@lobehub/chat 1.36.26 → 1.36.28

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. package/CHANGELOG.md +42 -0
  2. package/changelog/v1.json +14 -0
  3. package/locales/ar/common.json +37 -1
  4. package/locales/ar/models.json +27 -0
  5. package/locales/bg-BG/common.json +37 -1
  6. package/locales/bg-BG/models.json +27 -0
  7. package/locales/de-DE/common.json +37 -1
  8. package/locales/de-DE/models.json +27 -0
  9. package/locales/en-US/common.json +37 -1
  10. package/locales/en-US/models.json +27 -0
  11. package/locales/es-ES/common.json +37 -1
  12. package/locales/es-ES/models.json +27 -0
  13. package/locales/fa-IR/common.json +37 -1
  14. package/locales/fa-IR/models.json +27 -0
  15. package/locales/fr-FR/common.json +37 -1
  16. package/locales/fr-FR/models.json +27 -0
  17. package/locales/it-IT/common.json +37 -1
  18. package/locales/it-IT/models.json +27 -0
  19. package/locales/ja-JP/common.json +37 -1
  20. package/locales/ja-JP/models.json +27 -0
  21. package/locales/ko-KR/common.json +37 -1
  22. package/locales/ko-KR/models.json +27 -0
  23. package/locales/nl-NL/common.json +37 -1
  24. package/locales/nl-NL/models.json +27 -0
  25. package/locales/pl-PL/common.json +37 -1
  26. package/locales/pl-PL/models.json +27 -0
  27. package/locales/pt-BR/common.json +37 -1
  28. package/locales/pt-BR/models.json +27 -0
  29. package/locales/ru-RU/common.json +37 -1
  30. package/locales/ru-RU/models.json +27 -0
  31. package/locales/tr-TR/common.json +37 -1
  32. package/locales/tr-TR/models.json +27 -0
  33. package/locales/vi-VN/common.json +37 -1
  34. package/locales/vi-VN/models.json +27 -0
  35. package/locales/zh-CN/common.json +37 -1
  36. package/locales/zh-CN/models.json +28 -1
  37. package/locales/zh-TW/common.json +37 -1
  38. package/locales/zh-TW/models.json +27 -0
  39. package/package.json +1 -1
  40. package/src/app/(main)/discover/(detail)/provider/[slug]/features/ModelList/index.tsx +5 -5
  41. package/src/app/loading/Content.tsx +14 -0
  42. package/src/app/loading/Redirect.tsx +28 -12
  43. package/src/app/loading/index.tsx +8 -3
  44. package/src/locales/default/common.ts +37 -1
  45. package/src/store/global/selectors.ts +5 -1
  46. package/src/app/loading/Client.tsx +0 -13
@@ -112,6 +112,12 @@
112
112
  "Gryphe/MythoMax-L2-13b": {
113
113
  "description": "MythoMax-L2 (13B) es un modelo innovador, adecuado para aplicaciones en múltiples campos y tareas complejas."
114
114
  },
115
+ "InternVL2-8B": {
116
+ "description": "InternVL2-8B es un potente modelo de lenguaje visual, que admite el procesamiento multimodal de imágenes y texto, capaz de identificar con precisión el contenido de las imágenes y generar descripciones o respuestas relacionadas."
117
+ },
118
+ "InternVL2.5-26B": {
119
+ "description": "InternVL2.5-26B es un potente modelo de lenguaje visual, que admite el procesamiento multimodal de imágenes y texto, capaz de identificar con precisión el contenido de las imágenes y generar descripciones o respuestas relacionadas."
120
+ },
115
121
  "LoRA/Qwen/Qwen2.5-72B-Instruct": {
116
122
  "description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
117
123
  },
@@ -233,9 +239,21 @@
233
239
  "Qwen2-7B-Instruct": {
234
240
  "description": "Qwen2 es la última serie del modelo Qwen, capaz de superar a los modelos de código abierto de tamaño equivalente e incluso a modelos de mayor tamaño. Qwen2 7B ha logrado ventajas significativas en múltiples evaluaciones, especialmente en comprensión de código y chino."
235
241
  },
242
+ "Qwen2.5-14B-Instruct": {
243
+ "description": "Qwen2.5-14B-Instruct es un modelo de lenguaje grande de 14 mil millones de parámetros, con un rendimiento excelente, optimizado para escenarios en chino y multilingües, que admite aplicaciones de preguntas y respuestas inteligentes, generación de contenido, entre otros."
244
+ },
245
+ "Qwen2.5-32B-Instruct": {
246
+ "description": "Qwen2.5-32B-Instruct es un modelo de lenguaje grande de 32 mil millones de parámetros, con un rendimiento equilibrado, optimizado para escenarios en chino y multilingües, que admite aplicaciones de preguntas y respuestas inteligentes, generación de contenido, entre otros."
247
+ },
236
248
  "Qwen2.5-72B-Instruct": {
237
249
  "description": "Qwen2.5-72B-Instruct admite un contexto de 16k, generando textos largos de más de 8K. Soporta llamadas a funciones e interacción sin problemas con sistemas externos, lo que mejora enormemente la flexibilidad y escalabilidad. El conocimiento del modelo ha aumentado significativamente, y se ha mejorado considerablemente la capacidad de codificación y matemáticas, con soporte para más de 29 idiomas."
238
250
  },
251
+ "Qwen2.5-7B-Instruct": {
252
+ "description": "Qwen2.5-7B-Instruct es un modelo de lenguaje grande de 7 mil millones de parámetros, que admite llamadas a funciones e interacción sin problemas con sistemas externos, mejorando enormemente la flexibilidad y escalabilidad. Optimizado para escenarios en chino y multilingües, admite aplicaciones de preguntas y respuestas inteligentes, generación de contenido, entre otros."
253
+ },
254
+ "Qwen2.5-Coder-32B-Instruct": {
255
+ "description": "Qwen2.5-Coder-32B-Instruct es un modelo de lenguaje grande diseñado específicamente para la generación de código, comprensión de código y escenarios de desarrollo eficiente, con una escala de 32B parámetros, líder en la industria, capaz de satisfacer diversas necesidades de programación."
256
+ },
239
257
  "SenseChat": {
240
258
  "description": "Modelo de versión básica (V4), longitud de contexto de 4K, con potentes capacidades generales."
241
259
  },
@@ -464,6 +482,9 @@
464
482
  "claude-3-sonnet-20240229": {
465
483
  "description": "Claude 3 Sonnet proporciona un equilibrio ideal entre inteligencia y velocidad para cargas de trabajo empresariales. Ofrece la máxima utilidad a un costo más bajo, siendo fiable y adecuado para implementaciones a gran escala."
466
484
  },
485
+ "code-raccoon-v1": {
486
+ "description": "Code Raccoon es un asistente de desarrollo inteligente basado en el modelo de lenguaje grande de SenseTime, que abarca análisis de requisitos de software, diseño de arquitectura, escritura de código, pruebas de software y más, satisfaciendo diversas necesidades de escritura de código y aprendizaje de programación. Code Raccoon admite más de 90 lenguajes de programación populares como Python, Java, JavaScript, C++, Go, SQL, y entornos de desarrollo integrados como VS Code, IntelliJ IDEA, entre otros. En la práctica, Code Raccoon puede ayudar a los desarrolladores a mejorar la eficiencia de programación en más del 50%."
487
+ },
467
488
  "codegeex-4": {
468
489
  "description": "CodeGeeX-4 es un potente asistente de programación AI, que admite preguntas y respuestas inteligentes y autocompletado de código en varios lenguajes de programación, mejorando la eficiencia del desarrollo."
469
490
  },
@@ -752,6 +773,12 @@
752
773
  "gpt-4o-mini": {
753
774
  "description": "GPT-4o mini es el último modelo lanzado por OpenAI después de GPT-4 Omni, que admite entradas de texto e imagen y genera texto como salida. Como su modelo más avanzado de menor tamaño, es mucho más económico que otros modelos de vanguardia recientes y es más de un 60% más barato que GPT-3.5 Turbo. Mantiene una inteligencia de vanguardia mientras ofrece una relación calidad-precio significativa. GPT-4o mini obtuvo un puntaje del 82% en la prueba MMLU y actualmente se clasifica por encima de GPT-4 en preferencias de chat."
754
775
  },
776
+ "grok-2-1212": {
777
+ "description": "Este modelo ha mejorado en precisión, cumplimiento de instrucciones y capacidades multilingües."
778
+ },
779
+ "grok-2-vision-1212": {
780
+ "description": "Este modelo ha mejorado en precisión, cumplimiento de instrucciones y capacidades multilingües."
781
+ },
755
782
  "grok-beta": {
756
783
  "description": "Ofrece un rendimiento comparable al de Grok 2, pero con mayor eficiencia, velocidad y funcionalidad."
757
784
  },
@@ -9,7 +9,10 @@
9
9
  "title": "{{name}} شروع به آزمایش عمومی کرد"
10
10
  }
11
11
  },
12
- "appInitializing": "در حال راه‌اندازی برنامه...",
12
+ "appLoading": {
13
+ "goToChat": "در حال بارگذاری صفحه گفتگو...",
14
+ "initializing": "در حال راه‌اندازی برنامه..."
15
+ },
13
16
  "autoGenerate": "تکمیل خودکار",
14
17
  "autoGenerateTooltip": "تکمیل خودکار توضیحات دستیار بر اساس کلمات راهنما",
15
18
  "autoGenerateTooltipDisabled": "لطفاً پس از وارد کردن کلمات کلیدی از قابلیت تکمیل خودکار استفاده کنید",
@@ -20,6 +23,39 @@
20
23
  "branchingDisable": "ویژگی «زیرموضوع» تنها در نسخه سرور قابل استفاده است، اگر به این ویژگی نیاز دارید، لطفاً به حالت استقرار سرور تغییر دهید یا از LobeChat Cloud استفاده کنید.",
21
24
  "cancel": "لغو",
22
25
  "changelog": "تغییرات",
26
+ "clientDB": {
27
+ "autoInit": {
28
+ "title": "راه‌اندازی پایگاه داده PGlite"
29
+ },
30
+ "error": {
31
+ "desc": "متأسفیم، در فرآیند راه‌اندازی پایگاه داده Pglite خطایی رخ داده است. لطفاً بر روی دکمه «تکرار» کلیک کنید.<br><br> اگر هنوز خطا وجود دارد، لطفاً <1>مسئله را گزارش کنید</1>، ما در اسرع وقت به شما کمک خواهیم کرد.",
32
+ "retry": "تکرار",
33
+ "title": "به‌روزرسانی پایگاه داده ناموفق بود"
34
+ },
35
+ "initing": {
36
+ "error": "خطایی رخ داده است، لطفاً دوباره تلاش کنید",
37
+ "idle": "در حال انتظار برای راه‌اندازی...",
38
+ "initializing": "در حال راه‌اندازی...",
39
+ "loadingDependencies": "در حال بارگذاری وابستگی‌ها ({{progress}}%)...",
40
+ "loadingWasmModule": "در حال بارگذاری ماژول WASM ({{progress}}%)...",
41
+ "migrating": "در حال انتقال داده‌ها...",
42
+ "ready": "پایگاه داده آماده است"
43
+ },
44
+ "modal": {
45
+ "desc": "فعال‌سازی پایگاه داده کلاینت PGlite، برای ذخیره‌سازی دائمی داده‌های گفتگو در مرورگر شما و استفاده از ویژگی‌های پیشرفته مانند دانش‌نامه",
46
+ "enable": "همین حالا فعال‌سازی کنید",
47
+ "init": {
48
+ "desc": "در حال راه‌اندازی پایگاه داده، بسته به تفاوت‌های شبکه ممکن است ۵ تا ۳۰ ثانیه طول بکشد",
49
+ "title": "در حال راه‌اندازی پایگاه داده PGlite"
50
+ },
51
+ "title": "فعال‌سازی پایگاه داده کلاینت"
52
+ },
53
+ "ready": {
54
+ "button": "همین حالا استفاده کنید",
55
+ "desc": "همین حالا می‌خواهید استفاده کنید",
56
+ "title": "پایگاه داده PGlite آماده است"
57
+ }
58
+ },
23
59
  "close": "بستن",
24
60
  "contact": "تماس با ما",
25
61
  "copy": "کپی",
@@ -112,6 +112,12 @@
112
112
  "Gryphe/MythoMax-L2-13b": {
113
113
  "description": "MythoMax-L2 (13B) یک مدل نوآورانه است که برای کاربردهای چندرشته‌ای و وظایف پیچیده مناسب است."
114
114
  },
115
+ "InternVL2-8B": {
116
+ "description": "InternVL2-8B یک مدل زبان بصری قدرتمند است که از پردازش چند حالتی تصویر و متن پشتیبانی می‌کند و قادر است محتوای تصویر را به دقت شناسایی کرده و توصیف یا پاسخ‌های مرتبط تولید کند."
117
+ },
118
+ "InternVL2.5-26B": {
119
+ "description": "InternVL2.5-26B یک مدل زبان بصری قدرتمند است که از پردازش چند حالتی تصویر و متن پشتیبانی می‌کند و قادر است محتوای تصویر را به دقت شناسایی کرده و توصیف یا پاسخ‌های مرتبط تولید کند."
120
+ },
115
121
  "LoRA/Qwen/Qwen2.5-72B-Instruct": {
116
122
  "description": "Qwen2.5-72B-Instruct یکی از جدیدترین سری مدل‌های زبانی بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 72B در زمینه‌های کدنویسی و ریاضی دارای توانایی‌های بهبود یافته قابل توجهی است. این مدل همچنین از پشتیبانی چند زبانه برخوردار است و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش می‌دهد. این مدل در پیروی از دستورات، درک داده‌های ساختاری و تولید خروجی‌های ساختاری (به ویژه JSON) به طور قابل توجهی بهبود یافته است."
117
123
  },
@@ -233,9 +239,21 @@
233
239
  "Qwen2-7B-Instruct": {
234
240
  "description": "Qwen2 جدیدترین سری مدل‌های Qwen است که می‌تواند از مدل‌های متن‌باز با مقیاس مشابه و حتی بزرگتر فراتر رود. Qwen2 7B در چندین ارزیابی برتری قابل توجهی به دست آورده است، به ویژه در درک کد و زبان چینی."
235
241
  },
242
+ "Qwen2.5-14B-Instruct": {
243
+ "description": "Qwen2.5-14B-Instruct یک مدل زبان بزرگ با 140 میلیارد پارامتر است که عملکرد عالی دارد و بهینه‌سازی شده برای سناریوهای چینی و چند زبانه، از کاربردهایی مانند پرسش و پاسخ هوشمند و تولید محتوا پشتیبانی می‌کند."
244
+ },
245
+ "Qwen2.5-32B-Instruct": {
246
+ "description": "Qwen2.5-32B-Instruct یک مدل زبان بزرگ با 320 میلیارد پارامتر است که عملکرد متوازن دارد و بهینه‌سازی شده برای سناریوهای چینی و چند زبانه، از کاربردهایی مانند پرسش و پاسخ هوشمند و تولید محتوا پشتیبانی می‌کند."
247
+ },
236
248
  "Qwen2.5-72B-Instruct": {
237
249
  "description": "Qwen2.5-72B-Instruct از 16k زمینه پشتیبانی می‌کند و قادر به تولید متن‌های طولانی بیش از 8K است. این مدل از تماس‌های تابع و تعامل بدون درز با سیستم‌های خارجی پشتیبانی می‌کند و به طور قابل توجهی انعطاف‌پذیری و گسترش‌پذیری را افزایش می‌دهد. دانش مدل به وضوح افزایش یافته و توانایی‌های کدنویسی و ریاضی به طور چشمگیری بهبود یافته است و از بیش از 29 زبان پشتیبانی می‌کند."
238
250
  },
251
+ "Qwen2.5-7B-Instruct": {
252
+ "description": "Qwen2.5-7B-Instruct یک مدل زبان بزرگ با 70 میلیارد پارامتر است که از تماس‌های تابع و تعامل بی‌نقص با سیستم‌های خارجی پشتیبانی می‌کند و به طور قابل توجهی انعطاف‌پذیری و مقیاس‌پذیری را افزایش می‌دهد. این مدل بهینه‌سازی شده برای سناریوهای چینی و چند زبانه، از کاربردهایی مانند پرسش و پاسخ هوشمند و تولید محتوا پشتیبانی می‌کند."
253
+ },
254
+ "Qwen2.5-Coder-32B-Instruct": {
255
+ "description": "Qwen2.5-Coder-32B-Instruct یک مدل زبان بزرگ است که به طور خاص برای تولید کد، درک کد و سناریوهای توسعه کارآمد طراحی شده است و از مقیاس 32B پارامتر پیشرفته در صنعت بهره می‌برد و می‌تواند نیازهای متنوع برنامه‌نویسی را برآورده کند."
256
+ },
239
257
  "SenseChat": {
240
258
  "description": "نسخه پایه مدل (V4)، طول متن ۴K، با توانایی‌های عمومی قوی"
241
259
  },
@@ -464,6 +482,9 @@
464
482
  "claude-3-sonnet-20240229": {
465
483
  "description": "Claude 3 Sonnet تعادلی ایده‌آل بین هوش و سرعت برای بارهای کاری سازمانی فراهم می‌کند. این محصول با قیمتی پایین‌تر حداکثر بهره‌وری را ارائه می‌دهد، قابل اعتماد است و برای استقرار در مقیاس بزرگ مناسب می‌باشد."
466
484
  },
485
+ "code-raccoon-v1": {
486
+ "description": "کد راکون یک دستیار هوشمند توسعه نرم‌افزار است که بر اساس مدل زبان بزرگ سن‌تنگ طراحی شده و شامل تحلیل نیازمندی‌های نرم‌افزار، طراحی معماری، نوشتن کد و تست نرم‌افزار است و نیازهای مختلف کاربران در نوشتن کد و یادگیری برنامه‌نویسی را برآورده می‌کند. کد راکون از بیش از 90 زبان برنامه‌نویسی اصلی مانند Python، Java، JavaScript، C++، Go، SQL و IDEهای اصلی مانند VS Code و IntelliJ IDEA پشتیبانی می‌کند. در کاربردهای واقعی، کد راکون می‌تواند به توسعه‌دهندگان کمک کند تا کارایی برنامه‌نویسی خود را بیش از 50% افزایش دهند."
487
+ },
467
488
  "codegeex-4": {
468
489
  "description": "CodeGeeX-4 یک دستیار برنامه‌نویسی قدرتمند مبتنی بر هوش مصنوعی است که از پرسش و پاسخ هوشمند و تکمیل کد در زبان‌های برنامه‌نویسی مختلف پشتیبانی می‌کند و بهره‌وری توسعه را افزایش می‌دهد."
469
490
  },
@@ -752,6 +773,12 @@
752
773
  "gpt-4o-mini": {
753
774
  "description": "یک راه‌حل هوش مصنوعی مقرون‌به‌صرفه که برای انواع وظایف متنی و تصویری مناسب است."
754
775
  },
776
+ "grok-2-1212": {
777
+ "description": "این مدل در دقت، پیروی از دستورات و توانایی چند زبانه بهبود یافته است."
778
+ },
779
+ "grok-2-vision-1212": {
780
+ "description": "این مدل در دقت، پیروی از دستورات و توانایی چند زبانه بهبود یافته است."
781
+ },
755
782
  "grok-beta": {
756
783
  "description": "عملکردی معادل Grok 2 دارد، اما با کارایی، سرعت و قابلیت‌های بالاتر."
757
784
  },
@@ -9,7 +9,10 @@
9
9
  "title": "Bienvenue à {{name}}"
10
10
  }
11
11
  },
12
- "appInitializing": "L'application est en cours de démarrage...",
12
+ "appLoading": {
13
+ "goToChat": "Chargement de la page de discussion...",
14
+ "initializing": "L'application se lance..."
15
+ },
13
16
  "autoGenerate": "Générer automatiquement",
14
17
  "autoGenerateTooltip": "Générer automatiquement la description de l'agent basée sur les suggestions",
15
18
  "autoGenerateTooltipDisabled": "Veuillez saisir un mot-clé avant d'activer la fonction de complétion automatique",
@@ -20,6 +23,39 @@
20
23
  "branchingDisable": "La fonction « sous-sujet » n'est disponible que dans la version serveur. Si vous avez besoin de cette fonctionnalité, veuillez passer en mode de déploiement serveur ou utiliser LobeChat Cloud.",
21
24
  "cancel": "Annuler",
22
25
  "changelog": "Journal des modifications",
26
+ "clientDB": {
27
+ "autoInit": {
28
+ "title": "Initialisation de la base de données PGlite"
29
+ },
30
+ "error": {
31
+ "desc": "Nous sommes désolés, une erreur s'est produite lors de l'initialisation de la base de données PGlite. Veuillez cliquer sur le bouton « Réessayer ». <br><br> Si l'erreur persiste, veuillez <1>soumettre un problème</1>, nous vous aiderons dès que possible.",
32
+ "retry": "Réessayer",
33
+ "title": "Échec de la mise à niveau de la base de données"
34
+ },
35
+ "initing": {
36
+ "error": "Une erreur s'est produite, veuillez réessayer",
37
+ "idle": "En attente d'initialisation...",
38
+ "initializing": "Initialisation en cours...",
39
+ "loadingDependencies": "Chargement des dépendances ({{progress}}%)...",
40
+ "loadingWasmModule": "Chargement du module WASM ({{progress}}%)...",
41
+ "migrating": "Migration des données en cours...",
42
+ "ready": "Base de données prête"
43
+ },
44
+ "modal": {
45
+ "desc": "Activez la base de données client PGlite pour stocker de manière persistante les données de discussion dans votre navigateur et utiliser des fonctionnalités avancées telles que la base de connaissances.",
46
+ "enable": "Activer maintenant",
47
+ "init": {
48
+ "desc": "Initialisation de la base de données en cours, cela peut prendre de 5 à 30 secondes selon la connexion réseau.",
49
+ "title": "Initialisation de la base de données PGlite en cours"
50
+ },
51
+ "title": "Activer la base de données client"
52
+ },
53
+ "ready": {
54
+ "button": "Utiliser maintenant",
55
+ "desc": "Prêt à l'emploi",
56
+ "title": "Base de données PGlite prête"
57
+ }
58
+ },
23
59
  "close": "Fermer",
24
60
  "contact": "Nous contacter",
25
61
  "copy": "Copier",
@@ -112,6 +112,12 @@
112
112
  "Gryphe/MythoMax-L2-13b": {
113
113
  "description": "MythoMax-L2 (13B) est un modèle innovant, adapté à des applications dans plusieurs domaines et à des tâches complexes."
114
114
  },
115
+ "InternVL2-8B": {
116
+ "description": "InternVL2-8B est un puissant modèle de langage visuel, prenant en charge le traitement multimodal d'images et de textes, capable de reconnaître avec précision le contenu des images et de générer des descriptions ou des réponses pertinentes."
117
+ },
118
+ "InternVL2.5-26B": {
119
+ "description": "InternVL2.5-26B est un puissant modèle de langage visuel, prenant en charge le traitement multimodal d'images et de textes, capable de reconnaître avec précision le contenu des images et de générer des descriptions ou des réponses pertinentes."
120
+ },
115
121
  "LoRA/Qwen/Qwen2.5-72B-Instruct": {
116
122
  "description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 72B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
117
123
  },
@@ -233,9 +239,21 @@
233
239
  "Qwen2-7B-Instruct": {
234
240
  "description": "Qwen2 est la dernière série du modèle Qwen, capable de surpasser les meilleurs modèles open source de taille équivalente, voire de plus grande taille. Qwen2 7B a obtenu des résultats significatifs dans plusieurs évaluations, en particulier en ce qui concerne la compréhension du code et du chinois."
235
241
  },
242
+ "Qwen2.5-14B-Instruct": {
243
+ "description": "Qwen2.5-14B-Instruct est un grand modèle de langage de 14 milliards de paramètres, offrant d'excellentes performances, optimisé pour les scénarios en chinois et multilingues, prenant en charge des applications telles que les questions-réponses intelligentes et la génération de contenu."
244
+ },
245
+ "Qwen2.5-32B-Instruct": {
246
+ "description": "Qwen2.5-32B-Instruct est un grand modèle de langage de 32 milliards de paramètres, offrant des performances équilibrées, optimisé pour les scénarios en chinois et multilingues, prenant en charge des applications telles que les questions-réponses intelligentes et la génération de contenu."
247
+ },
236
248
  "Qwen2.5-72B-Instruct": {
237
249
  "description": "Qwen2.5-72B-Instruct prend en charge un contexte de 16k, générant des textes longs de plus de 8K. Il permet des appels de fonction et une interaction transparente avec des systèmes externes, augmentant considérablement la flexibilité et l'évolutivité. Les connaissances du modèle ont considérablement augmenté, et ses capacités en codage et en mathématiques ont été grandement améliorées, avec un support multilingue dépassant 29 langues."
238
250
  },
251
+ "Qwen2.5-7B-Instruct": {
252
+ "description": "Qwen2.5-7B-Instruct est un grand modèle de langage de 7 milliards de paramètres, prenant en charge les appels de fonction et l'interaction transparente avec des systèmes externes, améliorant considérablement la flexibilité et l'évolutivité. Optimisé pour les scénarios en chinois et multilingues, il prend en charge des applications telles que les questions-réponses intelligentes et la génération de contenu."
253
+ },
254
+ "Qwen2.5-Coder-32B-Instruct": {
255
+ "description": "Qwen2.5-Coder-32B-Instruct est un grand modèle de langage conçu pour la génération de code, la compréhension de code et les scénarios de développement efficaces, avec une échelle de 32 milliards de paramètres, répondant à des besoins de programmation variés."
256
+ },
239
257
  "SenseChat": {
240
258
  "description": "Modèle de version de base (V4), longueur de contexte de 4K, avec de puissantes capacités générales."
241
259
  },
@@ -464,6 +482,9 @@
464
482
  "claude-3-sonnet-20240229": {
465
483
  "description": "Claude 3 Sonnet offre un équilibre idéal entre intelligence et vitesse pour les charges de travail d'entreprise. Il fournit une utilité maximale à un coût inférieur, fiable et adapté à un déploiement à grande échelle."
466
484
  },
485
+ "code-raccoon-v1": {
486
+ "description": "Code Raccoon est un assistant de développement intelligent basé sur le grand modèle de langage de SenseTime, couvrant l'analyse des besoins logiciels, la conception d'architecture, la rédaction de code, les tests logiciels, etc., répondant aux divers besoins des utilisateurs en matière de rédaction de code et d'apprentissage de la programmation. Code Raccoon prend en charge plus de 90 langages de programmation populaires tels que Python, Java, JavaScript, C++, Go, SQL, ainsi que des IDE populaires comme VS Code et IntelliJ IDEA. Dans les applications pratiques, Code Raccoon peut aider les développeurs à améliorer leur efficacité de programmation de plus de 50 %."
487
+ },
467
488
  "codegeex-4": {
468
489
  "description": "CodeGeeX-4 est un puissant assistant de programmation AI, prenant en charge des questions intelligentes et l'achèvement de code dans divers langages de programmation, améliorant l'efficacité du développement."
469
490
  },
@@ -752,6 +773,12 @@
752
773
  "gpt-4o-mini": {
753
774
  "description": "GPT-4o mini est le dernier modèle lancé par OpenAI après le GPT-4 Omni, prenant en charge les entrées multimodales et produisant des sorties textuelles. En tant que leur modèle compact le plus avancé, il est beaucoup moins cher que d'autres modèles de pointe récents et coûte plus de 60 % de moins que le GPT-3.5 Turbo. Il maintient une intelligence de pointe tout en offrant un rapport qualité-prix significatif. Le GPT-4o mini a obtenu un score de 82 % au test MMLU et se classe actuellement au-dessus du GPT-4 en termes de préférences de chat."
754
775
  },
776
+ "grok-2-1212": {
777
+ "description": "Ce modèle a été amélioré en termes de précision, de respect des instructions et de capacités multilingues."
778
+ },
779
+ "grok-2-vision-1212": {
780
+ "description": "Ce modèle a été amélioré en termes de précision, de respect des instructions et de capacités multilingues."
781
+ },
755
782
  "grok-beta": {
756
783
  "description": "Offre des performances comparables à Grok 2, mais avec une efficacité, une vitesse et des fonctionnalités supérieures."
757
784
  },
@@ -9,7 +9,10 @@
9
9
  "title": "Benvenuto a {{name}}"
10
10
  }
11
11
  },
12
- "appInitializing": "Applicazione in fase di avvio...",
12
+ "appLoading": {
13
+ "goToChat": "Caricamento della pagina di chat...",
14
+ "initializing": "Avvio dell'applicazione..."
15
+ },
13
16
  "autoGenerate": "Generazione automatica",
14
17
  "autoGenerateTooltip": "Completamento automatico basato su suggerimenti",
15
18
  "autoGenerateTooltipDisabled": "Si prega di compilare il campo suggerimento per abilitare la funzione di completamento automatico",
@@ -20,6 +23,39 @@
20
23
  "branchingDisable": "La funzione «sottotema» è disponibile solo nella versione server. Se desideri utilizzare questa funzione, passa alla modalità di distribuzione server o utilizza LobeChat Cloud.",
21
24
  "cancel": "Annulla",
22
25
  "changelog": "Registro modifiche",
26
+ "clientDB": {
27
+ "autoInit": {
28
+ "title": "Inizializzazione del database PGlite"
29
+ },
30
+ "error": {
31
+ "desc": "Ci scusiamo, si è verificato un errore durante l'inizializzazione del database Pglite. Si prega di fare clic sul pulsante «Riprova».<br><br> Se l'errore persiste, si prega di <1>inviare un problema</1>, ci occuperemo di risolverlo il prima possibile",
32
+ "retry": "Riprova",
33
+ "title": "Aggiornamento del database non riuscito"
34
+ },
35
+ "initing": {
36
+ "error": "Si è verificato un errore, si prega di riprovare",
37
+ "idle": "In attesa di inizializzazione...",
38
+ "initializing": "In fase di inizializzazione...",
39
+ "loadingDependencies": "Caricamento delle dipendenze ({ {progress}}%)...",
40
+ "loadingWasmModule": "Caricamento del modulo WASM ({ {progress}}%)...",
41
+ "migrating": "In fase di migrazione dei dati...",
42
+ "ready": "Database pronto"
43
+ },
44
+ "modal": {
45
+ "desc": "Abilita il database client PGlite per memorizzare in modo persistente i dati della chat nel tuo browser e utilizzare funzionalità avanzate come la knowledge base",
46
+ "enable": "Abilita ora",
47
+ "init": {
48
+ "desc": "In fase di inizializzazione del database, il tempo necessario può variare da 5 a 30 secondi a seconda della rete",
49
+ "title": "Inizializzazione del database PGlite in corso"
50
+ },
51
+ "title": "Attiva il database client"
52
+ },
53
+ "ready": {
54
+ "button": "Usa ora",
55
+ "desc": "Inizia subito",
56
+ "title": "Database PGlite pronto"
57
+ }
58
+ },
23
59
  "close": "Chiudi",
24
60
  "contact": "Contattaci",
25
61
  "copy": "Copia",
@@ -112,6 +112,12 @@
112
112
  "Gryphe/MythoMax-L2-13b": {
113
113
  "description": "MythoMax-L2 (13B) è un modello innovativo, adatto per applicazioni in più settori e compiti complessi."
114
114
  },
115
+ "InternVL2-8B": {
116
+ "description": "InternVL2-8B è un potente modello linguistico visivo, supporta l'elaborazione multimodale di immagini e testo, in grado di riconoscere con precisione il contenuto delle immagini e generare descrizioni o risposte correlate."
117
+ },
118
+ "InternVL2.5-26B": {
119
+ "description": "InternVL2.5-26B è un potente modello linguistico visivo, supporta l'elaborazione multimodale di immagini e testo, in grado di riconoscere con precisione il contenuto delle immagini e generare descrizioni o risposte correlate."
120
+ },
115
121
  "LoRA/Qwen/Qwen2.5-72B-Instruct": {
116
122
  "description": "Qwen2.5-72B-Instruct è uno dei più recenti modelli linguistici di grandi dimensioni rilasciati da Alibaba Cloud. Questo modello da 72B ha capacità notevolmente migliorate in codifica e matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (soprattutto JSON)."
117
123
  },
@@ -233,9 +239,21 @@
233
239
  "Qwen2-7B-Instruct": {
234
240
  "description": "Qwen2 è l'ultima serie del modello Qwen, in grado di superare i modelli open source ottimali di dimensioni simili e anche modelli di dimensioni maggiori. Qwen2 7B ha ottenuto vantaggi significativi in vari test, in particolare nella comprensione del codice e del cinese."
235
241
  },
242
+ "Qwen2.5-14B-Instruct": {
243
+ "description": "Qwen2.5-14B-Instruct è un grande modello linguistico con 14 miliardi di parametri, con prestazioni eccellenti, ottimizzato per scenari in cinese e multilingue, supporta applicazioni di domande e risposte intelligenti, generazione di contenuti e altro."
244
+ },
245
+ "Qwen2.5-32B-Instruct": {
246
+ "description": "Qwen2.5-32B-Instruct è un grande modello linguistico con 32 miliardi di parametri, con prestazioni equilibrate, ottimizzato per scenari in cinese e multilingue, supporta applicazioni di domande e risposte intelligenti, generazione di contenuti e altro."
247
+ },
236
248
  "Qwen2.5-72B-Instruct": {
237
249
  "description": "Qwen2.5-72B-Instruct supporta un contesto di 16k, generando testi lunghi oltre 8K. Supporta chiamate di funzione e interazioni senza soluzione di continuità con sistemi esterni, aumentando notevolmente flessibilità e scalabilità. La conoscenza del modello è notevolmente aumentata e ha migliorato significativamente le capacità di codifica e matematica, con supporto per oltre 29 lingue."
238
250
  },
251
+ "Qwen2.5-7B-Instruct": {
252
+ "description": "Qwen2.5-7B-Instruct è un grande modello linguistico con 7 miliardi di parametri, supporta chiamate di funzione e interazioni senza soluzione di continuità con sistemi esterni, aumentando notevolmente flessibilità e scalabilità. Ottimizzato per scenari in cinese e multilingue, supporta applicazioni di domande e risposte intelligenti, generazione di contenuti e altro."
253
+ },
254
+ "Qwen2.5-Coder-32B-Instruct": {
255
+ "description": "Qwen2.5-Coder-32B-Instruct è un grande modello linguistico progettato per la generazione di codice, la comprensione del codice e scenari di sviluppo efficienti, con una scala di 32 miliardi di parametri all'avanguardia nel settore, in grado di soddisfare esigenze di programmazione diversificate."
256
+ },
239
257
  "SenseChat": {
240
258
  "description": "Modello di base (V4), lunghezza del contesto di 4K, con potenti capacità generali."
241
259
  },
@@ -464,6 +482,9 @@
464
482
  "claude-3-sonnet-20240229": {
465
483
  "description": "Claude 3 Sonnet offre un equilibrio ideale tra intelligenza e velocità per i carichi di lavoro aziendali. Fornisce la massima utilità a un prezzo inferiore, affidabile e adatto per distribuzioni su larga scala."
466
484
  },
485
+ "code-raccoon-v1": {
486
+ "description": "Code Raccoon è un assistente intelligente per lo sviluppo software basato su un grande modello linguistico di SenseTime, copre fasi come analisi dei requisiti software, progettazione dell'architettura, scrittura del codice e test del software, soddisfacendo le esigenze degli utenti nella scrittura di codice e nell'apprendimento della programmazione. Code Raccoon supporta oltre 90 linguaggi di programmazione principali come Python, Java, JavaScript, C++, Go, SQL e IDE principali come VS Code, IntelliJ IDEA. Nelle applicazioni pratiche, Code Raccoon può aiutare gli sviluppatori a migliorare l'efficienza della programmazione di oltre il 50%."
487
+ },
467
488
  "codegeex-4": {
468
489
  "description": "CodeGeeX-4 è un potente assistente di programmazione AI, supporta domande intelligenti e completamento del codice in vari linguaggi di programmazione, migliorando l'efficienza dello sviluppo."
469
490
  },
@@ -752,6 +773,12 @@
752
773
  "gpt-4o-mini": {
753
774
  "description": "GPT-4o mini è il modello più recente lanciato da OpenAI dopo il GPT-4 Omni, supporta input visivi e testuali e produce output testuali. Come il loro modello di punta in formato ridotto, è molto più economico rispetto ad altri modelli all'avanguardia recenti e costa oltre il 60% in meno rispetto a GPT-3.5 Turbo. Mantiene un'intelligenza all'avanguardia, offrendo un rapporto qualità-prezzo significativo. GPT-4o mini ha ottenuto un punteggio dell'82% nel test MMLU e attualmente è classificato più in alto di GPT-4 per preferenze di chat."
754
775
  },
776
+ "grok-2-1212": {
777
+ "description": "Questo modello ha migliorato l'accuratezza, il rispetto delle istruzioni e le capacità multilingue."
778
+ },
779
+ "grok-2-vision-1212": {
780
+ "description": "Questo modello ha migliorato l'accuratezza, il rispetto delle istruzioni e le capacità multilingue."
781
+ },
755
782
  "grok-beta": {
756
783
  "description": "Offre prestazioni comparabili a Grok 2, ma con maggiore efficienza, velocità e funzionalità."
757
784
  },
@@ -9,7 +9,10 @@
9
9
  "title": "{{name}} を体験してみてください"
10
10
  }
11
11
  },
12
- "appInitializing": "アプリケーションを初期化しています...",
12
+ "appLoading": {
13
+ "goToChat": "チャットページを読み込んでいます...",
14
+ "initializing": "アプリを起動しています..."
15
+ },
13
16
  "autoGenerate": "自動生成",
14
17
  "autoGenerateTooltip": "ヒントに基づいてエージェントの説明を自動生成します",
15
18
  "autoGenerateTooltipDisabled": "ツールチップを入力してから自動生成機能を使用してください",
@@ -20,6 +23,39 @@
20
23
  "branchingDisable": "「サブトピック」機能はサーバー版のみで利用可能です。この機能が必要な場合は、サーバー展開モードに切り替えるか、LobeChat Cloudを使用してください。",
21
24
  "cancel": "キャンセル",
22
25
  "changelog": "変更履歴",
26
+ "clientDB": {
27
+ "autoInit": {
28
+ "title": "PGlite データベースの初期化"
29
+ },
30
+ "error": {
31
+ "desc": "申し訳ありませんが、Pglite データベースの初期化中にエラーが発生しました。「再試行」ボタンをクリックしてください。<br><br> それでもエラーが発生する場合は、<1>問題を報告</1>してください。すぐに調査いたします。",
32
+ "retry": "再試行",
33
+ "title": "データベースのアップグレードに失敗しました"
34
+ },
35
+ "initing": {
36
+ "error": "エラーが発生しました。再試行してください。",
37
+ "idle": "初期化を待っています...",
38
+ "initializing": "初期化中...",
39
+ "loadingDependencies": "依存関係を読み込んでいます({{progress}}%)...",
40
+ "loadingWasmModule": "WASM モジュールを読み込んでいます({{progress}}%)...",
41
+ "migrating": "データを移行中...",
42
+ "ready": "データベースは準備完了です"
43
+ },
44
+ "modal": {
45
+ "desc": "PGlite クライアントデータベースを有効にし、ブラウザにチャットデータを永続的に保存し、ナレッジベースなどの高度な機能を使用します。",
46
+ "enable": "今すぐ有効にする",
47
+ "init": {
48
+ "desc": "データベースを初期化中です。ネットワークの状況により、5〜30秒かかる場合があります。",
49
+ "title": "PGlite データベースを初期化中"
50
+ },
51
+ "title": "クライアントデータベースを有効にする"
52
+ },
53
+ "ready": {
54
+ "button": "今すぐ使用",
55
+ "desc": "すぐに使用したい",
56
+ "title": "PGlite データベースは準備完了です"
57
+ }
58
+ },
23
59
  "close": "閉じる",
24
60
  "contact": "お問い合わせ",
25
61
  "copy": "コピー",
@@ -112,6 +112,12 @@
112
112
  "Gryphe/MythoMax-L2-13b": {
113
113
  "description": "MythoMax-L2 (13B)は、革新的なモデルであり、多分野のアプリケーションや複雑なタスクに適しています。"
114
114
  },
115
+ "InternVL2-8B": {
116
+ "description": "InternVL2-8Bは、強力な視覚言語モデルで、画像とテキストのマルチモーダル処理をサポートし、画像内容を正確に認識し、関連する説明や回答を生成することができます。"
117
+ },
118
+ "InternVL2.5-26B": {
119
+ "description": "InternVL2.5-26Bは、強力な視覚言語モデルで、画像とテキストのマルチモーダル処理をサポートし、画像内容を正確に認識し、関連する説明や回答を生成することができます。"
120
+ },
115
121
  "LoRA/Qwen/Qwen2.5-72B-Instruct": {
116
122
  "description": "Qwen2.5-72B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
117
123
  },
@@ -233,9 +239,21 @@
233
239
  "Qwen2-7B-Instruct": {
234
240
  "description": "Qwen2はQwenモデルの最新シリーズで、同等の規模の最適なオープンソースモデルやそれ以上の規模のモデルを超えることができ、Qwen2 7Bは複数の評価で顕著な優位性を示し、特にコードと中国語理解において優れています。"
235
241
  },
242
+ "Qwen2.5-14B-Instruct": {
243
+ "description": "Qwen2.5-14B-Instructは、140億パラメータの大規模言語モデルで、優れたパフォーマンスを発揮し、中国語と多言語シーンを最適化し、インテリジェントQ&A、コンテンツ生成などのアプリケーションをサポートします。"
244
+ },
245
+ "Qwen2.5-32B-Instruct": {
246
+ "description": "Qwen2.5-32B-Instructは、320億パラメータの大規模言語モデルで、パフォーマンスが均衡しており、中国語と多言語シーンを最適化し、インテリジェントQ&A、コンテンツ生成などのアプリケーションをサポートします。"
247
+ },
236
248
  "Qwen2.5-72B-Instruct": {
237
249
  "description": "Qwen2.5-72B-Instructは、16kのコンテキストをサポートし、8Kを超える長文を生成します。関数呼び出しと外部システムとのシームレスなインタラクションをサポートし、柔軟性と拡張性を大幅に向上させました。モデルの知識は明らかに増加し、コーディングと数学の能力が大幅に向上し、29以上の言語をサポートしています。"
238
250
  },
251
+ "Qwen2.5-7B-Instruct": {
252
+ "description": "Qwen2.5-7B-Instructは、70億パラメータの大規模言語モデルで、関数呼び出しと外部システムとのシームレスなインタラクションをサポートし、柔軟性と拡張性を大幅に向上させます。中国語と多言語シーンを最適化し、インテリジェントQ&A、コンテンツ生成などのアプリケーションをサポートします。"
253
+ },
254
+ "Qwen2.5-Coder-32B-Instruct": {
255
+ "description": "Qwen2.5-Coder-32B-Instructは、コード生成、コード理解、効率的な開発シーンのために設計された大規模言語モデルで、業界をリードする32Bパラメータ規模を採用しており、多様なプログラミングニーズに応えます。"
256
+ },
239
257
  "SenseChat": {
240
258
  "description": "基本バージョンのモデル (V4)、4Kのコンテキスト長で、汎用能力が強力です。"
241
259
  },
@@ -464,6 +482,9 @@
464
482
  "claude-3-sonnet-20240229": {
465
483
  "description": "Claude 3 Sonnetは、企業のワークロードに理想的なバランスを提供し、より低価格で最大の効用を提供し、信頼性が高く、大規模な展開に適しています。"
466
484
  },
485
+ "code-raccoon-v1": {
486
+ "description": "コード小浣熊は、商湯の大規模言語モデルに基づくソフトウェアインテリジェント開発アシスタントで、ソフトウェア要件分析、アーキテクチャ設計、コード作成、ソフトウェアテストなどのプロセスをカバーし、ユーザーのコード作成やプログラミング学習などのさまざまなニーズに応えます。コード小浣熊は、Python、Java、JavaScript、C++、Go、SQLなど90以上の主流プログラミング言語と、VS Code、IntelliJ IDEAなどの主流IDEをサポートしています。実際のアプリケーションでは、コード小浣熊は開発者のプログラミング効率を50%以上向上させることができます。"
487
+ },
467
488
  "codegeex-4": {
468
489
  "description": "CodeGeeX-4は強力なAIプログラミングアシスタントで、さまざまなプログラミング言語のインテリジェントな質問応答とコード補完をサポートし、開発効率を向上させます。"
469
490
  },
@@ -752,6 +773,12 @@
752
773
  "gpt-4o-mini": {
753
774
  "description": "GPT-4o miniは、OpenAIがGPT-4 Omniの後に発表した最新のモデルで、画像とテキストの入力をサポートし、テキストを出力します。最先端の小型モデルとして、最近の他の先進モデルよりもはるかに安価で、GPT-3.5 Turboよりも60%以上安価です。最先端の知能を維持しつつ、コストパフォーマンスが大幅に向上しています。GPT-4o miniはMMLUテストで82%のスコアを獲得し、現在チャットの好みではGPT-4よりも高い評価を得ています。"
754
775
  },
776
+ "grok-2-1212": {
777
+ "description": "このモデルは、精度、指示の遵守、そして多言語能力において改善されています。"
778
+ },
779
+ "grok-2-vision-1212": {
780
+ "description": "このモデルは、精度、指示の遵守、そして多言語能力において改善されています。"
781
+ },
755
782
  "grok-beta": {
756
783
  "description": "Grok 2と同等の性能を持ちながら、より高い効率、速度、機能を備えています。"
757
784
  },
@@ -9,7 +9,10 @@
9
9
  "title": "환영합니다 {{name}}"
10
10
  }
11
11
  },
12
- "appInitializing": "앱 초기화 중...",
12
+ "appLoading": {
13
+ "goToChat": "대화 페이지 로딩 중...",
14
+ "initializing": "앱 시작 중..."
15
+ },
13
16
  "autoGenerate": "자동 생성",
14
17
  "autoGenerateTooltip": "힌트 단어를 기반으로 에이전트 설명을 자동으로 완성합니다",
15
18
  "autoGenerateTooltipDisabled": "자동 완성 기능을 사용하려면 툴팁을 입력하십시오",
@@ -20,6 +23,39 @@
20
23
  "branchingDisable": "「하위 주제」 기능은 서버 버전에서만 사용할 수 있습니다. 이 기능이 필요하시면 서버 배포 모드로 전환하거나 LobeChat Cloud를 사용하세요.",
21
24
  "cancel": "취소",
22
25
  "changelog": "변경 로그",
26
+ "clientDB": {
27
+ "autoInit": {
28
+ "title": "PGlite 데이터베이스 초기화"
29
+ },
30
+ "error": {
31
+ "desc": "죄송합니다. PGlite 데이터베이스 초기화 과정에서 예외가 발생했습니다. '재시도' 버튼을 클릭해 주세요.<br><br> 여전히 오류가 발생하면 <1>문제를 제출</1>해 주시면, 저희가 즉시 문제를 해결해 드리겠습니다.",
32
+ "retry": "재시도",
33
+ "title": "데이터베이스 업그레이드 실패"
34
+ },
35
+ "initing": {
36
+ "error": "오류가 발생했습니다. 재시도해 주세요.",
37
+ "idle": "초기화 대기 중...",
38
+ "initializing": "초기화 중...",
39
+ "loadingDependencies": "의존성 로딩 중({{progress}}%)...",
40
+ "loadingWasmModule": "WASM 모듈 로딩 중({{progress}}%)...",
41
+ "migrating": "데이터 마이그레이션 중...",
42
+ "ready": "데이터베이스 준비 완료"
43
+ },
44
+ "modal": {
45
+ "desc": "PGlite 클라이언트 데이터베이스를 활성화하여 브라우저에서 채팅 데이터를 영구 저장하고 지식베이스 등 고급 기능을 사용하세요.",
46
+ "enable": "즉시 활성화",
47
+ "init": {
48
+ "desc": "데이터베이스를 초기화 중입니다. 네트워크 차이에 따라 5~30초가 소요될 수 있습니다.",
49
+ "title": "PGlite 데이터베이스 초기화 중"
50
+ },
51
+ "title": "클라이언트 데이터베이스 활성화"
52
+ },
53
+ "ready": {
54
+ "button": "즉시 사용",
55
+ "desc": "즉시 사용하고 싶습니다.",
56
+ "title": "PGlite 데이터베이스 준비 완료"
57
+ }
58
+ },
23
59
  "close": "닫기",
24
60
  "contact": "연락처",
25
61
  "copy": "복사",