@lobehub/chat 1.34.5 → 1.35.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +51 -0
- package/Dockerfile +1 -1
- package/Dockerfile.database +1 -1
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/changelog/v1.json +18 -0
- package/docs/changelog/2024-07-19-gpt-4o-mini.zh-CN.mdx +33 -0
- package/docs/changelog/2024-08-02-lobe-chat-database-docker.zh-CN.mdx +34 -0
- package/docs/changelog/2024-08-21-file-upload-and-knowledge-base.zh-CN.mdx +31 -0
- package/docs/changelog/2024-09-13-openai-o1-models.zh-CN.mdx +29 -0
- package/docs/changelog/2024-09-20-artifacts.zh-CN.mdx +56 -0
- package/docs/changelog/2024-10-27-pin-assistant.zh-CN.mdx +31 -0
- package/docs/changelog/2024-11-06-share-text-json.zh-CN.mdx +20 -0
- package/docs/changelog/2024-11-27-forkable-chat.zh-CN.mdx +17 -0
- package/docs/changelog/index.json +91 -1
- package/docs/self-hosting/environment-variables/analytics.mdx +31 -2
- package/package.json +3 -3
- package/src/config/modelProviders/fireworksai.ts +14 -0
- package/src/config/modelProviders/ollama.ts +14 -13
- package/src/config/modelProviders/qwen.ts +14 -0
- package/src/config/modelProviders/siliconcloud.ts +304 -54
- package/src/config/modelProviders/togetherai.ts +33 -18
- package/src/libs/agent-runtime/ollama/index.ts +25 -9
- package/src/libs/agent-runtime/utils/streams/ollama.test.ts +130 -46
- package/src/libs/agent-runtime/utils/streams/ollama.ts +19 -4
- package/src/server/modules/AgentRuntime/index.test.ts +2 -1
- package/src/server/modules/AgentRuntime/index.ts +7 -1
@@ -1,6 +1,5 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref: https://ollama.com/library
|
4
3
|
const Ollama: ModelProviderCard = {
|
5
4
|
chatModels: [
|
6
5
|
{
|
@@ -8,6 +7,7 @@ const Ollama: ModelProviderCard = {
|
|
8
7
|
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。',
|
9
8
|
displayName: 'Llama 3.1 8B',
|
10
9
|
enabled: true,
|
10
|
+
functionCall: true,
|
11
11
|
id: 'llama3.1',
|
12
12
|
tokens: 128_000,
|
13
13
|
},
|
@@ -221,28 +221,29 @@ const Ollama: ModelProviderCard = {
|
|
221
221
|
tokens: 128_000,
|
222
222
|
},
|
223
223
|
{
|
224
|
-
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
225
|
-
displayName: 'Qwen2 0.5B',
|
226
|
-
id: 'qwen2:0.5b',
|
224
|
+
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
225
|
+
displayName: 'Qwen2.5 0.5B',
|
226
|
+
id: 'qwen2.5:0.5b',
|
227
227
|
tokens: 128_000,
|
228
228
|
},
|
229
229
|
{
|
230
|
-
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
231
|
-
displayName: 'Qwen2 1.5B',
|
232
|
-
id: 'qwen2:1.5b',
|
230
|
+
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
231
|
+
displayName: 'Qwen2.5 1.5B',
|
232
|
+
id: 'qwen2.5:1.5b',
|
233
233
|
tokens: 128_000,
|
234
234
|
},
|
235
235
|
{
|
236
|
-
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
237
|
-
displayName: 'Qwen2 7B',
|
236
|
+
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
237
|
+
displayName: 'Qwen2.5 7B',
|
238
238
|
enabled: true,
|
239
|
-
|
239
|
+
functionCall: true,
|
240
|
+
id: 'qwen2.5',
|
240
241
|
tokens: 128_000,
|
241
242
|
},
|
242
243
|
{
|
243
|
-
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
244
|
-
displayName: 'Qwen2 72B',
|
245
|
-
id: 'qwen2:72b',
|
244
|
+
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
245
|
+
displayName: 'Qwen2.5 72B',
|
246
|
+
id: 'qwen2.5:72b',
|
246
247
|
tokens: 128_000,
|
247
248
|
},
|
248
249
|
{
|
@@ -129,6 +129,17 @@ const Qwen: ModelProviderCard = {
|
|
129
129
|
},
|
130
130
|
tokens: 131_072,
|
131
131
|
},
|
132
|
+
{
|
133
|
+
description: 'QwQ模型是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。',
|
134
|
+
displayName: 'QwQ 32B Preview',
|
135
|
+
id: 'qwq-32b-preview',
|
136
|
+
pricing: {
|
137
|
+
currency: 'CNY',
|
138
|
+
input: 0,
|
139
|
+
output: 0,
|
140
|
+
},
|
141
|
+
tokens: 32_768,
|
142
|
+
},
|
132
143
|
{
|
133
144
|
description: '通义千问2.5对外开源的7B规模的模型。',
|
134
145
|
displayName: 'Qwen2.5 7B',
|
@@ -254,6 +265,9 @@ const Qwen: ModelProviderCard = {
|
|
254
265
|
modelList: { showModelFetcher: true },
|
255
266
|
modelsUrl: 'https://help.aliyun.com/zh/dashscope/developer-reference/api-details',
|
256
267
|
name: 'Qwen',
|
268
|
+
proxyUrl: {
|
269
|
+
placeholder: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
|
270
|
+
},
|
257
271
|
smoothing: {
|
258
272
|
speed: 2,
|
259
273
|
text: true,
|
@@ -5,7 +5,7 @@ const SiliconCloud: ModelProviderCard = {
|
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
7
|
description: 'Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。',
|
8
|
-
displayName: 'Hunyuan
|
8
|
+
displayName: 'Hunyuan A52B Instruct',
|
9
9
|
enabled: true,
|
10
10
|
id: 'Tencent/Hunyuan-A52B-Instruct',
|
11
11
|
pricing: {
|
@@ -16,7 +16,7 @@ const SiliconCloud: ModelProviderCard = {
|
|
16
16
|
tokens: 32_768,
|
17
17
|
},
|
18
18
|
{
|
19
|
-
description: 'DeepSeek V2.5
|
19
|
+
description: 'DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等',
|
20
20
|
displayName: 'DeepSeek V2.5',
|
21
21
|
enabled: true,
|
22
22
|
functionCall: true,
|
@@ -29,8 +29,31 @@ const SiliconCloud: ModelProviderCard = {
|
|
29
29
|
tokens: 32_768,
|
30
30
|
},
|
31
31
|
{
|
32
|
-
description: '
|
33
|
-
displayName: '
|
32
|
+
description: 'DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色',
|
33
|
+
displayName: 'DeepSeek V2 Chat',
|
34
|
+
id: 'deepseek-ai/DeepSeek-V2-Chat',
|
35
|
+
pricing: {
|
36
|
+
currency: 'CNY',
|
37
|
+
input: 1.33,
|
38
|
+
output: 1.33,
|
39
|
+
},
|
40
|
+
tokens: 32_768,
|
41
|
+
},
|
42
|
+
{
|
43
|
+
description: 'QwQ-32B-Preview是Qwen 最新的实验性研究模型,专注于提升AI推理能力。通过探索语言混合、递归推理等复杂机制,主要优势包括强大的推理分析能力、数学和编程能力。与此同时,也存在语言切换问题、推理循环、安全性考虑、其他能力方面的差异。',
|
44
|
+
displayName: 'QwQ 32B Preview',
|
45
|
+
enabled: true,
|
46
|
+
id: 'Qwen/QwQ-32B-Preview',
|
47
|
+
pricing: {
|
48
|
+
currency: 'CNY',
|
49
|
+
input: 1.26,
|
50
|
+
output: 1.26,
|
51
|
+
},
|
52
|
+
tokens: 32_768,
|
53
|
+
},
|
54
|
+
{
|
55
|
+
description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
56
|
+
displayName: 'Qwen2.5 7B Instruct (Free)',
|
34
57
|
enabled: true,
|
35
58
|
functionCall: true,
|
36
59
|
id: 'Qwen/Qwen2.5-7B-Instruct',
|
@@ -42,8 +65,31 @@ const SiliconCloud: ModelProviderCard = {
|
|
42
65
|
tokens: 32_768,
|
43
66
|
},
|
44
67
|
{
|
45
|
-
description: 'Qwen2.5
|
46
|
-
displayName: 'Qwen2.5
|
68
|
+
description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
69
|
+
displayName: 'Qwen2.5 7B Instruct (LoRA)',
|
70
|
+
id: 'LoRA/Qwen/Qwen2.5-7B-Instruct',
|
71
|
+
pricing: {
|
72
|
+
currency: 'CNY',
|
73
|
+
input: 0.53,
|
74
|
+
output: 0.53,
|
75
|
+
},
|
76
|
+
tokens: 32_768,
|
77
|
+
},
|
78
|
+
{
|
79
|
+
description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
80
|
+
displayName: 'Qwen2.5 7B Instruct (Pro)',
|
81
|
+
functionCall: true,
|
82
|
+
id: 'Pro/Qwen/Qwen2.5-7B-Instruct',
|
83
|
+
pricing: {
|
84
|
+
currency: 'CNY',
|
85
|
+
input: 0.35,
|
86
|
+
output: 0.35,
|
87
|
+
},
|
88
|
+
tokens: 32_768,
|
89
|
+
},
|
90
|
+
{
|
91
|
+
description: 'Qwen2.5-14B-Instruct 是阿里云发布的最新大语言模型系列之一。该 14B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
92
|
+
displayName: 'Qwen2.5 14B Instruct',
|
47
93
|
functionCall: true,
|
48
94
|
id: 'Qwen/Qwen2.5-14B-Instruct',
|
49
95
|
pricing: {
|
@@ -54,8 +100,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
54
100
|
tokens: 32_768,
|
55
101
|
},
|
56
102
|
{
|
57
|
-
description: 'Qwen2.5
|
58
|
-
displayName: 'Qwen2.5 32B',
|
103
|
+
description: 'Qwen2.5-32B-Instruct 是阿里云发布的最新大语言模型系列之一。该 32B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
104
|
+
displayName: 'Qwen2.5 32B Instruct',
|
59
105
|
functionCall: true,
|
60
106
|
id: 'Qwen/Qwen2.5-32B-Instruct',
|
61
107
|
pricing: {
|
@@ -66,8 +112,43 @@ const SiliconCloud: ModelProviderCard = {
|
|
66
112
|
tokens: 32_768,
|
67
113
|
},
|
68
114
|
{
|
69
|
-
description: 'Qwen2.5
|
70
|
-
displayName: 'Qwen2.5 72B',
|
115
|
+
description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
116
|
+
displayName: 'Qwen2.5 72B Instruct',
|
117
|
+
functionCall: true,
|
118
|
+
id: 'Qwen/Qwen2.5-72B-Instruct',
|
119
|
+
pricing: {
|
120
|
+
currency: 'CNY',
|
121
|
+
input: 4.13,
|
122
|
+
output: 4.13,
|
123
|
+
},
|
124
|
+
tokens: 32_768,
|
125
|
+
},
|
126
|
+
{
|
127
|
+
description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
128
|
+
displayName: 'Qwen2.5 72B Instruct (LoRA)',
|
129
|
+
id: 'LoRA/Qwen/Qwen2.5-72B-Instruct',
|
130
|
+
pricing: {
|
131
|
+
currency: 'CNY',
|
132
|
+
input: 6.2,
|
133
|
+
output: 6.2,
|
134
|
+
},
|
135
|
+
tokens: 32_768,
|
136
|
+
},
|
137
|
+
{
|
138
|
+
description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
139
|
+
displayName: 'Qwen2.5 72B Instruct (Vendor-A)',
|
140
|
+
functionCall: true,
|
141
|
+
id: 'Vendor-A/Qwen/Qwen2.5-72B-Instruct',
|
142
|
+
pricing: {
|
143
|
+
currency: 'CNY',
|
144
|
+
input: 1,
|
145
|
+
output: 1,
|
146
|
+
},
|
147
|
+
tokens: 32_768,
|
148
|
+
},
|
149
|
+
{
|
150
|
+
description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。它支持长达 128K tokens 的输入,可以生成超过 8K tokens 的长文本。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
151
|
+
displayName: 'Qwen2.5 72B Instruct 128K',
|
71
152
|
enabled: true,
|
72
153
|
functionCall: true,
|
73
154
|
id: 'Qwen/Qwen2.5-72B-Instruct-128K',
|
@@ -79,34 +160,41 @@ const SiliconCloud: ModelProviderCard = {
|
|
79
160
|
tokens: 131_072,
|
80
161
|
},
|
81
162
|
{
|
82
|
-
description: 'Qwen2-
|
83
|
-
displayName: 'Qwen2
|
84
|
-
|
85
|
-
|
163
|
+
description: 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
|
164
|
+
displayName: 'Qwen2.5 Coder 7B Instruct (Free)',
|
165
|
+
id: 'Qwen/Qwen2.5-Coder-7B-Instruct',
|
166
|
+
pricing: {
|
167
|
+
currency: 'CNY',
|
168
|
+
input: 0,
|
169
|
+
output: 0,
|
170
|
+
},
|
171
|
+
tokens: 32_768,
|
172
|
+
},
|
173
|
+
{
|
174
|
+
description: 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
|
175
|
+
displayName: 'Qwen2.5 Coder 7B Instruct (Pro)',
|
176
|
+
id: 'Pro/Qwen/Qwen2.5-Coder-7B-Instruct',
|
86
177
|
pricing: {
|
87
178
|
currency: 'CNY',
|
88
179
|
input: 0.35,
|
89
180
|
output: 0.35,
|
90
181
|
},
|
91
182
|
tokens: 32_768,
|
92
|
-
vision: true,
|
93
183
|
},
|
94
184
|
{
|
95
|
-
description: 'Qwen2-
|
96
|
-
displayName: 'Qwen2
|
97
|
-
|
98
|
-
id: 'Qwen/Qwen2-VL-72B-Instruct',
|
185
|
+
description: 'Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理',
|
186
|
+
displayName: 'Qwen2.5 Coder 32B Instruct',
|
187
|
+
id: 'Qwen/Qwen2.5-Coder-32B-Instruct',
|
99
188
|
pricing: {
|
100
189
|
currency: 'CNY',
|
101
|
-
input:
|
102
|
-
output:
|
190
|
+
input: 1.26,
|
191
|
+
output: 1.26,
|
103
192
|
},
|
104
193
|
tokens: 32_768,
|
105
|
-
vision: true,
|
106
194
|
},
|
107
195
|
{
|
108
|
-
description: 'Qwen2.5-Math
|
109
|
-
displayName: 'Qwen2.5 Math 72B',
|
196
|
+
description: 'Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务',
|
197
|
+
displayName: 'Qwen2.5 Math 72B Instruct',
|
110
198
|
id: 'Qwen/Qwen2.5-Math-72B-Instruct',
|
111
199
|
pricing: {
|
112
200
|
currency: 'CNY',
|
@@ -116,19 +204,100 @@ const SiliconCloud: ModelProviderCard = {
|
|
116
204
|
tokens: 4096,
|
117
205
|
},
|
118
206
|
{
|
119
|
-
description: 'Qwen2.5-
|
120
|
-
displayName: 'Qwen2.
|
121
|
-
id: 'Qwen/Qwen2.
|
207
|
+
description: 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
|
208
|
+
displayName: 'Qwen2 1.5B Instruct (Free)',
|
209
|
+
id: 'Qwen/Qwen2-1.5B-Instruct',
|
122
210
|
pricing: {
|
123
211
|
currency: 'CNY',
|
124
|
-
input:
|
125
|
-
output:
|
212
|
+
input: 0,
|
213
|
+
output: 0,
|
214
|
+
},
|
215
|
+
tokens: 32_768,
|
216
|
+
},
|
217
|
+
{
|
218
|
+
description: 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
|
219
|
+
displayName: 'Qwen2 1.5B Instruct (Pro)',
|
220
|
+
id: 'Pro/Qwen/Qwen2-1.5B-Instruct',
|
221
|
+
pricing: {
|
222
|
+
currency: 'CNY',
|
223
|
+
input: 0.14,
|
224
|
+
output: 0.14,
|
225
|
+
},
|
226
|
+
tokens: 32_768,
|
227
|
+
},
|
228
|
+
{
|
229
|
+
description: 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
|
230
|
+
displayName: 'Qwen2 7B Instruct (Free)',
|
231
|
+
id: 'Qwen/Qwen2-7B-Instruct',
|
232
|
+
pricing: {
|
233
|
+
currency: 'CNY',
|
234
|
+
input: 0,
|
235
|
+
output: 0,
|
236
|
+
},
|
237
|
+
tokens: 32_768,
|
238
|
+
},
|
239
|
+
{
|
240
|
+
description: 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
|
241
|
+
displayName: 'Qwen2 7B Instruct (Pro)',
|
242
|
+
id: 'Pro/Qwen/Qwen2-7B-Instruct',
|
243
|
+
pricing: {
|
244
|
+
currency: 'CNY',
|
245
|
+
input: 0.35,
|
246
|
+
output: 0.35,
|
247
|
+
},
|
248
|
+
tokens: 32_768,
|
249
|
+
},
|
250
|
+
{
|
251
|
+
description: 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
|
252
|
+
displayName: 'Qwen2 72B Instruct',
|
253
|
+
id: 'Qwen/Qwen2-7B-Instruct',
|
254
|
+
pricing: {
|
255
|
+
currency: 'CNY',
|
256
|
+
input: 4.13,
|
257
|
+
output: 4.13,
|
126
258
|
},
|
127
259
|
tokens: 32_768,
|
128
260
|
},
|
129
261
|
{
|
130
|
-
description: '
|
131
|
-
displayName: '
|
262
|
+
description: 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
|
263
|
+
displayName: 'Qwen2 72B Instruct (Vendor-A)',
|
264
|
+
id: 'Vendor-A/Qwen/Qwen2-7B-Instruct',
|
265
|
+
pricing: {
|
266
|
+
currency: 'CNY',
|
267
|
+
input: 1,
|
268
|
+
output: 1,
|
269
|
+
},
|
270
|
+
tokens: 32_768,
|
271
|
+
},
|
272
|
+
{
|
273
|
+
description: 'Qwen2-VL-7B-Instruct 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够用于高质量的基于视频的问答、对话和内容创作,还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
|
274
|
+
displayName: 'Qwen2 VL 7B Instruct (Pro)',
|
275
|
+
enabled: true,
|
276
|
+
id: 'Pro/Qwen/Qwen2-VL-7B-Instruct',
|
277
|
+
pricing: {
|
278
|
+
currency: 'CNY',
|
279
|
+
input: 0.35,
|
280
|
+
output: 0.35,
|
281
|
+
},
|
282
|
+
tokens: 32_768,
|
283
|
+
vision: true,
|
284
|
+
},
|
285
|
+
{
|
286
|
+
description: 'Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
|
287
|
+
displayName: 'Qwen2 VL 72B Instruct',
|
288
|
+
enabled: true,
|
289
|
+
id: 'Qwen/Qwen2-VL-72B-Instruct',
|
290
|
+
pricing: {
|
291
|
+
currency: 'CNY',
|
292
|
+
input: 4.13,
|
293
|
+
output: 4.13,
|
294
|
+
},
|
295
|
+
tokens: 32_768,
|
296
|
+
vision: true,
|
297
|
+
},
|
298
|
+
{
|
299
|
+
description: 'InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域',
|
300
|
+
displayName: 'InternLM2.5 7B Chat (Free)',
|
132
301
|
functionCall: true,
|
133
302
|
id: 'internlm/internlm2_5-7b-chat',
|
134
303
|
pricing: {
|
@@ -139,8 +308,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
139
308
|
tokens: 32_768,
|
140
309
|
},
|
141
310
|
{
|
142
|
-
description: '
|
143
|
-
displayName: '
|
311
|
+
description: 'InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务',
|
312
|
+
displayName: 'InternLM2.5 20B Chat',
|
144
313
|
functionCall: true,
|
145
314
|
id: 'internlm/internlm2_5-20b-chat',
|
146
315
|
pricing: {
|
@@ -151,8 +320,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
151
320
|
tokens: 32_768,
|
152
321
|
},
|
153
322
|
{
|
154
|
-
description: 'InternVL2
|
155
|
-
displayName: 'InternVL2 8B',
|
323
|
+
description: 'InternVL2-8B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
|
324
|
+
displayName: 'InternVL2 8B (Pro)',
|
156
325
|
id: 'Pro/OpenGVLab/InternVL2-8B',
|
157
326
|
pricing: {
|
158
327
|
currency: 'CNY',
|
@@ -163,7 +332,7 @@ const SiliconCloud: ModelProviderCard = {
|
|
163
332
|
vision: true,
|
164
333
|
},
|
165
334
|
{
|
166
|
-
description: 'InternVL2
|
335
|
+
description: 'InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
|
167
336
|
displayName: 'InternVL2 26B',
|
168
337
|
id: 'OpenGVLab/InternVL2-26B',
|
169
338
|
pricing: {
|
@@ -175,7 +344,7 @@ const SiliconCloud: ModelProviderCard = {
|
|
175
344
|
vision: true,
|
176
345
|
},
|
177
346
|
{
|
178
|
-
description: 'InternVL2
|
347
|
+
description: 'InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平',
|
179
348
|
displayName: 'InternVL2 Llama3 76B',
|
180
349
|
id: 'OpenGVLab/InternVL2-Llama3-76B',
|
181
350
|
pricing: {
|
@@ -187,8 +356,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
187
356
|
vision: true,
|
188
357
|
},
|
189
358
|
{
|
190
|
-
description: 'GLM-4 9B
|
191
|
-
displayName: 'GLM-4 9B',
|
359
|
+
description: 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
|
360
|
+
displayName: 'GLM-4 9B Chat (Free)',
|
192
361
|
functionCall: true,
|
193
362
|
id: 'THUDM/glm-4-9b-chat',
|
194
363
|
pricing: {
|
@@ -196,11 +365,45 @@ const SiliconCloud: ModelProviderCard = {
|
|
196
365
|
input: 0,
|
197
366
|
output: 0,
|
198
367
|
},
|
368
|
+
tokens: 131_072,
|
369
|
+
},
|
370
|
+
{
|
371
|
+
description: 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
|
372
|
+
displayName: 'GLM-4 9B Chat (Pro)',
|
373
|
+
functionCall: true,
|
374
|
+
id: 'Pro/THUDM/glm-4-9b-chat',
|
375
|
+
pricing: {
|
376
|
+
currency: 'CNY',
|
377
|
+
input: 0.6,
|
378
|
+
output: 0.6,
|
379
|
+
},
|
380
|
+
tokens: 131_072,
|
381
|
+
},
|
382
|
+
{
|
383
|
+
description: 'ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用',
|
384
|
+
displayName: 'ChatGLM3 6B (Free)',
|
385
|
+
id: 'THUDM/chatglm3-6b',
|
386
|
+
pricing: {
|
387
|
+
currency: 'CNY',
|
388
|
+
input: 0,
|
389
|
+
output: 0,
|
390
|
+
},
|
199
391
|
tokens: 32_768,
|
200
392
|
},
|
201
393
|
{
|
202
|
-
description: 'Yi-1.5
|
203
|
-
displayName: 'Yi-1.5
|
394
|
+
description: 'Yi-1.5-6B-Chat 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 和 32K 的上下文长度版本,预训练总量达到 3.6T 个 token',
|
395
|
+
displayName: 'Yi-1.5 6B Chat (Free)',
|
396
|
+
id: '01-ai/Yi-1.5-6B-Chat',
|
397
|
+
pricing: {
|
398
|
+
currency: 'CNY',
|
399
|
+
input: 0,
|
400
|
+
output: 0,
|
401
|
+
},
|
402
|
+
tokens: 4096,
|
403
|
+
},
|
404
|
+
{
|
405
|
+
description: 'Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳',
|
406
|
+
displayName: 'Yi-1.5 9B Chat 16K (Free)',
|
204
407
|
id: '01-ai/Yi-1.5-9B-Chat-16K',
|
205
408
|
pricing: {
|
206
409
|
currency: 'CNY',
|
@@ -210,8 +413,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
210
413
|
tokens: 16_384,
|
211
414
|
},
|
212
415
|
{
|
213
|
-
description: 'Yi-1.5
|
214
|
-
displayName: 'Yi-1.5 34B',
|
416
|
+
description: 'Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度',
|
417
|
+
displayName: 'Yi-1.5 34B Chat 16K',
|
215
418
|
id: '01-ai/Yi-1.5-34B-Chat-16K',
|
216
419
|
pricing: {
|
217
420
|
currency: 'CNY',
|
@@ -221,8 +424,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
221
424
|
tokens: 16_384,
|
222
425
|
},
|
223
426
|
{
|
224
|
-
description: 'Gemma
|
225
|
-
displayName: 'Gemma 2 9B',
|
427
|
+
description: 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
|
428
|
+
displayName: 'Gemma 2 9B (Free)',
|
226
429
|
enabled: true,
|
227
430
|
id: 'google/gemma-2-9b-it',
|
228
431
|
pricing: {
|
@@ -233,7 +436,18 @@ const SiliconCloud: ModelProviderCard = {
|
|
233
436
|
tokens: 8192,
|
234
437
|
},
|
235
438
|
{
|
236
|
-
description: 'Gemma
|
439
|
+
description: 'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
|
440
|
+
displayName: 'Gemma 2 9B (Pro)',
|
441
|
+
id: 'Pro/google/gemma-2-9b-it',
|
442
|
+
pricing: {
|
443
|
+
currency: 'CNY',
|
444
|
+
input: 0.6,
|
445
|
+
output: 0.6,
|
446
|
+
},
|
447
|
+
tokens: 8192,
|
448
|
+
},
|
449
|
+
{
|
450
|
+
description: 'Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新',
|
237
451
|
displayName: 'Gemma 2 27B',
|
238
452
|
enabled: true,
|
239
453
|
id: 'google/gemma-2-27b-it',
|
@@ -245,9 +459,10 @@ const SiliconCloud: ModelProviderCard = {
|
|
245
459
|
tokens: 8192,
|
246
460
|
},
|
247
461
|
{
|
248
|
-
description: '
|
249
|
-
displayName: 'Llama 3.1 8B',
|
462
|
+
description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
463
|
+
displayName: 'Llama 3.1 8B Instruct (Free)',
|
250
464
|
enabled: true,
|
465
|
+
functionCall: true,
|
251
466
|
id: 'meta-llama/Meta-Llama-3.1-8B-Instruct',
|
252
467
|
pricing: {
|
253
468
|
currency: 'CNY',
|
@@ -257,9 +472,21 @@ const SiliconCloud: ModelProviderCard = {
|
|
257
472
|
tokens: 32_768,
|
258
473
|
},
|
259
474
|
{
|
260
|
-
description: '
|
261
|
-
displayName: 'Llama 3.1
|
475
|
+
description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
476
|
+
displayName: 'Llama 3.1 8B Instruct (Pro)',
|
477
|
+
id: 'Pro/meta-llama/Meta-Llama-3.1-8B-Instruct',
|
478
|
+
pricing: {
|
479
|
+
currency: 'CNY',
|
480
|
+
input: 0.42,
|
481
|
+
output: 0.42,
|
482
|
+
},
|
483
|
+
tokens: 32_768,
|
484
|
+
},
|
485
|
+
{
|
486
|
+
description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 70B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
487
|
+
displayName: 'Llama 3.1 70B Instruct',
|
262
488
|
enabled: true,
|
489
|
+
functionCall: true,
|
263
490
|
id: 'meta-llama/Meta-Llama-3.1-70B-Instruct',
|
264
491
|
pricing: {
|
265
492
|
currency: 'CNY',
|
@@ -269,8 +496,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
269
496
|
tokens: 32_768,
|
270
497
|
},
|
271
498
|
{
|
272
|
-
description: '
|
273
|
-
displayName: 'Llama 3.1 405B',
|
499
|
+
description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 405B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
500
|
+
displayName: 'Llama 3.1 405B Instruct',
|
274
501
|
enabled: true,
|
275
502
|
id: 'meta-llama/Meta-Llama-3.1-405B-Instruct',
|
276
503
|
pricing: {
|
@@ -281,8 +508,8 @@ const SiliconCloud: ModelProviderCard = {
|
|
281
508
|
tokens: 32_768,
|
282
509
|
},
|
283
510
|
{
|
284
|
-
description: 'Llama
|
285
|
-
displayName: 'Llama 3.1 Nemotron 70B',
|
511
|
+
description: 'Llama-3.1-Nemotron-70B-Instruct 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练',
|
512
|
+
displayName: 'Llama 3.1 Nemotron 70B Instruct',
|
286
513
|
enabled: true,
|
287
514
|
id: 'nvidia/Llama-3.1-Nemotron-70B-Instruct',
|
288
515
|
pricing: {
|
@@ -292,6 +519,29 @@ const SiliconCloud: ModelProviderCard = {
|
|
292
519
|
},
|
293
520
|
tokens: 32_768,
|
294
521
|
},
|
522
|
+
{
|
523
|
+
description: 'TeleChat2大模型是由中国电信从0到1自主研发的生成式语义大模型,支持百科问答、代码生成、长文生成等功能,为用户提供对话咨询服务,能够与用户进行对话互动,回答问题,协助创作,高效便捷地帮助用户获取信息、知识和灵感。模型在幻觉问题、长文生成、逻辑理解等方面均有较出色表现。',
|
524
|
+
displayName: 'TeleChat2',
|
525
|
+
id: 'TeleAI/TeleChat2',
|
526
|
+
pricing: {
|
527
|
+
currency: 'CNY',
|
528
|
+
input: 1.33,
|
529
|
+
output: 1.33,
|
530
|
+
},
|
531
|
+
tokens: 8192,
|
532
|
+
},
|
533
|
+
{
|
534
|
+
description: 'TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现',
|
535
|
+
displayName: 'TeleMM',
|
536
|
+
id: 'TeleAI/TeleMM',
|
537
|
+
pricing: {
|
538
|
+
currency: 'CNY',
|
539
|
+
input: 1.33,
|
540
|
+
output: 1.33,
|
541
|
+
},
|
542
|
+
tokens: 32_768,
|
543
|
+
vision: true,
|
544
|
+
},
|
295
545
|
],
|
296
546
|
checkModel: 'Qwen/Qwen2.5-7B-Instruct',
|
297
547
|
description: 'SiliconCloud,基于优秀开源基础模型的高性价比 GenAI 云服务',
|