kodu, testowanie oprogramowania i inne etapy, zaspokajający różnorodne potrzeby użytkowników w zakresie pisania kodu i nauki programowania. Code Raccoon wspiera ponad 90 popularnych języków programowania, takich jak Python, Java, JavaScript, C++, Go, SQL oraz popularne IDE, takie jak VS Code i IntelliJ IDEA. W praktyce Code Raccoon może pomóc programistom zwiększyć wydajność programowania o ponad 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 to potężny asystent programowania AI, obsługujący inteligentne pytania i odpowiedzi oraz uzupełnianie kodu w różnych językach programowania, zwiększając wydajność programistów."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini to najnowszy model OpenAI, wprowadzony po GPT-4 Omni, obsługujący wejścia tekstowe i wizualne oraz generujący tekst. Jako ich najnowocześniejszy model w małej skali, jest znacznie tańszy niż inne niedawno wprowadzone modele, a jego cena jest o ponad 60% niższa niż GPT-3.5 Turbo. Utrzymuje najnowocześniejszą inteligencję, jednocześnie oferując znaczną wartość za pieniądze. GPT-4o mini uzyskał wynik 82% w teście MMLU i obecnie zajmuje wyższą pozycję w preferencjach czatu niż GPT-4."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Model ten poprawił dokładność, przestrzeganie instrukcji oraz zdolności wielojęzyczne."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Model ten poprawił dokładność, przestrzeganie instrukcji oraz zdolności wielojęzyczne."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Oferuje wydajność porównywalną z Grok 2, ale z wyższą efektywnością, prędkością i funkcjonalnością."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Bem-vindo para experimentar {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Carregando página de chat...",
|
14
|
+
"initializing": "Iniciando aplicativo..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Auto completar",
|
14
17
|
"autoGenerateTooltip": "Auto completar descrição do assistente com base em sugestões",
|
15
18
|
"autoGenerateTooltipDisabled": "Por favor, preencha a dica antes de usar a função de preenchimento automático",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "A funcionalidade de \"subtópico\" está disponível apenas na versão do servidor. Se precisar dessa funcionalidade, mude para o modo de implantação no servidor ou use o LobeChat Cloud.",
|
21
24
|
"cancel": "Cancelar",
|
22
25
|
"changelog": "Registro de alterações",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Inicializando o banco de dados PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Desculpe, ocorreu uma exceção durante o processo de inicialização do banco de dados PGlite. Por favor, clique no botão 'Tentar Novamente'.<br><br> Se o erro persistir, por favor <1>envie um problema</1>, e nós iremos ajudá-lo o mais rápido possível",
|
32
|
+
"retry": "Tentar Novamente",
|
33
|
+
"title": "Falha na atualização do banco de dados"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Ocorreu um erro, por favor tente novamente",
|
37
|
+
"idle": "Aguardando inicialização...",
|
38
|
+
"initializing": "Inicializando...",
|
39
|
+
"loadingDependencies": "Carregando dependências({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Carregando módulo WASM({{progress}}%)...",
|
41
|
+
"migrating": "Migrando dados...",
|
42
|
+
"ready": "Banco de dados pronto"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Ative o banco de dados cliente PGlite para armazenar dados de chat de forma persistente no seu navegador e usar recursos avançados como a base de conhecimento",
|
46
|
+
"enable": "Ativar agora",
|
47
|
+
"init": {
|
48
|
+
"desc": "Inicializando o banco de dados, pode levar de 5 a 30 segundos dependendo da rede",
|
49
|
+
"title": "Inicializando o banco de dados PGlite"
|
50
|
+
},
|
51
|
+
"title": "Ativar banco de dados cliente"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Usar agora",
|
55
|
+
"desc": "Pronto para uso",
|
56
|
+
"title": "Banco de dados PGlite pronto"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Fechar",
|
24
60
|
"contact": "Entre em contato",
|
25
61
|
"copy": "Copiar",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) é um modelo inovador, adequado para aplicações em múltiplas áreas e tarefas complexas."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B é um poderoso modelo de linguagem visual, que suporta processamento multimodal de imagens e textos, capaz de identificar com precisão o conteúdo da imagem e gerar descrições ou respostas relevantes."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B é um poderoso modelo de linguagem visual, que suporta processamento multimodal de imagens e textos, capaz de identificar com precisão o conteúdo da imagem e gerar descrições ou respostas relevantes."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct é um dos mais recentes modelos de linguagem de grande escala lançados pela Alibaba Cloud. Este modelo de 72B apresenta melhorias significativas em áreas como codificação e matemática. O modelo também oferece suporte multilíngue, abrangendo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 é a mais recente série do modelo Qwen, capaz de superar modelos de código aberto de tamanho equivalente e até mesmo modelos de maior escala. O Qwen2 7B obteve vantagens significativas em várias avaliações, especialmente em compreensão de código e chinês."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct é um grande modelo de linguagem com 14 bilhões de parâmetros, com desempenho excelente, otimizado para cenários em chinês e multilíngues, suportando aplicações como perguntas e respostas inteligentes e geração de conteúdo."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct é um grande modelo de linguagem com 32 bilhões de parâmetros, com desempenho equilibrado, otimizado para cenários em chinês e multilíngues, suportando aplicações como perguntas e respostas inteligentes e geração de conteúdo."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct suporta 16k de contexto, gerando textos longos com mais de 8K. Suporta chamadas de função e interação sem costura com sistemas externos, aumentando significativamente a flexibilidade e escalabilidade. O conhecimento do modelo aumentou consideravelmente, e suas habilidades em codificação e matemática melhoraram muito, com suporte a mais de 29 idiomas."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct é um grande modelo de linguagem com 7 bilhões de parâmetros, que suporta chamadas de função e interação sem costura com sistemas externos, aumentando significativamente a flexibilidade e escalabilidade. Otimizado para cenários em chinês e multilíngues, suporta aplicações como perguntas e respostas inteligentes e geração de conteúdo."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct é um grande modelo de linguagem projetado para geração de código, compreensão de código e cenários de desenvolvimento eficiente, com uma escala de 32 bilhões de parâmetros, atendendo a diversas necessidades de programação."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Modelo da versão básica (V4), com comprimento de contexto de 4K, com capacidades gerais poderosas."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet oferece um equilíbrio ideal entre inteligência e velocidade para cargas de trabalho empresariais. Ele fornece máxima utilidade a um custo mais baixo, sendo confiável e adequado para implantação em larga escala."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "O Código Raccoon é um assistente de desenvolvimento inteligente baseado no grande modelo de linguagem da SenseTime, cobrindo análise de requisitos de software, design de arquitetura, escrita de código, testes de software e outros aspectos, atendendo a diversas necessidades de escrita de código e aprendizado de programação. O Código Raccoon suporta mais de 90 linguagens de programação populares, como Python, Java, JavaScript, C++, Go, SQL, e IDEs populares como VS Code e IntelliJ IDEA. Na prática, o Código Raccoon pode ajudar os desenvolvedores a aumentar a eficiência da programação em mais de 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "O CodeGeeX-4 é um poderoso assistente de programação AI, suportando perguntas e respostas inteligentes e autocompletar em várias linguagens de programação, aumentando a eficiência do desenvolvimento."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "O GPT-4o mini é o mais recente modelo lançado pela OpenAI após o GPT-4 Omni, suportando entrada de texto e imagem e gerando texto como saída. Como seu modelo compacto mais avançado, ele é muito mais acessível do que outros modelos de ponta recentes, custando mais de 60% menos que o GPT-3.5 Turbo. Ele mantém uma inteligência de ponta, ao mesmo tempo que oferece um custo-benefício significativo. O GPT-4o mini obteve uma pontuação de 82% no teste MMLU e atualmente está classificado acima do GPT-4 em preferências de chat."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Este modelo apresenta melhorias em precisão, conformidade com instruções e capacidade multilíngue."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Este modelo apresenta melhorias em precisão, conformidade com instruções e capacidade multilíngue."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Apresenta desempenho equivalente ao Grok 2, mas com maior eficiência, velocidade e funcionalidades."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "Добро пожаловать в {{name}}"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Загрузка страницы чата...",
|
14
|
+
"initializing": "Запуск приложения..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Автозаполнение",
|
14
17
|
"autoGenerateTooltip": "Автоматическое дополнение описания агента на основе подсказок",
|
15
18
|
"autoGenerateTooltipDisabled": "Пожалуйста, введите подсказку перед использованием функции автозаполнения",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "Функция «Подтема» доступна только в серверной версии. Если вам нужна эта функция, переключитесь на серверный режим развертывания или используйте LobeChat Cloud.",
|
21
24
|
"cancel": "Отмена",
|
22
25
|
"changelog": "История изменений",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "Инициализация базы данных PGlite"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "К сожалению, произошла ошибка в процессе инициализации базы данных PGlite. Пожалуйста, нажмите кнопку «Повторить».<br><br> Если ошибка повторяется, пожалуйста, <1>сообщите о проблеме</1>, и мы поможем вам в кратчайшие сроки.",
|
32
|
+
"retry": "Повторить",
|
33
|
+
"title": "Ошибка обновления базы данных"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Произошла ошибка, пожалуйста, повторите попытку",
|
37
|
+
"idle": "Ожидание инициализации...",
|
38
|
+
"initializing": "Инициализация...",
|
39
|
+
"loadingDependencies": "Загрузка зависимостей ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "Загрузка модуля WASM ({{progress}}%)...",
|
41
|
+
"migrating": "Миграция данных...",
|
42
|
+
"ready": "База данных готова"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "Включите клиентскую базу данных PGlite для постоянного хранения данных чата в вашем браузере и использования таких расширенных функций, как база знаний.",
|
46
|
+
"enable": "Включить сейчас",
|
47
|
+
"init": {
|
48
|
+
"desc": "Идет инициализация базы данных, в зависимости от сети это может занять от 5 до 30 секунд.",
|
49
|
+
"title": "Инициализация базы данных PGlite"
|
50
|
+
},
|
51
|
+
"title": "Включить клиентскую базу данных"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Использовать сейчас",
|
55
|
+
"desc": "Использовать сейчас",
|
56
|
+
"title": "База данных PGlite готова"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Закрыть",
|
24
60
|
"contact": "Свяжитесь с нами",
|
25
61
|
"copy": "Копировать",
|
@@ -112,6 +112,12 @@
|
|
112
112
|
"Gryphe/MythoMax-L2-13b": {
|
113
113
|
"description": "MythoMax-L2 (13B) — это инновационная модель, подходящая для многообластных приложений и сложных задач."
|
114
114
|
},
|
115
|
+
"InternVL2-8B": {
|
116
|
+
"description": "InternVL2-8B — это мощная визуально-языковая модель, поддерживающая многомодальную обработку изображений и текста, способная точно распознавать содержимое изображений и генерировать соответствующие описания или ответы."
|
117
|
+
},
|
118
|
+
"InternVL2.5-26B": {
|
119
|
+
"description": "InternVL2.5-26B — это мощная визуально-языковая модель, поддерживающая многомодальную обработку изображений и текста, способная точно распознавать содержимое изображений и генерировать соответствующие описания или ответы."
|
120
|
+
},
|
115
121
|
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
116
122
|
"description": "Qwen2.5-72B-Instruct — это одна из последних языковых моделей, выпущенных Alibaba Cloud. Эта 72B модель значительно улучшила способности в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
|
117
123
|
},
|
@@ -233,9 +239,21 @@
|
|
233
239
|
"Qwen2-7B-Instruct": {
|
234
240
|
"description": "Qwen2 — это последняя серия моделей Qwen, способная превосходить лучшие открытые модели сопоставимого размера и даже более крупные модели. Qwen2 7B демонстрирует значительные преимущества в нескольких тестах, особенно в понимании кода и китайского языка."
|
235
241
|
},
|
242
|
+
"Qwen2.5-14B-Instruct": {
|
243
|
+
"description": "Qwen2.5-14B-Instruct — это языковая модель с 14 миллиардами параметров, с отличными показателями производительности, оптимизированная для китайского и многоязычного контекста, поддерживает интеллектуальные ответы, генерацию контента и другие приложения."
|
244
|
+
},
|
245
|
+
"Qwen2.5-32B-Instruct": {
|
246
|
+
"description": "Qwen2.5-32B-Instruct — это языковая модель с 32 миллиардами параметров, с сбалансированными показателями производительности, оптимизированная для китайского и многоязычного контекста, поддерживает интеллектуальные ответы, генерацию контента и другие приложения."
|
247
|
+
},
|
236
248
|
"Qwen2.5-72B-Instruct": {
|
237
249
|
"description": "Qwen2.5-72B-Instruct поддерживает контекст до 16k, генерируя длинные тексты более 8K. Поддерживает вызовы функций и бесшовное взаимодействие с внешними системами, что значительно повышает гибкость и масштабируемость. Знания модели значительно увеличены, а способности в кодировании и математике значительно улучшены, поддерживает более 29 языков."
|
238
250
|
},
|
251
|
+
"Qwen2.5-7B-Instruct": {
|
252
|
+
"description": "Qwen2.5-7B-Instruct — это языковая модель с 7 миллиардами параметров, поддерживающая вызовы функций и бесшовное взаимодействие с внешними системами, что значительно повышает гибкость и масштабируемость. Оптимизирована для китайского и многоязычного контекста, поддерживает интеллектуальные ответы, генерацию контента и другие приложения."
|
253
|
+
},
|
254
|
+
"Qwen2.5-Coder-32B-Instruct": {
|
255
|
+
"description": "Qwen2.5-Coder-32B-Instruct — это крупная языковая модель, специально разработанная для генерации кода, понимания кода и эффективных сценариев разработки, с передовым масштабом параметров 32B, способная удовлетворить разнообразные потребности программирования."
|
256
|
+
},
|
239
257
|
"SenseChat": {
|
240
258
|
"description": "Базовая версия модели (V4), длина контекста 4K, обладает мощными универсальными возможностями."
|
241
259
|
},
|
@@ -464,6 +482,9 @@
|
|
464
482
|
"claude-3-sonnet-20240229": {
|
465
483
|
"description": "Claude 3 Sonnet обеспечивает идеальный баланс между интеллектом и скоростью для корпоративных рабочих нагрузок. Он предлагает максимальную полезность по более низкой цене, надежен и подходит для масштабного развертывания."
|
466
484
|
},
|
485
|
+
"code-raccoon-v1": {
|
486
|
+
"description": "Кодовый енот — это программный интеллектуальный помощник на основе языковой модели SenseTime, охватывающий такие этапы, как анализ требований к программному обеспечению, проектирование архитектуры, написание кода, тестирование программного обеспечения и т. д., удовлетворяющий различные потребности пользователей в написании кода и обучении программированию. Кодовый енот поддерживает более 90 популярных языков программирования, таких как Python, Java, JavaScript, C++, Go, SQL, а также популярные IDE, такие как VS Code и IntelliJ IDEA. В реальных приложениях кодовый енот может помочь разработчикам повысить эффективность программирования более чем на 50%."
|
487
|
+
},
|
467
488
|
"codegeex-4": {
|
468
489
|
"description": "CodeGeeX-4 — это мощный AI помощник по программированию, поддерживающий интеллектуальные ответы и автозаполнение кода на различных языках программирования, повышая эффективность разработки."
|
469
490
|
},
|
@@ -752,6 +773,12 @@
|
|
752
773
|
"gpt-4o-mini": {
|
753
774
|
"description": "GPT-4o mini — это последняя модель, выпущенная OpenAI после GPT-4 Omni, поддерживающая ввод изображений и текстов с выводом текста. Как их самый продвинутый компактный модель, она значительно дешевле других недавних передовых моделей и более чем на 60% дешевле GPT-3.5 Turbo. Она сохраняет передовой уровень интеллекта при значительном соотношении цена-качество. GPT-4o mini набрала 82% на тесте MMLU и в настоящее время занимает более высокое место в предпочтениях чата по сравнению с GPT-4."
|
754
775
|
},
|
776
|
+
"grok-2-1212": {
|
777
|
+
"description": "Модель улучшена в точности, соблюдении инструкций и многоязычных возможностях."
|
778
|
+
},
|
779
|
+
"grok-2-vision-1212": {
|
780
|
+
"description": "Модель улучшена в точности, соблюдении инструкций и многоязычных возможностях."
|
781
|
+
},
|
755
782
|
"grok-beta": {
|
756
783
|
"description": "Обладает производительностью, сопоставимой с Grok 2, но с большей эффективностью, скоростью и функциональностью."
|
757
784
|
},
|
@@ -9,7 +9,10 @@
|
|
9
9
|
"title": "{{name}}'i Denemek İçin Hoş Geldiniz"
|
10
10
|
}
|
11
11
|
},
|
12
|
-
"
|
12
|
+
"appLoading": {
|
13
|
+
"goToChat": "Sohbet sayfası yükleniyor...",
|
14
|
+
"initializing": "Uygulama başlatılıyor..."
|
15
|
+
},
|
13
16
|
"autoGenerate": "Otomatik Oluştur",
|
14
17
|
"autoGenerateTooltip": "Auto-generate agent description based on prompts",
|
15
18
|
"autoGenerateTooltipDisabled": "Otomatik tamamlama işlevini kullanmadan önce ipucu kelimesini girin",
|
@@ -20,6 +23,39 @@
|
|
20
23
|
"branchingDisable": "«Alt konu» özelliği yalnızca sunucu sürümünde mevcuttur. Bu özelliği kullanmak için lütfen sunucu dağıtım moduna geçin veya LobeChat Cloud'u kullanın.",
|
21
24
|
"cancel": "İptal",
|
22
25
|
"changelog": "Changelog",
|
26
|
+
"clientDB": {
|
27
|
+
"autoInit": {
|
28
|
+
"title": "PGlite veritabanı başlatılıyor"
|
29
|
+
},
|
30
|
+
"error": {
|
31
|
+
"desc": "Üzgünüz, PGlite veritabanı başlatma sürecinde bir hata oluştu. Lütfen 'Tekrar Dene' butonuna tıklayın.<br><br> Hala hata alıyorsanız, lütfen <1>bir sorun bildirin</1>, size en kısa sürede yardımcı olacağız.",
|
32
|
+
"retry": "Tekrar Dene",
|
33
|
+
"title": "Veritabanı güncellemesi başarısız"
|
34
|
+
},
|
35
|
+
"initing": {
|
36
|
+
"error": "Hata oluştu, lütfen tekrar deneyin",
|
37
|
+
"idle": "Başlatma bekleniyor...",
|
38
|
+
"initializing": "Başlatılıyor...",
|
39
|
+
"loadingDependencies": "Bağımlılıklar yükleniyor ({{progress}}%)...",
|
40
|
+
"loadingWasmModule": "WASM modülü yükleniyor ({{progress}}%)...",
|
41
|
+
"migrating": "Veri taşınıyor...",
|
42
|
+
"ready": "Veritabanı hazır"
|
43
|
+
},
|
44
|
+
"modal": {
|
45
|
+
"desc": "PGlite istemci veritabanını etkinleştirerek, tarayıcınızda sohbet verilerini kalıcı olarak depolayın ve bilgi bankası gibi gelişmiş özellikleri kullanın.",
|
46
|
+
"enable": "Hemen Etkinleştir",
|
47
|
+
"init": {
|
48
|
+
"desc": "Veritabanı başlatılıyor, ağ farklılıklarına bağlı olarak 5-30 saniye sürebilir.",
|
49
|
+
"title": "PGlite veritabanı başlatılıyor"
|
50
|
+
},
|
51
|
+
"title": "İstemci veritabanını aç"
|
52
|
+
},
|
53
|
+
"ready": {
|
54
|
+
"button": "Hemen Kullan",
|
55
|
+
"desc": "Hemen kullanmak istiyorum",
|
56
|
+
"title": "PGlite veritabanı hazır"
|
57
|
+
}
|
58
|
+
},
|
23
59
|
"close": "Kapat",
|
24
60
|
"contact": "Bize Ulaşın",
|
25
61
|
"copy": "Kopyala",
|