@lobehub/chat 1.34.4 → 1.34.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -2,6 +2,57 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 1.34.6](https://github.com/lobehub/lobe-chat/compare/v1.34.5...v1.34.6)
6
+
7
+ <sup>Released on **2024-12-01**</sup>
8
+
9
+ #### 💄 Styles
10
+
11
+ - **misc**: Add `QWEN_PROXY_URL` support for Qwen, update model list, add `qwq-32b-preview`.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Styles
19
+
20
+ - **misc**: Add `QWEN_PROXY_URL` support for Qwen, closes [#4842](https://github.com/lobehub/lobe-chat/issues/4842) ([1b8dad6](https://github.com/lobehub/lobe-chat/commit/1b8dad6))
21
+ - **misc**: Update model list, add `qwq-32b-preview`, closes [#4839](https://github.com/lobehub/lobe-chat/issues/4839) ([32b8596](https://github.com/lobehub/lobe-chat/commit/32b8596))
22
+
23
+ </details>
24
+
25
+ <div align="right">
26
+
27
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
28
+
29
+ </div>
30
+
31
+ ### [Version 1.34.5](https://github.com/lobehub/lobe-chat/compare/v1.34.4...v1.34.5)
32
+
33
+ <sup>Released on **2024-11-28**</sup>
34
+
35
+ #### 💄 Styles
36
+
37
+ - **misc**: Add Google LearnLM model.
38
+
39
+ <br/>
40
+
41
+ <details>
42
+ <summary><kbd>Improvements and Fixes</kbd></summary>
43
+
44
+ #### Styles
45
+
46
+ - **misc**: Add Google LearnLM model, closes [#4821](https://github.com/lobehub/lobe-chat/issues/4821) ([f900c0a](https://github.com/lobehub/lobe-chat/commit/f900c0a))
47
+
48
+ </details>
49
+
50
+ <div align="right">
51
+
52
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
53
+
54
+ </div>
55
+
5
56
  ### [Version 1.34.4](https://github.com/lobehub/lobe-chat/compare/v1.34.3...v1.34.4)
6
57
 
7
58
  <sup>Released on **2024-11-27**</sup>
package/Dockerfile CHANGED
@@ -189,7 +189,7 @@ ENV \
189
189
  # Perplexity
190
190
  PERPLEXITY_API_KEY="" PERPLEXITY_MODEL_LIST="" PERPLEXITY_PROXY_URL="" \
191
191
  # Qwen
192
- QWEN_API_KEY="" QWEN_MODEL_LIST="" \
192
+ QWEN_API_KEY="" QWEN_MODEL_LIST="" QWEN_PROXY_URL="" \
193
193
  # SenseNova
194
194
  SENSENOVA_ACCESS_KEY_ID="" SENSENOVA_ACCESS_KEY_SECRET="" SENSENOVA_MODEL_LIST="" \
195
195
  # SiliconCloud
@@ -224,7 +224,7 @@ ENV \
224
224
  # Perplexity
225
225
  PERPLEXITY_API_KEY="" PERPLEXITY_MODEL_LIST="" PERPLEXITY_PROXY_URL="" \
226
226
  # Qwen
227
- QWEN_API_KEY="" QWEN_MODEL_LIST="" \
227
+ QWEN_API_KEY="" QWEN_MODEL_LIST="" QWEN_PROXY_URL="" \
228
228
  # SenseNova
229
229
  SENSENOVA_ACCESS_KEY_ID="" SENSENOVA_ACCESS_KEY_SECRET="" SENSENOVA_MODEL_LIST="" \
230
230
  # SiliconCloud
package/changelog/v1.json CHANGED
@@ -1,4 +1,22 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Add QWEN_PROXY_URL support for Qwen, update model list, add qwq-32b-preview."
6
+ ]
7
+ },
8
+ "date": "2024-12-01",
9
+ "version": "1.34.6"
10
+ },
11
+ {
12
+ "children": {
13
+ "improvements": [
14
+ "Add Google LearnLM model."
15
+ ]
16
+ },
17
+ "date": "2024-11-28",
18
+ "version": "1.34.5"
19
+ },
2
20
  {
3
21
  "children": {
4
22
  "improvements": [
@@ -0,0 +1,33 @@
1
+
2
+ ---
3
+ title: LobeChat 全面进入 GPT-4 时代:GPT-4o mini 正式上线
4
+ description: LobeChat v1.6 重磅发布 GPT-4o mini 支持,同时 LobeChat Cloud 服务全面升级默认模型,为用户带来更强大的 AI 对话体验。
5
+ ---
6
+
7
+ # GPT-4o mini 震撼登场,开启全新 GPT-4 时代 🚀
8
+
9
+ 我们很高兴地宣布,LobeChat v1.6 现已正式发布!这次更新带来了激动人心的重大升级:
10
+
11
+ ## 🌟 主要更新
12
+
13
+ - **GPT-4o mini 正式上线**:OpenAI 全系列模型实现 GPT-4 升级
14
+ - **LobeChat Cloud 服务升级**:
15
+ - GPT-3.5-turbo 升级为 GPT-4o mini 作为默认模型
16
+ - 为用户带来更优质的对话体验
17
+
18
+ ## 🎯 Cloud 服务亮点
19
+
20
+ LobeChat Cloud 为您提供便捷的一站式 AI 对话服务:
21
+
22
+ - 📦 **开箱即用**:免费注册,即刻体验
23
+ - 🤖 **多模型支持**:
24
+ - GPT-4o mini
25
+ - GPT-4o
26
+ - Claude 3.5 Sonnet
27
+ - Gemini 1.5 Pro
28
+
29
+ ## 💡 使用建议
30
+
31
+ 如果您在私有化部署方面遇到困难,强烈推荐尝试 LobeChat Cloud 服务。我们提供全方位的模型支持,让您轻松开启 AI 对话之旅。
32
+
33
+ 赶快来体验全新升级的 LobeChat v1.6,感受 GPT-4 带来的强大对话能力!
@@ -0,0 +1,34 @@
1
+
2
+ ---
3
+ title: LobeChat Database Docker 镜像正式发布
4
+ description: LobeChat v1.8.0 推出官方数据库 Docker 镜像,支持云端数据同步与用户管理,并提供完整的自部署文档指南。
5
+ ---
6
+
7
+ # LobeChat Database Docker 镜像:云端部署的最后一块拼图
8
+
9
+ 我们很高兴地宣布,LobeChat v1.8.0 正式发布了期待已久的数据库 Docker 镜像!这是我们在服务端数据库领域的重要里程碑,为用户提供了完整的云端部署解决方案。
10
+
11
+ ## 🚀 核心特性
12
+
13
+ - **轻量级部署**:Docker 镜像仅 90MB,却提供完整的数据库功能
14
+ - **优化性能**:预置 Server Postgres 与 NextAuth 鉴权体系,确保最佳连通性能
15
+ - **云端同步**:部署后即可享受流畅的云端数据同步体验
16
+ - **灵活认证**:支持与 Auth0 等第三方 SSO 服务提供商集成
17
+
18
+ ![LobeChat Database Docker 部署示意图](https://github.com/user-attachments/assets/database-docker-deploy)
19
+
20
+ ## 📘 部署文档全新升级
21
+
22
+ 为确保用户能够顺利完成部署,我们优化了部署文档的结构:
23
+
24
+ - 清晰的框架思路介绍
25
+ - 详细的部署案例指引
26
+ - 完整的自部署操作指南
27
+
28
+ 现在,您可以通过访问 [官方文档](https://lobehub.com/zh/docs/self-hosting/server-database) 开始部署您自己的 LobeChat 服务。
29
+
30
+ ## 🔮 未来展望
31
+
32
+ 我们的知识库功能也正在开发中,敬请期待更多激动人心的更新!
33
+
34
+ 这次更新标志着 LobeChat 在云端部署方案上的重要突破,让私有部署变得前所未有的简单。感谢社区的耐心等待,我们将继续努力为用户带来更好的体验。
@@ -0,0 +1,31 @@
1
+
2
+ ---
3
+ title: LobeChat 重磅发布知识库功能:打造智能文件管理与对话新体验
4
+ description: LobeChat 推出全新知识库功能,支持全类型文件管理、智能向量化和文件对话,让知识管理和信息检索更轻松、更智能。
5
+ ---
6
+
7
+ # 知识库功能重磅发布:智能文件管理与对话的革新
8
+
9
+ 我们很高兴地宣布,备受期待的 LobeChat 知识库功能现已正式发布!🎉 该功能已同步在开源版和 Cloud 版(lobechat.com)中上线。
10
+
11
+ ## 全新的文件管理体验
12
+
13
+ - 📁 **专属文件入口**:在左侧边栏新增「文件」一级菜单,提供便捷的文件访问与管理
14
+ - 📄 **全类型文件支持**:支持文档、图片、音频、视频等各类文件的上传和存储
15
+ - 👀 **强大的预览功能**:内置支持 PDF、Excel、Word、PPT 和 TXT 等多种格式的在线预览
16
+ - 🔄 **可扩展的预览架构**:基于开源方案打造的预览组件,支持未来扩展更多文件类型
17
+
18
+ ## 智能知识库管理
19
+
20
+ - 📚 **无限知识库**:支持创建无限数量的知识库,满足不同场景需求
21
+ - 🔍 **智能向量化**:自动进行文件分块和向量化处理,支持片段预览功能
22
+ - 💡 **交互创新**:集成 Portal 交互范式,实现文件内容的快速预览和检索
23
+ - 🔮 **未来可期**:架构预留扩展空间,计划支持音频、图片、视频等多媒体文件的智能处理
24
+
25
+ ## 便捷的使用体验
26
+
27
+ - 💪 **开箱即用**:支持在对话框直接上传文件,操作简单直观
28
+ - 🎯 **实时反馈**:优化的上传体验,提供清晰的进度反馈
29
+ - ☁️ **双版本可选**:提供开源自部署版本和官方 Cloud 版本,满足不同用户需求
30
+
31
+ 所有功能均已在 [GitHub 仓库](https://github.com/lobehub/lobe-chat) 开源,欢迎访问 [LobeChat Cloud](http://lobechat.com) 体验完整功能。
@@ -0,0 +1,29 @@
1
+ ---
2
+ title: LobeChat 完美适配 OpenAI O1 系列模型
3
+ description: LobeChat v1.17.0 现已支持 OpenAI 最新发布的 o1-preview 和 o1-mini 模型,为用户带来更强大的代码和数学能力。
4
+ ---
5
+
6
+ # OpenAI O1 系列模型现已登陆 LobeChat
7
+
8
+ 我们很高兴地宣布,LobeChat v1.17.0 已完整支持 OpenAI 最新推出的 O1 系列模型。无论是社区版还是 [Cloud 版本](https://lobechat.com)用户,都可以体验到这一重大更新。
9
+
10
+ ## 新增模型支持
11
+
12
+ - ✨ OpenAI o1-preview
13
+ - ✨ OpenAI o1-mini
14
+
15
+ ## 增强的能力
16
+
17
+ O1 系列模型在以下方面表现出色:
18
+
19
+ - 💻 代码编写与理解
20
+ - 🔢 数学问题处理
21
+ - 🎯 更精准的任务执行
22
+ - ⚡️ 优化的性能表现
23
+
24
+ ## 立即体验
25
+
26
+ - 🌐 [Cloud 版本](https://lobechat.com) 订阅用户现已可以直接使用
27
+ - 🔧 自部署用户可通过更新至 v1.17.0 开始体验
28
+
29
+ 这次更新让 LobeChat 在支持最新 AI 模型方面又迈出了重要一步。我们期待 O1 系列模型能够帮助用户实现更多可能!
@@ -0,0 +1,56 @@
1
+
2
+ ---
3
+ title: 重磅更新:LobeChat 迎来 Artifacts 时代
4
+ description: LobeChat v1.19 带来了重大更新,包括 Claude Artifacts 完整特性支持、全新的发现页面设计,以及 GitHub Models 服务商支持,让 AI 助手的能力得到显著提升。
5
+ ---
6
+
7
+ # 重磅更新:LobeChat 迎来 Artifacts 时代
8
+
9
+ 我们很高兴地宣布 LobeChat v1.19 版本正式发布!这次更新带来了多项重要功能,让 AI 助手的交互体验更上一层楼。
10
+
11
+ ## 🎨 Artifacts 支持:解锁全新创作维度
12
+
13
+ 在这个版本中,我们几乎完整还原了 Claude Artifacts 的核心特性。现在,您可以在 LobeChat 中体验到:
14
+
15
+ - SVG 图形生成与展示
16
+ - HTML 页面生成与实时渲染
17
+ - 更多格式的文档生成
18
+
19
+ 值得一提的是,Python 代码执行功能也已完成开发,将在后续版本中与大家见面。届时,用户将能够同时运用 Claude Artifacts 和 OpenAI Code Interpreter 这两大强大工具,极大提升 AI 助手的实用性。
20
+
21
+ ![Artifacts 功能展示](https://github.com/user-attachments/artifacts-demo.png)
22
+
23
+ ## 🔍 全新发现页面:探索更多可能
24
+
25
+ 发现页面迎来了重大升级,现在包含更丰富的内容类别:
26
+
27
+ - AI 助手市场
28
+ - 插件展示
29
+ - 模型列表
30
+ - 服务商介绍
31
+
32
+ 这次改版不仅提升了页面的信息密度,更为用户打开了探索 AI 能力的新窗口。未来,我们计划进一步扩展发现页面的功能,可能会加入:
33
+
34
+ - 知识库分享
35
+ - Artifacts 展示
36
+ - 精选对话分享
37
+
38
+ ## 🚀 GitHub Models 支持:更多模型选择
39
+
40
+ 感谢社区成员 [@CloudPassenger](https://github.com/CloudPassenger) 的贡献,现在 LobeChat 已经支持 GitHub Models 服务商。用户只需:
41
+
42
+ 1. 准备 GitHub Personal Access Token (PAT)
43
+ 2. 在设置中配置服务商信息
44
+ 3. 即可开始使用 GitHub Models 上的免费模型
45
+
46
+ 这一功能的加入大大扩展了用户可选用的模型范围,为不同场景下的 AI 对话提供了更多选择。
47
+
48
+ ## 🔜 未来展望
49
+
50
+ 我们将持续致力于提升 LobeChat 的功能和用户体验。接下来的版本中,我们计划:
51
+
52
+ - 完善 Python 代码执行功能
53
+ - 增加更多 Artifacts 类型支持
54
+ - 扩展发现页面的内容维度
55
+
56
+ 感谢每一位用户的支持与反馈,让我们一起期待 LobeChat 带来更多惊喜!
@@ -0,0 +1,31 @@
1
+
2
+ ---
3
+ title: LobeChat 新增助手常驻侧边栏功能
4
+ description: LobeChat v1.26.0 推出助手常驻侧边栏功能,支持快捷键切换,让高频使用的助手触手可及,大幅提升使用效率。
5
+ ---
6
+
7
+ # 助手常驻侧边栏:打造更便捷的对话体验
8
+
9
+ 我们在 v1.26.0 版本中推出了一项期待已久的新功能 —— 助手常驻侧边栏。这项功能旨在提升用户对高频助手的访问体验,让您的得力助手触手可及。
10
+
11
+ ## 功能亮点
12
+
13
+ - **快捷切换**:支持通过快捷键快速切换不同助手,让工作流更加流畅
14
+ - **空间优化**:激活侧边栏时会自动隐藏会话列表,为您腾出更大的对话空间
15
+ - **智能显示**:将置顶助手自动同步到侧边栏,让重要助手始终在视线范围内
16
+
17
+ ![侧边栏展示效果](https://github.com/user-attachments/assets/6935e155-4a1d-4ab7-a61a-2b813d65bb7b)
18
+
19
+ ![对话界面效果](https://github.com/user-attachments/assets/c68e88e4-cf2e-4122-82bc-89ba193b1eb4)
20
+
21
+ ## 如何使用
22
+
23
+ 目前这项功能处于实验阶段,默认未开启。如需体验,您可以通过添加环境变量 `FEATURE_FLAGS=+pin_list` 来启用。
24
+
25
+ 我们已在 Cloud 版本中同步开启此功能,欢迎所有用户体验并提供反馈。您可以在 [GitHub Discussions](https://github.com/lobehub/lobe-chat/discussions/4515) 中分享使用感受,帮助我们将这个功能打磨得更加完善。
26
+
27
+ ## 设计理念
28
+
29
+ 这次更新的核心目标是优化工作效率。通过合理利用侧边栏空间,我们让高频使用的助手触手可及,同时通过隐藏会话列表来扩大对话区域,为用户带来更专注的对话体验。
30
+
31
+ 我们期待这项新功能能够显著提升您的使用体验。欢迎升级到 v1.26.0 版本开始体验!
@@ -0,0 +1,20 @@
1
+ ---
2
+ title: LobeChat 支持分享对话为文本格式(Markdown/JSON)
3
+ description: LobeChat v1.28.0 新增 Markdown 和 OpenAI 格式 JSON 导出支持,让对话内容能轻松转化为笔记素材、开发调试数据和训练语料,显著提升对话内容的复用价值。
4
+ ---
5
+
6
+ # 对话内容分享升级:支持文本格式导出
7
+
8
+ 我们在最新版本 v1.28.0 中推出了对话内容的文本格式导出功能,现在支持将对话内容导出为 Markdown 和 OpenAI 格式的 JSON 两种格式。
9
+
10
+ Markdown 格式导出功能满足了用户将对话内容直接用于笔记和文档撰写的需求。您可以轻松地将有价值的对话内容保存下来,并在各类笔记软件中进行管理和复用。
11
+
12
+ ![将对话导出为 Markdown 格式文本](https://github.com/user-attachments/assets/29508dda-2382-430f-bc81-fb23f02149f8)
13
+
14
+ 同时,我们还支持将对话导出为符合 OpenAI messages 规范的 JSON 格式。这种格式不仅可以直接用于 API 调试,还能作为高质量的模型训练语料。
15
+
16
+ ![将对话导出为 OpenAI 接口规范的 JSON](https://github.com/user-attachments/assets/484f28f4-017c-4ed7-948b-4a8d51f0b63a)
17
+
18
+ 特别值得一提的是,我们会完整保留对话中的 Tools Calling 原始数据,这对提升模型的工具调用能力具有重要价值。
19
+
20
+ 这次更新让对话内容的分享和应用场景得到了极大扩展,期待这些新功能能够提升您的使用体验。
@@ -0,0 +1,17 @@
1
+ ---
2
+ title: LobeChat 支持分支对话
3
+ description: LobeChat 聊天窗口支持分支对话
4
+ ---
5
+
6
+ # LobeChat 11 月模型服务又添新成员啦! 🎉
7
+
8
+ 哇哦, 看来我们的 AI 大家庭又迎来了新成员! 在 11 月份,我们为你带来了这些闪亮登场的 AI 模型服务:
9
+
10
+ - **Gitee AI**: [https://ai.gitee.com](https://ai.gitee.com)
11
+ - **InternLM (书生浦语)**: [https://internlm.intern-ai.org.cn](https://internlm.intern-ai.org.cn)
12
+ - **xAI**: [https://x.ai](https://x.ai)
13
+ - **Cloudflare WorkersAI**: [https://developers.cloudflare.com/workers-ai](https://developers.cloudflare.com/workers-ai)
14
+
15
+ 我们始终在倾听,需要支持更多的模型服务?
16
+
17
+ - 请前往 [更多模型服务商支持](https://github.com/lobehub/lobe-chat/discussions/1284) 提交您的需求
@@ -2,11 +2,101 @@
2
2
  "$schema": "https://github.com/lobehub/lobe-chat/blob/main/docs/changelog/schema.json",
3
3
  "cloud": [],
4
4
  "community": [
5
+ {
6
+ "image": "",
7
+ "id": "2024-11-27-forkable-chat",
8
+ "date": "2024-11-27",
9
+ "versionRange": ["1.34.0", "1.33.1"]
10
+ },
5
11
  {
6
12
  "image": "https://github.com/user-attachments/assets/fa8fab19-ace2-4f85-8428-a3a0e28845bb",
7
13
  "id": "2024-11-25-november-providers",
8
14
  "date": "2024-11-25",
9
- "versionRange": ["1.33.0", "1.30.0"]
15
+ "versionRange": ["1.33.0", "1.30.1"]
16
+ },
17
+ {
18
+ "image": "https://github.com/user-attachments/assets/a2327800-1dc5-4bcf-b151-3dda6985b741",
19
+ "id": "2024-11-06-share-text-json",
20
+ "date": "2024-11-06",
21
+ "versionRange": ["1.28.0", "1.26.1"]
22
+ },
23
+ {
24
+ "image": "",
25
+ "id": "2024-10-27-pin-assistant",
26
+ "date": "2024-10-27",
27
+ "versionRange": ["1.26.0", "1.19.1"]
28
+ },
29
+ {
30
+ "image": "",
31
+ "id": "2024-09-20-artifacts",
32
+ "date": "2024-09-20",
33
+ "versionRange": ["1.19.0", "1.17.1"]
34
+ },
35
+ {
36
+ "image": "https://github.com/user-attachments/assets/bd6d0c82-8f14-4167-ad09-2a841f1e34e4",
37
+ "id": "2024-09-13-openai-o1-models",
38
+ "date": "2024-09-13",
39
+ "versionRange": ["1.17.0", "1.12.1"]
40
+ },
41
+ {
42
+ "image": "https://github.com/user-attachments/assets/c96185d3-7a56-40bf-b81b-e75283dbe25b",
43
+ "id": "2024-08-21-file-upload-and-knowledge-base",
44
+ "date": "2024-08-21",
45
+ "versionRange": ["1.12.0", "1.8.1"]
46
+ },
47
+ {
48
+ "image": "https://github.com/user-attachments/assets/2a4116a7-15ad-43e5-b801-cc62d8da2012",
49
+ "id": "2024-08-02-lobe-chat-database-docker",
50
+ "date": "2024-08-02",
51
+ "versionRange": ["1.8.0", "1.6.1"]
52
+ },
53
+ {
54
+ "image": "https://github.com/user-attachments/assets/0e3a7174-6b66-4432-a319-dff60b033c24",
55
+ "id": "2024-07-19-gpt-4o-mini",
56
+ "date": "2024-07-19",
57
+ "versionRange": ["1.6.0", "1.0.1"]
58
+ },
59
+ {
60
+ "image": "https://github.com/user-attachments/assets/82bfc467-e0c6-4d99-9b1f-18e4aea24285",
61
+ "id": "2024-06-19-lobe-chat-v1",
62
+ "date": "2024-06-19",
63
+ "versionRange": ["1.0.0", "0.147.0"]
64
+ },
65
+ {
66
+ "image": "https://github.com/user-attachments/assets/aee846d5-b5ee-46cb-9dd0-d952ea708b67",
67
+ "id": "2024-02-14-ollama",
68
+ "date": "2024-02-14",
69
+ "versionRange": ["0.127.0", "0.125.1"]
70
+ },
71
+ {
72
+ "image": "https://github.com/user-attachments/assets/533f7a5e-8a93-4a57-a62f-8233897d72b5",
73
+ "id": "2024-02-08-sso-oauth",
74
+ "date": "2024-02-08",
75
+ "versionRange": ["0.125.0", "0.118.1"]
76
+ },
77
+ {
78
+ "image": "https://github.com/user-attachments/assets/6069332b-8e15-4d3c-8a77-479e8bc09c23",
79
+ "id": "2023-12-22-dalle-3",
80
+ "date": "2023-12-22",
81
+ "versionRange": ["0.118.0", "0.102.1"]
82
+ },
83
+ {
84
+ "image": "https://github.com/user-attachments/assets/03433283-08a5-481a-8f6c-069b2fc6bace",
85
+ "id": "2023-11-19-tts-stt",
86
+ "date": "2023-11-19",
87
+ "versionRange": ["0.102.0", "0.101.1"]
88
+ },
89
+ {
90
+ "image": "https://github.com/user-attachments/assets/dde2c9c5-cdda-4a65-8f32-b6f4da907df2",
91
+ "id": "2023-11-14-gpt4-vision",
92
+ "date": "2023-11-14",
93
+ "versionRange": ["0.101.0", "0.90.0"]
94
+ },
95
+ {
96
+ "image": "https://github.com/user-attachments/assets/eaed3762-136f-4297-b161-ca92a27c4982",
97
+ "id": "2023-09-09-plugin-system",
98
+ "date": "2023-09-09",
99
+ "versionRange": ["0.72.0", "0.67.0"]
10
100
  }
11
101
  ]
12
102
  }
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.34.4",
3
+ "version": "1.34.6",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -307,7 +307,7 @@
307
307
  "vitest": "~1.2.2",
308
308
  "vitest-canvas-mock": "^0.3.3"
309
309
  },
310
- "packageManager": "pnpm@9.14.2",
310
+ "packageManager": "pnpm@9.14.4",
311
311
  "publishConfig": {
312
312
  "access": "public",
313
313
  "registry": "https://registry.npmjs.org"
@@ -156,6 +156,13 @@ const FireworksAI: ModelProviderCard = {
156
156
  tokens: 32_064,
157
157
  vision: true,
158
158
  },
159
+ {
160
+ description: 'QwQ模型是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。',
161
+ displayName: 'QwQ 32B Preview',
162
+ enabled: true,
163
+ id: 'accounts/fireworks/models/qwen-qwq-32b-preview',
164
+ tokens: 32_768,
165
+ },
159
166
  {
160
167
  description: 'Qwen2.5 是由阿里云 Qwen 团队开发的一系列仅包含解码器的语言模型。这些模型提供不同的大小,包括 0.5B、1.5B、3B、7B、14B、32B 和 72B,并且有基础版(base)和指令版(instruct)两种变体。',
161
168
  displayName: 'Qwen2.5 72B Instruct',
@@ -164,6 +171,13 @@ const FireworksAI: ModelProviderCard = {
164
171
  id: 'accounts/fireworks/models/qwen2p5-72b-instruct',
165
172
  tokens: 32_768,
166
173
  },
174
+ {
175
+ description: 'Qwen2.5 Coder 32B Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
176
+ displayName: 'Qwen2.5 Coder 32B Instruct',
177
+ enabled: false,
178
+ id: 'accounts/fireworks/models/qwen2p5-coder-32b-instruct',
179
+ tokens: 32_768,
180
+ },
167
181
  {
168
182
  description: 'Yi-Large 模型,具备卓越的多语言处理能力,可用于各类语言生成和理解任务。',
169
183
  displayName: 'Yi-Large',
@@ -5,7 +5,7 @@ const Google: ModelProviderCard = {
5
5
  chatModels: [
6
6
  {
7
7
  description:
8
- 'Gemini Exp 1121 是Google最新的实验性多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。',
8
+ 'Gemini Exp 1121 是 Google 最新的实验性多模态AI模型,拥有改进的编码、推理和视觉能力。',
9
9
  displayName: 'Gemini Experimental 1121',
10
10
  enabled: true,
11
11
  functionCall: true,
@@ -22,9 +22,8 @@ const Google: ModelProviderCard = {
22
22
  },
23
23
  {
24
24
  description:
25
- 'Gemini Exp 1114 是Google最新的实验性多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。',
25
+ 'Gemini Exp 1114 是 Google 的实验性多模态AI模型,对输出质量有一定改进。',
26
26
  displayName: 'Gemini Experimental 1114',
27
- enabled: true,
28
27
  functionCall: true,
29
28
  id: 'gemini-exp-1114',
30
29
  maxOutput: 8192,
@@ -39,7 +38,23 @@ const Google: ModelProviderCard = {
39
38
  },
40
39
  {
41
40
  description:
42
- 'Gemini 1.5 Flash 是Google最新的多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。',
41
+ 'LearnLM 是一个实验性的、特定于任务的语言模型,经过训练以符合学习科学原则,可在教学和学习场景中遵循系统指令,充当专家导师等。',
42
+ displayName: 'LearnLM 1.5 Pro Experimental',
43
+ functionCall: true,
44
+ id: 'learnlm-1.5-pro-experimental',
45
+ maxOutput: 8192,
46
+ pricing: {
47
+ cachedInput: 0,
48
+ input: 0,
49
+ output: 0,
50
+ },
51
+ releasedAt: '2024-11-19',
52
+ tokens: 32_767 + 8192,
53
+ vision: true,
54
+ },
55
+ {
56
+ description:
57
+ 'Gemini 1.5 Flash 是 Google 最新的多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。',
43
58
  displayName: 'Gemini 1.5 Flash',
44
59
  enabled: true,
45
60
  functionCall: true,
@@ -129,6 +129,17 @@ const Qwen: ModelProviderCard = {
129
129
  },
130
130
  tokens: 131_072,
131
131
  },
132
+ {
133
+ description: 'QwQ模型是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。',
134
+ displayName: 'QwQ 32B Preview',
135
+ id: 'qwq-32b-preview',
136
+ pricing: {
137
+ currency: 'CNY',
138
+ input: 0,
139
+ output: 0,
140
+ },
141
+ tokens: 32_768,
142
+ },
132
143
  {
133
144
  description: '通义千问2.5对外开源的7B规模的模型。',
134
145
  displayName: 'Qwen2.5 7B',
@@ -254,6 +265,9 @@ const Qwen: ModelProviderCard = {
254
265
  modelList: { showModelFetcher: true },
255
266
  modelsUrl: 'https://help.aliyun.com/zh/dashscope/developer-reference/api-details',
256
267
  name: 'Qwen',
268
+ proxyUrl: {
269
+ placeholder: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
270
+ },
257
271
  smoothing: {
258
272
  speed: 2,
259
273
  text: true,
@@ -5,7 +5,7 @@ const SiliconCloud: ModelProviderCard = {
5
5
  chatModels: [
6
6
  {
7
7
  description: 'Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。',
8
- displayName: 'Hunyuan Large',
8
+ displayName: 'Hunyuan A52B Instruct',
9
9
  enabled: true,
10
10
  id: 'Tencent/Hunyuan-A52B-Instruct',
11
11
  pricing: {
@@ -16,7 +16,7 @@ const SiliconCloud: ModelProviderCard = {
16
16
  tokens: 32_768,
17
17
  },
18
18
  {
19
- description: 'DeepSeek V2.5 集合了先前版本的优秀特征,增强了通用和编码能力。',
19
+ description: 'DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等',
20
20
  displayName: 'DeepSeek V2.5',
21
21
  enabled: true,
22
22
  functionCall: true,
@@ -29,8 +29,31 @@ const SiliconCloud: ModelProviderCard = {
29
29
  tokens: 32_768,
30
30
  },
31
31
  {
32
- description: 'Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。',
33
- displayName: 'Qwen2.5 7B',
32
+ description: 'DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色',
33
+ displayName: 'DeepSeek V2 Chat',
34
+ id: 'deepseek-ai/DeepSeek-V2-Chat',
35
+ pricing: {
36
+ currency: 'CNY',
37
+ input: 1.33,
38
+ output: 1.33,
39
+ },
40
+ tokens: 32_768,
41
+ },
42
+ {
43
+ description: 'QwQ-32B-Preview是Qwen 最新的实验性研究模型,专注于提升AI推理能力。通过探索语言混合、递归推理等复杂机制,主要优势包括强大的推理分析能力、数学和编程能力。与此同时,也存在语言切换问题、推理循环、安全性考虑、其他能力方面的差异。',
44
+ displayName: 'QwQ 32B Preview',
45
+ enabled: true,
46
+ id: 'Qwen/QwQ-32B-Preview',
47
+ pricing: {
48
+ currency: 'CNY',
49
+ input: 1.26,
50
+ output: 1.26,
51
+ },
52
+ tokens: 32_768,
53
+ },
54
+ {
55
+ description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
56
+ displayName: 'Qwen2.5 7B Instruct (Free)',
34
57
  enabled: true,
35
58
  functionCall: true,
36
59
  id: 'Qwen/Qwen2.5-7B-Instruct',
@@ -42,8 +65,31 @@ const SiliconCloud: ModelProviderCard = {
42
65
  tokens: 32_768,
43
66
  },
44
67
  {
45
- description: 'Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。',
46
- displayName: 'Qwen2.5 14B',
68
+ description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
69
+ displayName: 'Qwen2.5 7B Instruct (LoRA)',
70
+ id: 'LoRA/Qwen/Qwen2.5-7B-Instruct',
71
+ pricing: {
72
+ currency: 'CNY',
73
+ input: 0.53,
74
+ output: 0.53,
75
+ },
76
+ tokens: 32_768,
77
+ },
78
+ {
79
+ description: 'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
80
+ displayName: 'Qwen2.5 7B Instruct (Pro)',
81
+ functionCall: true,
82
+ id: 'Pro/Qwen/Qwen2.5-7B-Instruct',
83
+ pricing: {
84
+ currency: 'CNY',
85
+ input: 0.35,
86
+ output: 0.35,
87
+ },
88
+ tokens: 32_768,
89
+ },
90
+ {
91
+ description: 'Qwen2.5-14B-Instruct 是阿里云发布的最新大语言模型系列之一。该 14B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
92
+ displayName: 'Qwen2.5 14B Instruct',
47
93
  functionCall: true,
48
94
  id: 'Qwen/Qwen2.5-14B-Instruct',
49
95
  pricing: {
@@ -54,8 +100,8 @@ const SiliconCloud: ModelProviderCard = {
54
100
  tokens: 32_768,
55
101
  },
56
102
  {
57
- description: 'Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。',
58
- displayName: 'Qwen2.5 32B',
103
+ description: 'Qwen2.5-32B-Instruct 是阿里云发布的最新大语言模型系列之一。该 32B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
104
+ displayName: 'Qwen2.5 32B Instruct',
59
105
  functionCall: true,
60
106
  id: 'Qwen/Qwen2.5-32B-Instruct',
61
107
  pricing: {
@@ -66,8 +112,43 @@ const SiliconCloud: ModelProviderCard = {
66
112
  tokens: 32_768,
67
113
  },
68
114
  {
69
- description: 'Qwen2.5 是全新的大型语言模型系列,具有更强的理解和生成能力。',
70
- displayName: 'Qwen2.5 72B',
115
+ description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
116
+ displayName: 'Qwen2.5 72B Instruct',
117
+ functionCall: true,
118
+ id: 'Qwen/Qwen2.5-72B-Instruct',
119
+ pricing: {
120
+ currency: 'CNY',
121
+ input: 4.13,
122
+ output: 4.13,
123
+ },
124
+ tokens: 32_768,
125
+ },
126
+ {
127
+ description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
128
+ displayName: 'Qwen2.5 72B Instruct (LoRA)',
129
+ id: 'LoRA/Qwen/Qwen2.5-72B-Instruct',
130
+ pricing: {
131
+ currency: 'CNY',
132
+ input: 6.2,
133
+ output: 6.2,
134
+ },
135
+ tokens: 32_768,
136
+ },
137
+ {
138
+ description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
139
+ displayName: 'Qwen2.5 72B Instruct (Vendor-A)',
140
+ functionCall: true,
141
+ id: 'Vendor-A/Qwen/Qwen2.5-72B-Instruct',
142
+ pricing: {
143
+ currency: 'CNY',
144
+ input: 1,
145
+ output: 1,
146
+ },
147
+ tokens: 32_768,
148
+ },
149
+ {
150
+ description: 'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。它支持长达 128K tokens 的输入,可以生成超过 8K tokens 的长文本。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
151
+ displayName: 'Qwen2.5 72B Instruct 128K',
71
152
  enabled: true,
72
153
  functionCall: true,
73
154
  id: 'Qwen/Qwen2.5-72B-Instruct-128K',
@@ -79,34 +160,41 @@ const SiliconCloud: ModelProviderCard = {
79
160
  tokens: 131_072,
80
161
  },
81
162
  {
82
- description: 'Qwen2-VL Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能。',
83
- displayName: 'Qwen2 VL 7B',
84
- enabled: true,
85
- id: 'Pro/Qwen/Qwen2-VL-7B-Instruct',
163
+ description: 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
164
+ displayName: 'Qwen2.5 Coder 7B Instruct (Free)',
165
+ id: 'Qwen/Qwen2.5-Coder-7B-Instruct',
166
+ pricing: {
167
+ currency: 'CNY',
168
+ input: 0,
169
+ output: 0,
170
+ },
171
+ tokens: 32_768,
172
+ },
173
+ {
174
+ description: 'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
175
+ displayName: 'Qwen2.5 Coder 7B Instruct (Pro)',
176
+ id: 'Pro/Qwen/Qwen2.5-Coder-7B-Instruct',
86
177
  pricing: {
87
178
  currency: 'CNY',
88
179
  input: 0.35,
89
180
  output: 0.35,
90
181
  },
91
182
  tokens: 32_768,
92
- vision: true,
93
183
  },
94
184
  {
95
- description: 'Qwen2-VL Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能。',
96
- displayName: 'Qwen2 VL 72B',
97
- enabled: true,
98
- id: 'Qwen/Qwen2-VL-72B-Instruct',
185
+ description: 'Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理',
186
+ displayName: 'Qwen2.5 Coder 32B Instruct',
187
+ id: 'Qwen/Qwen2.5-Coder-32B-Instruct',
99
188
  pricing: {
100
189
  currency: 'CNY',
101
- input: 4.13,
102
- output: 4.13,
190
+ input: 1.26,
191
+ output: 1.26,
103
192
  },
104
193
  tokens: 32_768,
105
- vision: true,
106
194
  },
107
195
  {
108
- description: 'Qwen2.5-Math 专注于数学领域的问题求解,为高难度题提供专业解答。',
109
- displayName: 'Qwen2.5 Math 72B',
196
+ description: 'Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务',
197
+ displayName: 'Qwen2.5 Math 72B Instruct',
110
198
  id: 'Qwen/Qwen2.5-Math-72B-Instruct',
111
199
  pricing: {
112
200
  currency: 'CNY',
@@ -116,19 +204,100 @@ const SiliconCloud: ModelProviderCard = {
116
204
  tokens: 4096,
117
205
  },
118
206
  {
119
- description: 'Qwen2.5-Coder 专注于代码编写。',
120
- displayName: 'Qwen2.5 Coder 32B',
121
- id: 'Qwen/Qwen2.5-Coder-32B-Instruct',
207
+ description: 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
208
+ displayName: 'Qwen2 1.5B Instruct (Free)',
209
+ id: 'Qwen/Qwen2-1.5B-Instruct',
122
210
  pricing: {
123
211
  currency: 'CNY',
124
- input: 1.26,
125
- output: 1.26,
212
+ input: 0,
213
+ output: 0,
214
+ },
215
+ tokens: 32_768,
216
+ },
217
+ {
218
+ description: 'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
219
+ displayName: 'Qwen2 1.5B Instruct (Pro)',
220
+ id: 'Pro/Qwen/Qwen2-1.5B-Instruct',
221
+ pricing: {
222
+ currency: 'CNY',
223
+ input: 0.14,
224
+ output: 0.14,
225
+ },
226
+ tokens: 32_768,
227
+ },
228
+ {
229
+ description: 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
230
+ displayName: 'Qwen2 7B Instruct (Free)',
231
+ id: 'Qwen/Qwen2-7B-Instruct',
232
+ pricing: {
233
+ currency: 'CNY',
234
+ input: 0,
235
+ output: 0,
236
+ },
237
+ tokens: 32_768,
238
+ },
239
+ {
240
+ description: 'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
241
+ displayName: 'Qwen2 7B Instruct (Pro)',
242
+ id: 'Pro/Qwen/Qwen2-7B-Instruct',
243
+ pricing: {
244
+ currency: 'CNY',
245
+ input: 0.35,
246
+ output: 0.35,
247
+ },
248
+ tokens: 32_768,
249
+ },
250
+ {
251
+ description: 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
252
+ displayName: 'Qwen2 72B Instruct',
253
+ id: 'Qwen/Qwen2-7B-Instruct',
254
+ pricing: {
255
+ currency: 'CNY',
256
+ input: 4.13,
257
+ output: 4.13,
126
258
  },
127
259
  tokens: 32_768,
128
260
  },
129
261
  {
130
- description: 'InternLM2.5 提供多场景下的智能对话解决方案。',
131
- displayName: 'Internlm 2.5 7B',
262
+ description: 'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
263
+ displayName: 'Qwen2 72B Instruct (Vendor-A)',
264
+ id: 'Vendor-A/Qwen/Qwen2-7B-Instruct',
265
+ pricing: {
266
+ currency: 'CNY',
267
+ input: 1,
268
+ output: 1,
269
+ },
270
+ tokens: 32_768,
271
+ },
272
+ {
273
+ description: 'Qwen2-VL-7B-Instruct 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够用于高质量的基于视频的问答、对话和内容创作,还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
274
+ displayName: 'Qwen2 VL 7B Instruct (Pro)',
275
+ enabled: true,
276
+ id: 'Pro/Qwen/Qwen2-VL-7B-Instruct',
277
+ pricing: {
278
+ currency: 'CNY',
279
+ input: 0.35,
280
+ output: 0.35,
281
+ },
282
+ tokens: 32_768,
283
+ vision: true,
284
+ },
285
+ {
286
+ description: 'Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
287
+ displayName: 'Qwen2 VL 72B Instruct',
288
+ enabled: true,
289
+ id: 'Qwen/Qwen2-VL-72B-Instruct',
290
+ pricing: {
291
+ currency: 'CNY',
292
+ input: 4.13,
293
+ output: 4.13,
294
+ },
295
+ tokens: 32_768,
296
+ vision: true,
297
+ },
298
+ {
299
+ description: 'InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域',
300
+ displayName: 'InternLM2.5 7B Chat (Free)',
132
301
  functionCall: true,
133
302
  id: 'internlm/internlm2_5-7b-chat',
134
303
  pricing: {
@@ -139,8 +308,8 @@ const SiliconCloud: ModelProviderCard = {
139
308
  tokens: 32_768,
140
309
  },
141
310
  {
142
- description: '创新的开源模型InternLM2.5,通过大规模的参数提高了对话智能。',
143
- displayName: 'Internlm 2.5 20B',
311
+ description: 'InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务',
312
+ displayName: 'InternLM2.5 20B Chat',
144
313
  functionCall: true,
145
314
  id: 'internlm/internlm2_5-20b-chat',
146
315
  pricing: {
@@ -151,8 +320,8 @@ const SiliconCloud: ModelProviderCard = {
151
320
  tokens: 32_768,
152
321
  },
153
322
  {
154
- description: 'InternVL2在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。',
155
- displayName: 'InternVL2 8B',
323
+ description: 'InternVL2-8B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
324
+ displayName: 'InternVL2 8B (Pro)',
156
325
  id: 'Pro/OpenGVLab/InternVL2-8B',
157
326
  pricing: {
158
327
  currency: 'CNY',
@@ -163,7 +332,7 @@ const SiliconCloud: ModelProviderCard = {
163
332
  vision: true,
164
333
  },
165
334
  {
166
- description: 'InternVL2在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。',
335
+ description: 'InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
167
336
  displayName: 'InternVL2 26B',
168
337
  id: 'OpenGVLab/InternVL2-26B',
169
338
  pricing: {
@@ -175,7 +344,7 @@ const SiliconCloud: ModelProviderCard = {
175
344
  vision: true,
176
345
  },
177
346
  {
178
- description: 'InternVL2在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。',
347
+ description: 'InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平',
179
348
  displayName: 'InternVL2 Llama3 76B',
180
349
  id: 'OpenGVLab/InternVL2-Llama3-76B',
181
350
  pricing: {
@@ -187,8 +356,8 @@ const SiliconCloud: ModelProviderCard = {
187
356
  vision: true,
188
357
  },
189
358
  {
190
- description: 'GLM-4 9B 开放源码版本,为会话应用提供优化后的对话体验。',
191
- displayName: 'GLM-4 9B',
359
+ description: 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
360
+ displayName: 'GLM-4 9B Chat (Free)',
192
361
  functionCall: true,
193
362
  id: 'THUDM/glm-4-9b-chat',
194
363
  pricing: {
@@ -196,11 +365,45 @@ const SiliconCloud: ModelProviderCard = {
196
365
  input: 0,
197
366
  output: 0,
198
367
  },
368
+ tokens: 131_072,
369
+ },
370
+ {
371
+ description: 'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
372
+ displayName: 'GLM-4 9B Chat (Pro)',
373
+ functionCall: true,
374
+ id: 'Pro/THUDM/glm-4-9b-chat',
375
+ pricing: {
376
+ currency: 'CNY',
377
+ input: 0.6,
378
+ output: 0.6,
379
+ },
380
+ tokens: 131_072,
381
+ },
382
+ {
383
+ description: 'ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用',
384
+ displayName: 'ChatGLM3 6B (Free)',
385
+ id: 'THUDM/chatglm3-6b',
386
+ pricing: {
387
+ currency: 'CNY',
388
+ input: 0,
389
+ output: 0,
390
+ },
199
391
  tokens: 32_768,
200
392
  },
201
393
  {
202
- description: 'Yi-1.5 9B 支持16K Tokens, 提供高效、流畅的语言生成能力。',
203
- displayName: 'Yi-1.5 9B',
394
+ description: 'Yi-1.5-6B-Chat Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 32K 的上下文长度版本,预训练总量达到 3.6T 个 token',
395
+ displayName: 'Yi-1.5 6B Chat (Free)',
396
+ id: '01-ai/Yi-1.5-6B-Chat',
397
+ pricing: {
398
+ currency: 'CNY',
399
+ input: 0,
400
+ output: 0,
401
+ },
402
+ tokens: 4096,
403
+ },
404
+ {
405
+ description: 'Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳',
406
+ displayName: 'Yi-1.5 9B Chat 16K (Free)',
204
407
  id: '01-ai/Yi-1.5-9B-Chat-16K',
205
408
  pricing: {
206
409
  currency: 'CNY',
@@ -210,8 +413,8 @@ const SiliconCloud: ModelProviderCard = {
210
413
  tokens: 16_384,
211
414
  },
212
415
  {
213
- description: 'Yi-1.5 34B, 以丰富的训练样本在行业应用中提供优越表现。',
214
- displayName: 'Yi-1.5 34B',
416
+ description: 'Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度',
417
+ displayName: 'Yi-1.5 34B Chat 16K',
215
418
  id: '01-ai/Yi-1.5-34B-Chat-16K',
216
419
  pricing: {
217
420
  currency: 'CNY',
@@ -221,8 +424,8 @@ const SiliconCloud: ModelProviderCard = {
221
424
  tokens: 16_384,
222
425
  },
223
426
  {
224
- description: 'Gemma 2 Google轻量化的开源文本模型系列。',
225
- displayName: 'Gemma 2 9B',
427
+ description: 'Gemma Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
428
+ displayName: 'Gemma 2 9B (Free)',
226
429
  enabled: true,
227
430
  id: 'google/gemma-2-9b-it',
228
431
  pricing: {
@@ -233,7 +436,18 @@ const SiliconCloud: ModelProviderCard = {
233
436
  tokens: 8192,
234
437
  },
235
438
  {
236
- description: 'Gemma 2 延续了轻量化与高效的设计理念。',
439
+ description: 'Gemma Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
440
+ displayName: 'Gemma 2 9B (Pro)',
441
+ id: 'Pro/google/gemma-2-9b-it',
442
+ pricing: {
443
+ currency: 'CNY',
444
+ input: 0.6,
445
+ output: 0.6,
446
+ },
447
+ tokens: 8192,
448
+ },
449
+ {
450
+ description: 'Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新',
237
451
  displayName: 'Gemma 2 27B',
238
452
  enabled: true,
239
453
  id: 'google/gemma-2-27b-it',
@@ -245,9 +459,10 @@ const SiliconCloud: ModelProviderCard = {
245
459
  tokens: 8192,
246
460
  },
247
461
  {
248
- description: 'LLaMA 3.1 提供多语言支持,是业界领先的生成模型之一。',
249
- displayName: 'Llama 3.1 8B',
462
+ description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
463
+ displayName: 'Llama 3.1 8B Instruct (Free)',
250
464
  enabled: true,
465
+ functionCall: true,
251
466
  id: 'meta-llama/Meta-Llama-3.1-8B-Instruct',
252
467
  pricing: {
253
468
  currency: 'CNY',
@@ -257,9 +472,21 @@ const SiliconCloud: ModelProviderCard = {
257
472
  tokens: 32_768,
258
473
  },
259
474
  {
260
- description: 'LLaMA 3.1 70B 提供多语言的高效对话支持。',
261
- displayName: 'Llama 3.1 70B',
475
+ description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
476
+ displayName: 'Llama 3.1 8B Instruct (Pro)',
477
+ id: 'Pro/meta-llama/Meta-Llama-3.1-8B-Instruct',
478
+ pricing: {
479
+ currency: 'CNY',
480
+ input: 0.42,
481
+ output: 0.42,
482
+ },
483
+ tokens: 32_768,
484
+ },
485
+ {
486
+ description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 70B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
487
+ displayName: 'Llama 3.1 70B Instruct',
262
488
  enabled: true,
489
+ functionCall: true,
263
490
  id: 'meta-llama/Meta-Llama-3.1-70B-Instruct',
264
491
  pricing: {
265
492
  currency: 'CNY',
@@ -269,8 +496,8 @@ const SiliconCloud: ModelProviderCard = {
269
496
  tokens: 32_768,
270
497
  },
271
498
  {
272
- description: 'LLaMA 3.1 405B 指令微调模型针对多语言对话场景进行了优化。',
273
- displayName: 'Llama 3.1 405B',
499
+ description: 'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 405B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
500
+ displayName: 'Llama 3.1 405B Instruct',
274
501
  enabled: true,
275
502
  id: 'meta-llama/Meta-Llama-3.1-405B-Instruct',
276
503
  pricing: {
@@ -281,8 +508,8 @@ const SiliconCloud: ModelProviderCard = {
281
508
  tokens: 32_768,
282
509
  },
283
510
  {
284
- description: 'Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。',
285
- displayName: 'Llama 3.1 Nemotron 70B',
511
+ description: 'Llama-3.1-Nemotron-70B-Instruct 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练',
512
+ displayName: 'Llama 3.1 Nemotron 70B Instruct',
286
513
  enabled: true,
287
514
  id: 'nvidia/Llama-3.1-Nemotron-70B-Instruct',
288
515
  pricing: {
@@ -292,6 +519,29 @@ const SiliconCloud: ModelProviderCard = {
292
519
  },
293
520
  tokens: 32_768,
294
521
  },
522
+ {
523
+ description: 'TeleChat2大模型是由中国电信从0到1自主研发的生成式语义大模型,支持百科问答、代码生成、长文生成等功能,为用户提供对话咨询服务,能够与用户进行对话互动,回答问题,协助创作,高效便捷地帮助用户获取信息、知识和灵感。模型在幻觉问题、长文生成、逻辑理解等方面均有较出色表现。',
524
+ displayName: 'TeleChat2',
525
+ id: 'TeleAI/TeleChat2',
526
+ pricing: {
527
+ currency: 'CNY',
528
+ input: 1.33,
529
+ output: 1.33,
530
+ },
531
+ tokens: 8192,
532
+ },
533
+ {
534
+ description: 'TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现',
535
+ displayName: 'TeleMM',
536
+ id: 'TeleAI/TeleMM',
537
+ pricing: {
538
+ currency: 'CNY',
539
+ input: 1.33,
540
+ output: 1.33,
541
+ },
542
+ tokens: 32_768,
543
+ vision: true,
544
+ },
295
545
  ],
296
546
  checkModel: 'Qwen/Qwen2.5-7B-Instruct',
297
547
  description: 'SiliconCloud,基于优秀开源基础模型的高性价比 GenAI 云服务',
@@ -61,6 +61,14 @@ const TogetherAI: ModelProviderCard = {
61
61
  id: 'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
62
62
  tokens: 130_815,
63
63
  },
64
+ {
65
+ description:
66
+ 'Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练',
67
+ displayName: 'Llama 3.1 Nemotron 70B',
68
+ enabled: true,
69
+ id: 'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
70
+ tokens: 32_768,
71
+ },
64
72
  {
65
73
  description: 'Llama 3 8B Instruct Turbo 是一款高效能的大语言模型,支持广泛的应用场景。',
66
74
  displayName: 'Llama 3 8B Instruct Turbo',
@@ -110,6 +118,12 @@ const TogetherAI: ModelProviderCard = {
110
118
  id: 'meta-llama/Llama-2-70b-hf',
111
119
  tokens: 4096,
112
120
  },
121
+ {
122
+ description: 'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
123
+ displayName: 'CodeLlama 34B Instruct',
124
+ id: 'codellama/CodeLlama-34b-Instruct-hf',
125
+ tokens: 16_384,
126
+ },
113
127
  {
114
128
  description: 'Gemma 2 9B 由Google开发,提供高效的指令响应和综合能力。',
115
129
  displayName: 'Gemma 2 9B',
@@ -177,6 +191,12 @@ const TogetherAI: ModelProviderCard = {
177
191
  id: 'mistralai/Mixtral-8x22B-Instruct-v0.1',
178
192
  tokens: 65_536,
179
193
  },
194
+ {
195
+ description: 'WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。',
196
+ displayName: 'WizardLM-2 8x22B',
197
+ id: 'microsoft/WizardLM-2-8x22B',
198
+ tokens: 65_536,
199
+ },
180
200
  {
181
201
  description: 'DeepSeek LLM Chat (67B) 是创新的 AI 模型 提供深度语言理解和互动能力。',
182
202
  displayName: 'DeepSeek LLM Chat (67B)',
@@ -184,6 +204,13 @@ const TogetherAI: ModelProviderCard = {
184
204
  id: 'deepseek-ai/deepseek-llm-67b-chat',
185
205
  tokens: 4096,
186
206
  },
207
+ {
208
+ description: 'QwQ模型是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。',
209
+ displayName: 'QwQ 32B Preview',
210
+ enabled: true,
211
+ id: 'Qwen/QwQ-32B-Preview',
212
+ tokens: 32_768,
213
+ },
187
214
  {
188
215
  description: 'Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。',
189
216
  displayName: 'Qwen 2.5 7B Instruct Turbo',
@@ -199,21 +226,15 @@ const TogetherAI: ModelProviderCard = {
199
226
  tokens: 32_768,
200
227
  },
201
228
  {
202
- description: 'Qwen 2 Instruct (72B) 为企业级应用提供精准的指令理解和响应。',
203
- displayName: 'Qwen 2 Instruct (72B)',
204
- id: 'Qwen/Qwen2-72B-Instruct',
205
- tokens: 32_768,
206
- },
207
- {
208
- description: 'Qwen 1.5 Chat (72B) 提供快速响应和自然对话能力,适合多语言环境。',
209
- displayName: 'Qwen 1.5 Chat (72B)',
210
- id: 'Qwen/Qwen1.5-72B-Chat',
229
+ description: 'Qwen2.5 Coder 32B Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
230
+ displayName: 'Qwen 2.5 Coder 32B Instruct',
231
+ id: 'Qwen/Qwen2.5-Coder-32B-Instruct',
211
232
  tokens: 32_768,
212
233
  },
213
234
  {
214
- description: 'Qwen 1.5 Chat (110B) 是一款高效能的对话模型,支持复杂对话场景。',
215
- displayName: 'Qwen 1.5 Chat (110B)',
216
- id: 'Qwen/Qwen1.5-110B-Chat',
235
+ description: 'Qwen 2 Instruct (72B) 为企业级应用提供精准的指令理解和响应。',
236
+ displayName: 'Qwen 2 Instruct (72B)',
237
+ id: 'Qwen/Qwen2-72B-Instruct',
217
238
  tokens: 32_768,
218
239
  },
219
240
  {
@@ -234,12 +255,6 @@ const TogetherAI: ModelProviderCard = {
234
255
  id: 'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO',
235
256
  tokens: 32_768,
236
257
  },
237
- {
238
- description: 'Nous Hermes-2 Yi (34B) 提供优化的语言输出和多样化的应用可能。',
239
- displayName: 'Nous Hermes-2 Yi (34B)',
240
- id: 'NousResearch/Nous-Hermes-2-Yi-34B',
241
- tokens: 4096,
242
- },
243
258
  {
244
259
  description: 'MythoMax-L2 (13B) 是一种创新模型,适合多领域应用和复杂任务。',
245
260
  displayName: 'MythoMax-L2 (13B)',