@lobehub/chat 1.22.12 → 1.22.13
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +26 -0
- package/package.json +1 -1
- package/src/config/modelProviders/github.ts +1 -1
- package/src/config/modelProviders/hunyuan.ts +11 -12
- package/src/config/modelProviders/mistral.ts +59 -1
- package/src/config/modelProviders/togetherai.ts +75 -9
- package/src/config/modelProviders/zhipu.ts +13 -15
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,32 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.22.13](https://github.com/lobehub/lobe-chat/compare/v1.22.12...v1.22.13)
|
6
|
+
|
7
|
+
<sup>Released on **2024-10-20**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Add Ministral model, update Together AI model list, add function call & vision.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Add Ministral model, closes [#4427](https://github.com/lobehub/lobe-chat/issues/4427) ([2042df8](https://github.com/lobehub/lobe-chat/commit/2042df8))
|
21
|
+
- **misc**: Update Together AI model list, add function call & vision, closes [#4393](https://github.com/lobehub/lobe-chat/issues/4393) ([d7fbf1b](https://github.com/lobehub/lobe-chat/commit/d7fbf1b))
|
22
|
+
|
23
|
+
</details>
|
24
|
+
|
25
|
+
<div align="right">
|
26
|
+
|
27
|
+
[](#readme-top)
|
28
|
+
|
29
|
+
</div>
|
30
|
+
|
5
31
|
### [Version 1.22.12](https://github.com/lobehub/lobe-chat/compare/v1.22.11...v1.22.12)
|
6
32
|
|
7
33
|
<sup>Released on **2024-10-20**</sup>
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.22.
|
3
|
+
"version": "1.22.13",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -71,31 +71,30 @@ const Hunyuan: ModelProviderCard = {
|
|
71
71
|
tokens: 32_000,
|
72
72
|
},
|
73
73
|
{
|
74
|
-
description: '
|
75
|
-
displayName: 'Hunyuan
|
74
|
+
description: '混元最新多模态模型,支持图片+文本输入生成文本内容。',
|
75
|
+
displayName: 'Hunyuan Vision',
|
76
76
|
enabled: true,
|
77
|
-
id: 'hunyuan-
|
77
|
+
id: 'hunyuan-vision',
|
78
78
|
maxOutput: 4000,
|
79
79
|
pricing: {
|
80
80
|
currency: 'CNY',
|
81
|
-
input:
|
82
|
-
output:
|
81
|
+
input: 18,
|
82
|
+
output: 18,
|
83
83
|
},
|
84
84
|
tokens: 8000,
|
85
|
+
vision: true,
|
85
86
|
},
|
86
87
|
{
|
87
|
-
description: '
|
88
|
-
displayName: 'Hunyuan
|
89
|
-
|
90
|
-
id: 'hunyuan-vision',
|
88
|
+
description: '混元最新代码生成模型,经过 200B 高质量代码数据增训基座模型,迭代半年高质量 SFT 数据训练,上下文长窗口长度增大到 8K,五大语言代码生成自动评测指标上位居前列;五大语言10项考量各方面综合代码任务人工高质量评测上,性能处于第一梯队',
|
89
|
+
displayName: 'Hunyuan Code',
|
90
|
+
id: 'hunyuan-code',
|
91
91
|
maxOutput: 4000,
|
92
92
|
pricing: {
|
93
93
|
currency: 'CNY',
|
94
|
-
input:
|
95
|
-
output:
|
94
|
+
input: 4,
|
95
|
+
output: 8,
|
96
96
|
},
|
97
97
|
tokens: 8000,
|
98
|
-
vision: true,
|
99
98
|
},
|
100
99
|
{
|
101
100
|
description: '混元最新 MOE 架构 FunctionCall 模型,经过高质量的 FunctionCall 数据训练,上下文窗口达 32K,在多个维度的评测指标上处于领先。',
|
@@ -11,6 +11,10 @@ const Mistral: ModelProviderCard = {
|
|
11
11
|
enabled: true,
|
12
12
|
functionCall: true,
|
13
13
|
id: 'open-mistral-nemo',
|
14
|
+
pricing: {
|
15
|
+
input: 0.15,
|
16
|
+
output: 0.15,
|
17
|
+
},
|
14
18
|
tokens: 128_000,
|
15
19
|
},
|
16
20
|
{
|
@@ -20,6 +24,10 @@ const Mistral: ModelProviderCard = {
|
|
20
24
|
enabled: true,
|
21
25
|
functionCall: true,
|
22
26
|
id: 'mistral-small-latest',
|
27
|
+
pricing: {
|
28
|
+
input: 0.2,
|
29
|
+
output: 0.6,
|
30
|
+
},
|
23
31
|
tokens: 128_000,
|
24
32
|
},
|
25
33
|
{
|
@@ -29,6 +37,10 @@ const Mistral: ModelProviderCard = {
|
|
29
37
|
enabled: true,
|
30
38
|
functionCall: true,
|
31
39
|
id: 'mistral-large-latest',
|
40
|
+
pricing: {
|
41
|
+
input: 2,
|
42
|
+
output: 6,
|
43
|
+
},
|
32
44
|
tokens: 128_000,
|
33
45
|
},
|
34
46
|
{
|
@@ -36,6 +48,10 @@ const Mistral: ModelProviderCard = {
|
|
36
48
|
displayName: 'Codestral',
|
37
49
|
enabled: true,
|
38
50
|
id: 'codestral-latest',
|
51
|
+
pricing: {
|
52
|
+
input: 0.2,
|
53
|
+
output: 0.6,
|
54
|
+
},
|
39
55
|
tokens: 32_768,
|
40
56
|
},
|
41
57
|
{
|
@@ -44,14 +60,44 @@ const Mistral: ModelProviderCard = {
|
|
44
60
|
displayName: 'Pixtral 12B',
|
45
61
|
enabled: true,
|
46
62
|
id: 'pixtral-12b-2409',
|
63
|
+
pricing: {
|
64
|
+
input: 0.15,
|
65
|
+
output: 0.15,
|
66
|
+
},
|
47
67
|
tokens: 128_000,
|
48
68
|
vision: true,
|
49
69
|
},
|
70
|
+
{
|
71
|
+
description:
|
72
|
+
'Ministral 3B 是Mistral的世界顶级边缘模型。',
|
73
|
+
displayName: 'Ministral 3B',
|
74
|
+
id: 'ministral-3b-latest',
|
75
|
+
pricing: {
|
76
|
+
input: 0.04,
|
77
|
+
output: 0.04,
|
78
|
+
},
|
79
|
+
tokens: 128_000,
|
80
|
+
},
|
81
|
+
{
|
82
|
+
description:
|
83
|
+
'Ministral 8B 是Mistral的性价比极高的边缘模型。',
|
84
|
+
displayName: 'Ministral 8B',
|
85
|
+
id: 'ministral-8b-latest',
|
86
|
+
pricing: {
|
87
|
+
input: 0.1,
|
88
|
+
output: 0.1,
|
89
|
+
},
|
90
|
+
tokens: 128_000,
|
91
|
+
},
|
50
92
|
{
|
51
93
|
description:
|
52
94
|
'Mistral 7B是一款紧凑但高性能的模型,擅长批量处理和简单任务,如分类和文本生成,具有良好的推理能力。',
|
53
95
|
displayName: 'Mistral 7B',
|
54
96
|
id: 'open-mistral-7b',
|
97
|
+
pricing: {
|
98
|
+
input: 0.25,
|
99
|
+
output: 0.25,
|
100
|
+
},
|
55
101
|
tokens: 32_768,
|
56
102
|
},
|
57
103
|
{
|
@@ -59,6 +105,10 @@ const Mistral: ModelProviderCard = {
|
|
59
105
|
'Mixtral 8x7B是一个稀疏专家模型,利用多个参数提高推理速度,适合处理多语言和代码生成任务。',
|
60
106
|
displayName: 'Mixtral 8x7B',
|
61
107
|
id: 'open-mixtral-8x7b',
|
108
|
+
pricing: {
|
109
|
+
input: 0.7,
|
110
|
+
output: 0.7,
|
111
|
+
},
|
62
112
|
tokens: 32_768,
|
63
113
|
},
|
64
114
|
{
|
@@ -67,6 +117,10 @@ const Mistral: ModelProviderCard = {
|
|
67
117
|
displayName: 'Mixtral 8x22B',
|
68
118
|
functionCall: true,
|
69
119
|
id: 'open-mixtral-8x22b',
|
120
|
+
pricing: {
|
121
|
+
input: 2,
|
122
|
+
output: 6,
|
123
|
+
},
|
70
124
|
tokens: 65_536,
|
71
125
|
},
|
72
126
|
{
|
@@ -74,10 +128,14 @@ const Mistral: ModelProviderCard = {
|
|
74
128
|
'Codestral Mamba是专注于代码生成的Mamba 2语言模型,为先进的代码和推理任务提供强力支持。',
|
75
129
|
displayName: 'Codestral Mamba',
|
76
130
|
id: 'open-codestral-mamba',
|
131
|
+
pricing: {
|
132
|
+
input: 0.15,
|
133
|
+
output: 0.15,
|
134
|
+
},
|
77
135
|
tokens: 256_000,
|
78
136
|
},
|
79
137
|
],
|
80
|
-
checkModel: '
|
138
|
+
checkModel: 'ministral-3b-latest',
|
81
139
|
description:
|
82
140
|
'Mistral 提供先进的通用、专业和研究型模型,广泛应用于复杂推理、多语言任务、代码生成等领域,通过功能调用接口,用户可以集成自定义功能,实现特定应用。',
|
83
141
|
id: 'mistral',
|
@@ -1,14 +1,45 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref
|
4
|
-
// ref
|
3
|
+
// ref: https://docs.together.ai/docs/chat-models
|
4
|
+
// ref: https://www.together.ai/pricing
|
5
5
|
const TogetherAI: ModelProviderCard = {
|
6
6
|
chatModels: [
|
7
|
+
{
|
8
|
+
description: 'LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
|
9
|
+
displayName: 'Llama 3.2 3B Instruct Turbo',
|
10
|
+
enabled: true,
|
11
|
+
id: 'meta-llama/Llama-3.2-3B-Instruct-Turbo',
|
12
|
+
tokens: 131_072,
|
13
|
+
},
|
14
|
+
{
|
15
|
+
description: 'LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
|
16
|
+
displayName: 'Llama 3.2 11B Vision Instruct Turbo (Free)',
|
17
|
+
enabled: true,
|
18
|
+
id: 'meta-llama/Llama-Vision-Free',
|
19
|
+
tokens: 131_072,
|
20
|
+
vision: true,
|
21
|
+
},
|
22
|
+
{
|
23
|
+
description: 'LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
|
24
|
+
displayName: 'Llama 3.2 11B Vision Instruct Turbo',
|
25
|
+
id: 'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
|
26
|
+
tokens: 131_072,
|
27
|
+
vision: true,
|
28
|
+
},
|
29
|
+
{
|
30
|
+
description: 'LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
|
31
|
+
displayName: 'Llama 3.2 90B Vision Instruct Turbo',
|
32
|
+
enabled: true,
|
33
|
+
id: 'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
|
34
|
+
tokens: 131_072,
|
35
|
+
vision: true,
|
36
|
+
},
|
7
37
|
{
|
8
38
|
description:
|
9
39
|
'Llama 3.1 8B 模型采用FP8量化,支持高达131,072个上下文标记,是开源模型中的佼佼者,适合复杂任务,表现优异于许多行业基准。',
|
10
40
|
displayName: 'Llama 3.1 8B Instruct Turbo',
|
11
41
|
enabled: true,
|
42
|
+
functionCall: true,
|
12
43
|
id: 'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo',
|
13
44
|
tokens: 131_072,
|
14
45
|
},
|
@@ -17,6 +48,7 @@ const TogetherAI: ModelProviderCard = {
|
|
17
48
|
'Llama 3.1 70B 模型经过精细调整,适用于高负载应用,量化至FP8提供更高效的计算能力和准确性,确保在复杂场景中的卓越表现。',
|
18
49
|
displayName: 'Llama 3.1 70B Instruct Turbo',
|
19
50
|
enabled: true,
|
51
|
+
functionCall: true,
|
20
52
|
id: 'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo',
|
21
53
|
tokens: 131_072,
|
22
54
|
},
|
@@ -25,8 +57,9 @@ const TogetherAI: ModelProviderCard = {
|
|
25
57
|
'405B 的 Llama 3.1 Turbo 模型,为大数据处理提供超大容量的上下文支持,在超大规模的人工智能应用中表现突出。',
|
26
58
|
displayName: 'Llama 3.1 405B Instruct Turbo',
|
27
59
|
enabled: true,
|
60
|
+
functionCall: true,
|
28
61
|
id: 'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
|
29
|
-
tokens:
|
62
|
+
tokens: 130_815,
|
30
63
|
},
|
31
64
|
{
|
32
65
|
description: 'Llama 3 8B Instruct Turbo 是一款高效能的大语言模型,支持广泛的应用场景。',
|
@@ -54,14 +87,14 @@ const TogetherAI: ModelProviderCard = {
|
|
54
87
|
tokens: 8192,
|
55
88
|
},
|
56
89
|
{
|
57
|
-
description: '
|
58
|
-
displayName: '
|
90
|
+
description: 'Llama 3 8B Instruct Reference 提供多语言支持,涵盖丰富的领域知识。',
|
91
|
+
displayName: 'Llama 3 8B Instruct Reference',
|
59
92
|
id: 'meta-llama/Llama-3-8b-chat-hf',
|
60
93
|
tokens: 8192,
|
61
94
|
},
|
62
95
|
{
|
63
|
-
description: '
|
64
|
-
displayName: '
|
96
|
+
description: 'Llama 3 70B Instruct Reference 是功能强大的聊天模型,支持复杂的对话需求。',
|
97
|
+
displayName: 'Llama 3 70B Instruct Reference',
|
65
98
|
id: 'meta-llama/Llama-3-70b-chat-hf',
|
66
99
|
tokens: 8192,
|
67
100
|
},
|
@@ -71,6 +104,12 @@ const TogetherAI: ModelProviderCard = {
|
|
71
104
|
id: 'meta-llama/Llama-2-13b-chat-hf',
|
72
105
|
tokens: 4096,
|
73
106
|
},
|
107
|
+
{
|
108
|
+
description: 'LLaMA-2 提供优秀的语言处理能力和出色的交互体验。',
|
109
|
+
displayName: 'LLaMA-2 (70B)',
|
110
|
+
id: 'meta-llama/Llama-2-70b-hf',
|
111
|
+
tokens: 4096,
|
112
|
+
},
|
74
113
|
{
|
75
114
|
description: 'Gemma 2 9B 由Google开发,提供高效的指令响应和综合能力。',
|
76
115
|
displayName: 'Gemma 2 9B',
|
@@ -107,16 +146,30 @@ const TogetherAI: ModelProviderCard = {
|
|
107
146
|
{
|
108
147
|
description: 'Mistral (7B) Instruct 以高性能著称,适用于多种语言任务。',
|
109
148
|
displayName: 'Mistral (7B) Instruct',
|
149
|
+
functionCall: true,
|
110
150
|
id: 'mistralai/Mistral-7B-Instruct-v0.1',
|
111
151
|
tokens: 8192,
|
112
152
|
},
|
153
|
+
{
|
154
|
+
description: 'Mistral 7B是一款紧凑但高性能的模型,擅长批量处理和简单任务,如分类和文本生成,具有良好的推理能力。',
|
155
|
+
displayName: 'Mistral (7B)',
|
156
|
+
id: 'mistralai/Mistral-7B-v0.1',
|
157
|
+
tokens: 8192,
|
158
|
+
},
|
113
159
|
{
|
114
160
|
description: 'Mixtral-8x7B Instruct (46.7B) 提供高容量的计算框架,适合大规模数据处理。',
|
115
161
|
displayName: 'Mixtral-8x7B Instruct (46.7B)',
|
116
162
|
enabled: true,
|
163
|
+
functionCall: true,
|
117
164
|
id: 'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
118
165
|
tokens: 32_768,
|
119
166
|
},
|
167
|
+
{
|
168
|
+
description: 'Mixtral 8x7B是一个稀疏专家模型,利用多个参数提高推理速度,适合处理多语言和代码生成任务。',
|
169
|
+
displayName: 'Mixtral-8x7B (46.7B)',
|
170
|
+
id: 'mistralai/Mixtral-8x7B-v0.1',
|
171
|
+
tokens: 32_768,
|
172
|
+
},
|
120
173
|
{
|
121
174
|
description: 'Mixtral-8x22B Instruct (141B) 是一款超级大语言模型,支持极高的处理需求。',
|
122
175
|
displayName: 'Mixtral-8x22B Instruct (141B)',
|
@@ -131,10 +184,23 @@ const TogetherAI: ModelProviderCard = {
|
|
131
184
|
id: 'deepseek-ai/deepseek-llm-67b-chat',
|
132
185
|
tokens: 4096,
|
133
186
|
},
|
187
|
+
{
|
188
|
+
description: 'Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。',
|
189
|
+
displayName: 'Qwen 2.5 7B Instruct Turbo',
|
190
|
+
enabled: true,
|
191
|
+
id: 'Qwen/Qwen2.5-7B-Instruct-Turbo',
|
192
|
+
tokens: 32_768,
|
193
|
+
},
|
194
|
+
{
|
195
|
+
description: 'Qwen2.5 是全新的大型语言模型系列,旨在优化指令式任务的处理。',
|
196
|
+
displayName: 'Qwen 2.5 72B Instruct Turbo',
|
197
|
+
enabled: true,
|
198
|
+
id: 'Qwen/Qwen2.5-72B-Instruct-Turbo',
|
199
|
+
tokens: 32_768,
|
200
|
+
},
|
134
201
|
{
|
135
202
|
description: 'Qwen 2 Instruct (72B) 为企业级应用提供精准的指令理解和响应。',
|
136
203
|
displayName: 'Qwen 2 Instruct (72B)',
|
137
|
-
enabled: true,
|
138
204
|
id: 'Qwen/Qwen2-72B-Instruct',
|
139
205
|
tokens: 32_768,
|
140
206
|
},
|
@@ -187,7 +253,7 @@ const TogetherAI: ModelProviderCard = {
|
|
187
253
|
tokens: 32_768,
|
188
254
|
},
|
189
255
|
],
|
190
|
-
checkModel: 'meta-llama/
|
256
|
+
checkModel: 'meta-llama/Llama-Vision-Free',
|
191
257
|
description:
|
192
258
|
'Together AI 致力于通过创新的 AI 模型实现领先的性能,提供广泛的自定义能力,包括快速扩展支持和直观的部署流程,满足企业的各种需求。',
|
193
259
|
id: 'togetherai',
|
@@ -69,6 +69,19 @@ const ZhiPu: ModelProviderCard = {
|
|
69
69
|
},
|
70
70
|
tokens: 8192,
|
71
71
|
},
|
72
|
+
{
|
73
|
+
description:
|
74
|
+
'GLM-4-AllTools 是一个多功能智能体模型,优化以支持复杂指令规划与工具调用,如网络浏览、代码解释和文本生成,适用于多任务执行。',
|
75
|
+
displayName: 'GLM-4-AllTools',
|
76
|
+
functionCall: true,
|
77
|
+
id: 'glm-4-alltools',
|
78
|
+
pricing: {
|
79
|
+
currency: 'CNY',
|
80
|
+
input: 100,
|
81
|
+
output: 100,
|
82
|
+
},
|
83
|
+
tokens: 128_000,
|
84
|
+
},
|
72
85
|
{
|
73
86
|
description:
|
74
87
|
'GLM-4-Plus 作为高智能旗舰,具备强大的处理长文本和复杂任务的能力,性能全面提升。',
|
@@ -132,21 +145,6 @@ const ZhiPu: ModelProviderCard = {
|
|
132
145
|
tokens: 2048,
|
133
146
|
vision: true,
|
134
147
|
},
|
135
|
-
{
|
136
|
-
description:
|
137
|
-
'GLM-4-AllTools 是一个多功能智能体模型,优化以支持复杂指令规划与工具调用,如网络浏览、代码解释和文本生成,适用于多任务执行。',
|
138
|
-
displayName: 'GLM-4-AllTools',
|
139
|
-
enabled: true,
|
140
|
-
functionCall: true,
|
141
|
-
id: 'glm-4-alltools',
|
142
|
-
pricing: {
|
143
|
-
currency: 'CNY',
|
144
|
-
input: 100,
|
145
|
-
output: 100,
|
146
|
-
},
|
147
|
-
tokens: 128_000,
|
148
|
-
vision: true,
|
149
|
-
},
|
150
148
|
{
|
151
149
|
description:
|
152
150
|
'CodeGeeX-4 是强大的AI编程助手,支持多种编程语言的智能问答与代码补全,提升开发效率。',
|