@lobehub/chat 1.22.10 → 1.22.12
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/README.md +4 -4
- package/docs/self-hosting/advanced/auth/next-auth/microsoft-entra-id.mdx +5 -5
- package/docs/self-hosting/advanced/auth/next-auth/microsoft-entra-id.zh-CN.mdx +5 -5
- package/docs/self-hosting/advanced/auth.mdx +3 -3
- package/docs/self-hosting/advanced/auth.zh-CN.mdx +3 -3
- package/docs/self-hosting/environment-variables/auth.mdx +2 -2
- package/docs/self-hosting/environment-variables/auth.zh-CN.mdx +2 -2
- package/package.json +1 -1
- package/src/config/modelProviders/moonshot.ts +8 -8
- package/src/config/modelProviders/siliconcloud.ts +12 -2
- package/src/config/modelProviders/stepfun.ts +29 -29
- package/src/config/modelProviders/zeroone.ts +38 -39
- package/src/config/modelProviders/zhipu.ts +53 -54
- package/src/libs/next-auth/sso-providers/index.ts +2 -0
- package/src/libs/next-auth/sso-providers/microsoft-entra-id.ts +15 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,56 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.22.12](https://github.com/lobehub/lobe-chat/compare/v1.22.11...v1.22.12)
|
6
|
+
|
7
|
+
<sup>Released on **2024-10-20**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Add Llama 3.1 Nemotron 70B model & reorder some provider model list.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Add Llama 3.1 Nemotron 70B model & reorder some provider model list, closes [#4424](https://github.com/lobehub/lobe-chat/issues/4424) ([9355a3d](https://github.com/lobehub/lobe-chat/commit/9355a3d))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
### [Version 1.22.11](https://github.com/lobehub/lobe-chat/compare/v1.22.10...v1.22.11)
|
31
|
+
|
32
|
+
<sup>Released on **2024-10-20**</sup>
|
33
|
+
|
34
|
+
#### ♻ Code Refactoring
|
35
|
+
|
36
|
+
- **misc**: Refactor azure ad to ms entra id.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### Code refactoring
|
44
|
+
|
45
|
+
- **misc**: Refactor azure ad to ms entra id, closes [#4168](https://github.com/lobehub/lobe-chat/issues/4168) ([4fa9588](https://github.com/lobehub/lobe-chat/commit/4fa9588))
|
46
|
+
|
47
|
+
</details>
|
48
|
+
|
49
|
+
<div align="right">
|
50
|
+
|
51
|
+
[](#readme-top)
|
52
|
+
|
53
|
+
</div>
|
54
|
+
|
5
55
|
### [Version 1.22.10](https://github.com/lobehub/lobe-chat/compare/v1.22.9...v1.22.10)
|
6
56
|
|
7
57
|
<sup>Released on **2024-10-20**</sup>
|
package/README.md
CHANGED
@@ -68,7 +68,7 @@ One-click **FREE** deployment of your private OpenAI ChatGPT/Claude/Gemini/Groq/
|
|
68
68
|
- [`*` What's more](#-whats-more)
|
69
69
|
- [⚡️ Performance](#️-performance)
|
70
70
|
- [🛳 Self Hosting](#-self-hosting)
|
71
|
-
- [`A` Deploying with Vercel, Zeabur or
|
71
|
+
- [`A` Deploying with Vercel, Zeabur , Sealos or Alibaba Cloud](#a-deploying-with-vercel-zeabur--sealos-or-alibaba-cloud)
|
72
72
|
- [`B` Deploying with Docker](#b-deploying-with-docker)
|
73
73
|
- [Environment Variable](#environment-variable)
|
74
74
|
- [📦 Ecosystem](#-ecosystem)
|
@@ -457,7 +457,7 @@ LobeChat provides Self-Hosted Version with Vercel, Alibaba Cloud, and [Docker Im
|
|
457
457
|
<div align="center">
|
458
458
|
|
459
459
|
| Deploy with Vercel | Deploy with Zeabur | Deploy with Sealos | Deploy with RepoCloud | Deploy with Alibaba Cloud |
|
460
|
-
|
460
|
+
| :-------------------------------------: | :---------------------------------------------------------: | :---------------------------------------------------------: | :---------------------------------------------------------------: | :-----------------------------------------------------------------------: |
|
461
461
|
| [![][deploy-button-image]][deploy-link] | [![][deploy-on-zeabur-button-image]][deploy-on-zeabur-link] | [![][deploy-on-sealos-button-image]][deploy-on-sealos-link] | [![][deploy-on-repocloud-button-image]][deploy-on-repocloud-link] | [![][deploy-on-alibaba-cloud-button-image]][deploy-on-alibaba-cloud-link] |
|
462
462
|
|
463
463
|
</div>
|
@@ -705,14 +705,14 @@ This project is [Apache 2.0](./LICENSE) licensed.
|
|
705
705
|
[codespaces-shield]: https://github.com/codespaces/badge.svg
|
706
706
|
[deploy-button-image]: https://vercel.com/button
|
707
707
|
[deploy-link]: https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flobehub%2Flobe-chat&env=OPENAI_API_KEY,ACCESS_CODE&envDescription=Find%20your%20OpenAI%20API%20Key%20by%20click%20the%20right%20Learn%20More%20button.%20%7C%20Access%20Code%20can%20protect%20your%20website&envLink=https%3A%2F%2Fplatform.openai.com%2Faccount%2Fapi-keys&project-name=lobe-chat&repository-name=lobe-chat
|
708
|
+
[deploy-on-alibaba-cloud-button-image]: https://service-info-public.oss-cn-hangzhou.aliyuncs.com/computenest-en.svg
|
709
|
+
[deploy-on-alibaba-cloud-link]: https://computenest.console.aliyun.com/service/instance/create/default?type=user&ServiceName=LobeChat%E7%A4%BE%E5%8C%BA%E7%89%88
|
708
710
|
[deploy-on-repocloud-button-image]: https://d16t0pc4846x52.cloudfront.net/deploylobe.svg
|
709
711
|
[deploy-on-repocloud-link]: https://repocloud.io/details/?app_id=248
|
710
712
|
[deploy-on-sealos-button-image]: https://raw.githubusercontent.com/labring-actions/templates/main/Deploy-on-Sealos.svg
|
711
713
|
[deploy-on-sealos-link]: https://cloud.sealos.io/?openapp=system-template%3FtemplateName%3Dlobe-chat
|
712
714
|
[deploy-on-zeabur-button-image]: https://zeabur.com/button.svg
|
713
715
|
[deploy-on-zeabur-link]: https://zeabur.com/templates/VZGGTI
|
714
|
-
[deploy-on-alibaba-cloud-button-image]: https://service-info-public.oss-cn-hangzhou.aliyuncs.com/computenest-en.svg
|
715
|
-
[deploy-on-alibaba-cloud-link]: https://computenest.console.aliyun.com/service/instance/create/default?type=user&ServiceName=LobeChat%E7%A4%BE%E5%8C%BA%E7%89%88
|
716
716
|
[discord-link]: https://discord.gg/AYFPHvv2jT
|
717
717
|
[discord-shield]: https://img.shields.io/discord/1127171173982154893?color=5865F2&label=discord&labelColor=black&logo=discord&logoColor=white&style=flat-square
|
718
718
|
[discord-shield-badge]: https://img.shields.io/discord/1127171173982154893?color=5865F2&label=discord&labelColor=black&logo=discord&logoColor=white&style=for-the-badge
|
@@ -25,7 +25,7 @@ Fill in the desired application name to be displayed to organizational users, ch
|
|
25
25
|
In the `Redirect URI (optional)` section, for the application type, select `Web`, and in the Callback URL, enter:
|
26
26
|
|
27
27
|
```bash
|
28
|
-
https://your-domain/api/auth/callback/
|
28
|
+
https://your-domain/api/auth/callback/microsoft-entra-id
|
29
29
|
```
|
30
30
|
|
31
31
|
<Callout type={'info'}>
|
@@ -72,10 +72,10 @@ When deploying LobeChat, you need to configure the following environment variabl
|
|
72
72
|
| Environment Variable | Type | Description |
|
73
73
|
| --- | --- | --- |
|
74
74
|
| `NEXT_AUTH_SECRET` | Required | Key used to encrypt Auth.js session tokens. You can generate the key using the following command: `openssl rand -base64 32` |
|
75
|
-
| `NEXT_AUTH_SSO_PROVIDERS` | Required | Select the single sign-on provider for LoboChat. Use `
|
76
|
-
| `
|
77
|
-
| `
|
78
|
-
| `
|
75
|
+
| `NEXT_AUTH_SSO_PROVIDERS` | Required | Select the single sign-on provider for LoboChat. Use `microsoft-entra-id` for Microsoft Entra ID. |
|
76
|
+
| `AUTH_MICROSOFT_ENTRA_ID_ID` | Required | Client ID of the Microsoft Entra ID application. |
|
77
|
+
| `AUTH_MICROSOFT_ENTRA_ID_SECRET` | Required | Client Secret of the Microsoft Entra ID application. |
|
78
|
+
| `AUTH_MICROSOFT_ENTRA_ID_TENANT_ID` | Required | Tenant ID of the Microsoft Entra ID application. |
|
79
79
|
| `NEXTAUTH_URL` | Required | This URL is used to specify the callback address for Auth.js when performing OAuth authentication. It is only necessary to set it when the default generated redirect address is incorrect. `https://example.com/api/auth` |
|
80
80
|
|
81
81
|
<Callout type={'tip'}>
|
@@ -24,7 +24,7 @@ tags:
|
|
24
24
|
在 `Redirect URI (optional)` 中,应用类型选择 `Web`,Callback URL, 处填写:
|
25
25
|
|
26
26
|
```bash
|
27
|
-
https://your-domain/api/auth/callback/
|
27
|
+
https://your-domain/api/auth/callback/microsoft-entra-id
|
28
28
|
```
|
29
29
|
|
30
30
|
<Callout type={'info'}>
|
@@ -69,10 +69,10 @@ https://your-domain/api/auth/callback/azure-ad
|
|
69
69
|
| 环境变量 | 类型 | 描述 |
|
70
70
|
| --- | --- | --- |
|
71
71
|
| `NEXT_AUTH_SECRET` | 必选 | 用于加密 Auth.js 会话令牌的密钥。您可以使用以下命令生成秘钥: `openssl rand -base64 32` |
|
72
|
-
| `NEXT_AUTH_SSO_PROVIDERS` | 必选 | 选择 LoboChat 的单点登录提供商。使用 Microsoft Entra ID 请填写 `
|
73
|
-
| `
|
74
|
-
| `
|
75
|
-
| `
|
72
|
+
| `NEXT_AUTH_SSO_PROVIDERS` | 必选 | 选择 LoboChat 的单点登录提供商。使用 Microsoft Entra ID 请填写 `microsoft-entra-id`。 |
|
73
|
+
| `AUTH_MICROSOFT_ENTRA_ID_ID` | 必选 | Microsoft Entra ID 应用程序的 Client ID |
|
74
|
+
| `AUTH_MICROSOFT_ENTRA_ID_SECRET` | 必选 | Microsoft Entra ID 应用程序的 Client Secret |
|
75
|
+
| `AUTH_MICROSOFT_ENTRA_ID_TENANT_ID` | 必选 | Microsoft Entra ID 应用程序的 Tenant ID |
|
76
76
|
| `NEXTAUTH_URL` | 必选 | 该 URL 用于指定 Auth.js 在执行 OAuth 验证时的回调地址,当默认生成的重定向地址发生不正确时才需要设置。`https://example.com/api/auth` |
|
77
77
|
|
78
78
|
<Callout type={'tip'}>
|
@@ -31,7 +31,7 @@ Before using NextAuth, please set the following variables in LobeChat's environm
|
|
31
31
|
| --- | --- | --- |
|
32
32
|
| `NEXT_AUTH_SECRET` | Required | The key used to encrypt Auth.js session tokens. You can use the following command: `openssl rand -base64 32`, or visit `https://generate-secret.vercel.app/32` to generate the key. |
|
33
33
|
| `NEXTAUTH_URL` | Required | This URL specifies the callback address for Auth.js when performing OAuth verification. Set this only if the default generated redirect address is incorrect. `https://example.com/api/auth` |
|
34
|
-
| `NEXT_AUTH_SSO_PROVIDERS` | Optional | This environment variable is used to enable multiple identity verification sources simultaneously, separated by commas, for example, `auth0,
|
34
|
+
| `NEXT_AUTH_SSO_PROVIDERS` | Optional | This environment variable is used to enable multiple identity verification sources simultaneously, separated by commas, for example, `auth0,microsoft-entra-id,authentik`. |
|
35
35
|
|
36
36
|
Currently supported identity verification services include:
|
37
37
|
|
@@ -56,7 +56,7 @@ Click on the links to view the corresponding platform's configuration documentat
|
|
56
56
|
|
57
57
|
## Advanced Configuration
|
58
58
|
|
59
|
-
To simultaneously enable multiple identity verification sources, please set the `NEXT_AUTH_SSO_PROVIDERS` environment variable, separating them with commas, for example, `auth0,
|
59
|
+
To simultaneously enable multiple identity verification sources, please set the `NEXT_AUTH_SSO_PROVIDERS` environment variable, separating them with commas, for example, `auth0,microsoft-entra-id,authentik`.
|
60
60
|
|
61
61
|
The order corresponds to the display order of the SSO providers.
|
62
62
|
|
@@ -69,7 +69,7 @@ The order corresponds to the display order of the SSO providers.
|
|
69
69
|
| Cloudflare Zero Trust | `cloudflare-zero-trust` |
|
70
70
|
| Github | `github` |
|
71
71
|
| Logto | `logto` |
|
72
|
-
| Microsoft Entra ID | `
|
72
|
+
| Microsoft Entra ID | `microsoft-entra-id` |
|
73
73
|
| ZITADEL | `zitadel` |
|
74
74
|
|
75
75
|
## Other SSO Providers
|
@@ -28,7 +28,7 @@ LobeChat 与 Clerk 做了深度集成,能够为用户提供一个更加安全
|
|
28
28
|
| --- | --- | --- |
|
29
29
|
| `NEXT_AUTH_SECRET` | 必选 | 用于加密 Auth.js 会话令牌的密钥。您可以使用以下命令: `openssl rand -base64 32`,或者访问 `https://generate-secret.vercel.app/32` 生成秘钥。 |
|
30
30
|
| `NEXTAUTH_URL` | 必选 | 该 URL 用于指定 Auth.js 在执行 OAuth 验证时的回调地址,当默认生成的重定向地址发生不正确时才需要设置。`https://example.com/api/auth` |
|
31
|
-
| `NEXT_AUTH_SSO_PROVIDERS` | 可选 | 该环境变量用于同时启用多个身份验证源,以逗号 `,` 分割,例如 `auth0,
|
31
|
+
| `NEXT_AUTH_SSO_PROVIDERS` | 可选 | 该环境变量用于同时启用多个身份验证源,以逗号 `,` 分割,例如 `auth0,microsoft-entra-id,authentik`。 |
|
32
32
|
|
33
33
|
目前支持的身份验证服务有:
|
34
34
|
|
@@ -53,7 +53,7 @@ LobeChat 与 Clerk 做了深度集成,能够为用户提供一个更加安全
|
|
53
53
|
|
54
54
|
## 进阶配置
|
55
55
|
|
56
|
-
同时启用多个身份验证源请设置 `NEXT_AUTH_SSO_PROVIDERS` 环境变量,以逗号 `,` 分割,例如 `auth0,
|
56
|
+
同时启用多个身份验证源请设置 `NEXT_AUTH_SSO_PROVIDERS` 环境变量,以逗号 `,` 分割,例如 `auth0,microsoft-entra-id,authentik`。
|
57
57
|
|
58
58
|
顺序为 SSO 提供商的显示顺序。
|
59
59
|
|
@@ -66,7 +66,7 @@ LobeChat 与 Clerk 做了深度集成,能够为用户提供一个更加安全
|
|
66
66
|
| Cloudflare Zero Trust | `cloudflare-zero-trust` |
|
67
67
|
| Github | `github` |
|
68
68
|
| Logto | `logto` |
|
69
|
-
| Microsoft Entra ID | `
|
69
|
+
| Microsoft Entra ID | `microsoft-entra-id` |
|
70
70
|
| ZITADEL | `zitadel` |
|
71
71
|
|
72
72
|
## 其他 SSO 提供商
|
@@ -29,9 +29,9 @@ LobeChat provides a complete authentication service capability when deployed. Th
|
|
29
29
|
#### `NEXT_AUTH_SSO_PROVIDERS`
|
30
30
|
|
31
31
|
- Type: Optional
|
32
|
-
- Description: Select the single sign-on provider for LoboChat. For multiple SSO Providers separating them with commas, for example, `auth0,
|
32
|
+
- Description: Select the single sign-on provider for LoboChat. For multiple SSO Providers separating them with commas, for example, `auth0,microsoft-entra-id,authentik`.
|
33
33
|
- Default: `auth0`
|
34
|
-
- Example: `auth0,
|
34
|
+
- Example: `auth0,microsoft-entra-id,authentik`
|
35
35
|
|
36
36
|
#### `NEXTAUTH_URL`
|
37
37
|
|
@@ -27,9 +27,9 @@ LobeChat 在部署时提供了完善的身份验证服务能力,以下是相
|
|
27
27
|
#### `NEXT_AUTH_SSO_PROVIDERS`
|
28
28
|
|
29
29
|
- 类型:可选
|
30
|
-
- 描述:选择 LoboChat 的单点登录提供商。如果有多个单点登录提供商,请用逗号分隔,例如 `auth0,
|
30
|
+
- 描述:选择 LoboChat 的单点登录提供商。如果有多个单点登录提供商,请用逗号分隔,例如 `auth0,microsoft-entra-id,authentik`
|
31
31
|
- 默认值: `auth0`
|
32
|
-
- 示例: `auth0,
|
32
|
+
- 示例: `auth0,microsoft-entra-id,authentik`
|
33
33
|
|
34
34
|
#### `NEXTAUTH_URL`
|
35
35
|
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.22.
|
3
|
+
"version": "1.22.12",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -5,12 +5,12 @@ const Moonshot: ModelProviderCard = {
|
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
7
|
description:
|
8
|
-
'Moonshot V1
|
9
|
-
displayName: 'Moonshot V1
|
8
|
+
'Moonshot V1 8K 专为生成短文本任务设计,具有高效的处理性能,能够处理8,192个tokens,非常适合简短对话、速记和快速内容生成。',
|
9
|
+
displayName: 'Moonshot V1 8K',
|
10
10
|
enabled: true,
|
11
11
|
functionCall: true,
|
12
|
-
id: 'moonshot-v1-
|
13
|
-
tokens:
|
12
|
+
id: 'moonshot-v1-8k',
|
13
|
+
tokens: 8192,
|
14
14
|
},
|
15
15
|
{
|
16
16
|
description:
|
@@ -23,12 +23,12 @@ const Moonshot: ModelProviderCard = {
|
|
23
23
|
},
|
24
24
|
{
|
25
25
|
description:
|
26
|
-
'Moonshot V1
|
27
|
-
displayName: 'Moonshot V1
|
26
|
+
'Moonshot V1 128K 是一款拥有超长上下文处理能力的模型,适用于生成超长文本,满足复杂的生成任务需求,能够处理多达128,000个tokens的内容,非常适合科研、学术和大型文档生成等应用场景。',
|
27
|
+
displayName: 'Moonshot V1 128K',
|
28
28
|
enabled: true,
|
29
29
|
functionCall: true,
|
30
|
-
id: 'moonshot-v1-
|
31
|
-
tokens:
|
30
|
+
id: 'moonshot-v1-128k',
|
31
|
+
tokens: 128_000,
|
32
32
|
},
|
33
33
|
],
|
34
34
|
checkModel: 'moonshot-v1-8k',
|
@@ -95,7 +95,6 @@ const SiliconCloud: ModelProviderCard = {
|
|
95
95
|
{
|
96
96
|
description: 'Qwen2.5-Math 专注于数学领域的问题求解,为高难度题提供专业解答。',
|
97
97
|
displayName: 'Qwen2.5 Math 72B',
|
98
|
-
enabled: true,
|
99
98
|
id: 'Qwen/Qwen2.5-Math-72B-Instruct',
|
100
99
|
pricing: {
|
101
100
|
currency: 'CNY',
|
@@ -107,7 +106,6 @@ const SiliconCloud: ModelProviderCard = {
|
|
107
106
|
{
|
108
107
|
description: 'Qwen2.5-Coder 专注于代码编写。',
|
109
108
|
displayName: 'Qwen2.5 Coder 7B',
|
110
|
-
enabled: true,
|
111
109
|
id: 'Qwen/Qwen2.5-Coder-7B-Instruct',
|
112
110
|
pricing: {
|
113
111
|
currency: 'CNY',
|
@@ -270,6 +268,18 @@ const SiliconCloud: ModelProviderCard = {
|
|
270
268
|
},
|
271
269
|
tokens: 32_768,
|
272
270
|
},
|
271
|
+
{
|
272
|
+
description: 'Llama 3.1 Nemotron 70B 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。',
|
273
|
+
displayName: 'Llama 3.1 Nemotron 70B',
|
274
|
+
enabled: true,
|
275
|
+
id: 'nvidia/Llama-3.1-Nemotron-70B-Instruct',
|
276
|
+
pricing: {
|
277
|
+
currency: 'CNY',
|
278
|
+
input: 4.13,
|
279
|
+
output: 4.13,
|
280
|
+
},
|
281
|
+
tokens: 32_768,
|
282
|
+
},
|
273
283
|
],
|
274
284
|
checkModel: 'Qwen/Qwen2.5-7B-Instruct',
|
275
285
|
description: 'SiliconCloud,基于优秀开源基础模型的高性价比 GenAI 云服务',
|
@@ -5,27 +5,20 @@ import { ModelProviderCard } from '@/types/llm';
|
|
5
5
|
const Stepfun: ModelProviderCard = {
|
6
6
|
chatModels: [
|
7
7
|
{
|
8
|
-
description: '
|
9
|
-
displayName: 'Step
|
8
|
+
description: '高速模型,适合实时对话。',
|
9
|
+
displayName: 'Step 1 Flash',
|
10
10
|
enabled: true,
|
11
11
|
functionCall: true,
|
12
|
-
id: 'step-
|
13
|
-
tokens:
|
14
|
-
},
|
15
|
-
{
|
16
|
-
description: '具备超长上下文处理能力,尤其适合长文档分析。',
|
17
|
-
displayName: 'Step 1 256K',
|
18
|
-
functionCall: true,
|
19
|
-
id: 'step-1-256k',
|
20
|
-
tokens: 256_000,
|
12
|
+
id: 'step-1-flash',
|
13
|
+
tokens: 8000,
|
21
14
|
},
|
22
15
|
{
|
23
|
-
description: '
|
24
|
-
displayName: 'Step 1
|
16
|
+
description: '小型模型,适合轻量级任务。',
|
17
|
+
displayName: 'Step 1 8K',
|
25
18
|
enabled: true,
|
26
19
|
functionCall: true,
|
27
|
-
id: 'step-1-
|
28
|
-
tokens:
|
20
|
+
id: 'step-1-8k',
|
21
|
+
tokens: 8000,
|
29
22
|
},
|
30
23
|
{
|
31
24
|
description: '支持中等长度的对话,适用于多种应用场景。',
|
@@ -36,29 +29,27 @@ const Stepfun: ModelProviderCard = {
|
|
36
29
|
tokens: 32_000,
|
37
30
|
},
|
38
31
|
{
|
39
|
-
description: '
|
40
|
-
displayName: 'Step 1
|
32
|
+
description: '平衡性能与成本,适合一般场景。',
|
33
|
+
displayName: 'Step 1 128K',
|
41
34
|
enabled: true,
|
42
35
|
functionCall: true,
|
43
|
-
id: 'step-1-
|
44
|
-
tokens:
|
36
|
+
id: 'step-1-128k',
|
37
|
+
tokens: 128_000,
|
45
38
|
},
|
46
39
|
{
|
47
|
-
description: '
|
48
|
-
displayName: 'Step 1
|
49
|
-
enabled: true,
|
40
|
+
description: '具备超长上下文处理能力,尤其适合长文档分析。',
|
41
|
+
displayName: 'Step 1 256K',
|
50
42
|
functionCall: true,
|
51
|
-
id: 'step-1-
|
52
|
-
tokens:
|
43
|
+
id: 'step-1-256k',
|
44
|
+
tokens: 256_000,
|
53
45
|
},
|
54
46
|
{
|
55
|
-
description: '
|
56
|
-
displayName: 'Step
|
47
|
+
description: '支持大规模上下文交互,适合复杂对话场景。',
|
48
|
+
displayName: 'Step 2 16K',
|
57
49
|
enabled: true,
|
58
50
|
functionCall: true,
|
59
|
-
id: 'step-
|
60
|
-
tokens:
|
61
|
-
vision: true,
|
51
|
+
id: 'step-2-16k',
|
52
|
+
tokens: 16_000,
|
62
53
|
},
|
63
54
|
{
|
64
55
|
description: '小型视觉模型,适合基本的图文任务。',
|
@@ -69,6 +60,15 @@ const Stepfun: ModelProviderCard = {
|
|
69
60
|
tokens: 8000,
|
70
61
|
vision: true,
|
71
62
|
},
|
63
|
+
{
|
64
|
+
description: '支持视觉输入,增强多模态交互体验。',
|
65
|
+
displayName: 'Step 1V 32K',
|
66
|
+
enabled: true,
|
67
|
+
functionCall: true,
|
68
|
+
id: 'step-1v-32k',
|
69
|
+
tokens: 32_000,
|
70
|
+
vision: true,
|
71
|
+
},
|
72
72
|
],
|
73
73
|
checkModel: 'step-1-flash',
|
74
74
|
description:
|
@@ -16,43 +16,40 @@ const ZeroOne: ModelProviderCard = {
|
|
16
16
|
tokens: 16_384,
|
17
17
|
},
|
18
18
|
{
|
19
|
-
description: '
|
20
|
-
displayName: 'Yi
|
19
|
+
description: '小而精悍,轻量极速模型。提供强化数学运算和代码编写能力。',
|
20
|
+
displayName: 'Yi Spark',
|
21
21
|
enabled: true,
|
22
|
-
id: 'yi-
|
22
|
+
id: 'yi-spark',
|
23
23
|
pricing: {
|
24
24
|
currency: 'CNY',
|
25
|
-
input:
|
26
|
-
output:
|
25
|
+
input: 1,
|
26
|
+
output: 1,
|
27
27
|
},
|
28
|
-
tokens:
|
28
|
+
tokens: 16_384,
|
29
29
|
},
|
30
30
|
{
|
31
|
-
description:
|
32
|
-
|
33
|
-
displayName: 'Yi Large FC',
|
31
|
+
description: '中型尺寸模型升级微调,能力均衡,性价比高。深度优化指令遵循能力。',
|
32
|
+
displayName: 'Yi Medium',
|
34
33
|
enabled: true,
|
35
|
-
|
36
|
-
id: 'yi-large-fc',
|
34
|
+
id: 'yi-medium',
|
37
35
|
pricing: {
|
38
36
|
currency: 'CNY',
|
39
|
-
input:
|
40
|
-
output:
|
37
|
+
input: 2.5,
|
38
|
+
output: 2.5,
|
41
39
|
},
|
42
|
-
tokens:
|
40
|
+
tokens: 16_384,
|
43
41
|
},
|
44
42
|
{
|
45
|
-
description:
|
46
|
-
|
47
|
-
displayName: 'Yi Large RAG',
|
43
|
+
description: '200K 超长上下文窗口,提供长文本深度理解和生成能力。',
|
44
|
+
displayName: 'Yi Medium 200K',
|
48
45
|
enabled: true,
|
49
|
-
id: 'yi-
|
46
|
+
id: 'yi-medium-200k',
|
50
47
|
pricing: {
|
51
48
|
currency: 'CNY',
|
52
|
-
input:
|
53
|
-
output:
|
49
|
+
input: 12,
|
50
|
+
output: 12,
|
54
51
|
},
|
55
|
-
tokens:
|
52
|
+
tokens: 200_000,
|
56
53
|
},
|
57
54
|
{
|
58
55
|
description: '超高性价比、卓越性能。根据性能和推理速度、成本,进行平衡性高精度调优。',
|
@@ -67,40 +64,42 @@ const ZeroOne: ModelProviderCard = {
|
|
67
64
|
tokens: 16_384,
|
68
65
|
},
|
69
66
|
{
|
70
|
-
description:
|
71
|
-
|
67
|
+
description:
|
68
|
+
'基于 yi-large 超强模型的高阶服务,结合检索与生成技术提供精准答案,实时全网检索信息服务。',
|
69
|
+
displayName: 'Yi Large RAG',
|
72
70
|
enabled: true,
|
73
|
-
id: 'yi-
|
71
|
+
id: 'yi-large-rag',
|
74
72
|
pricing: {
|
75
73
|
currency: 'CNY',
|
76
|
-
input:
|
77
|
-
output:
|
74
|
+
input: 25,
|
75
|
+
output: 25,
|
78
76
|
},
|
79
77
|
tokens: 16_384,
|
80
78
|
},
|
81
79
|
{
|
82
|
-
description:
|
83
|
-
|
80
|
+
description:
|
81
|
+
'在 yi-large 模型的基础上支持并强化了工具调用的能力,适用于各种需要搭建 agent 或 workflow 的业务场景。',
|
82
|
+
displayName: 'Yi Large FC',
|
84
83
|
enabled: true,
|
85
|
-
|
84
|
+
functionCall: true,
|
85
|
+
id: 'yi-large-fc',
|
86
86
|
pricing: {
|
87
87
|
currency: 'CNY',
|
88
|
-
input:
|
89
|
-
output:
|
88
|
+
input: 20,
|
89
|
+
output: 20,
|
90
90
|
},
|
91
|
-
tokens:
|
91
|
+
tokens: 32_768,
|
92
92
|
},
|
93
93
|
{
|
94
|
-
description: '
|
95
|
-
displayName: 'Yi
|
96
|
-
|
97
|
-
id: 'yi-spark',
|
94
|
+
description: '全新千亿参数模型,提供超强问答及文本生成能力。',
|
95
|
+
displayName: 'Yi Large',
|
96
|
+
id: 'yi-large',
|
98
97
|
pricing: {
|
99
98
|
currency: 'CNY',
|
100
|
-
input:
|
101
|
-
output:
|
99
|
+
input: 20,
|
100
|
+
output: 20,
|
102
101
|
},
|
103
|
-
tokens:
|
102
|
+
tokens: 32_768,
|
104
103
|
},
|
105
104
|
{
|
106
105
|
description: '复杂视觉任务模型,提供高性能图片理解、分析能力。',
|
@@ -6,54 +6,53 @@ import { ModelProviderCard } from '@/types/llm';
|
|
6
6
|
const ZhiPu: ModelProviderCard = {
|
7
7
|
chatModels: [
|
8
8
|
{
|
9
|
-
description:
|
10
|
-
|
11
|
-
displayName: 'GLM-4-AllTools',
|
9
|
+
description: 'GLM-4-Flash 是处理简单任务的理想选择,速度最快且免费。',
|
10
|
+
displayName: 'GLM-4-Flash',
|
12
11
|
enabled: true,
|
13
12
|
functionCall: true,
|
14
|
-
id: 'glm-4-
|
13
|
+
id: 'glm-4-flash',
|
15
14
|
pricing: {
|
16
15
|
currency: 'CNY',
|
17
|
-
input:
|
18
|
-
output:
|
16
|
+
input: 0,
|
17
|
+
output: 0,
|
19
18
|
},
|
20
19
|
tokens: 128_000,
|
21
20
|
},
|
22
21
|
{
|
23
|
-
description:
|
24
|
-
|
25
|
-
displayName: 'GLM-4-Plus',
|
22
|
+
description: 'GLM-4-FlashX 是Flash的增强版本,超快推理速度。',
|
23
|
+
displayName: 'GLM-4-FlashX',
|
26
24
|
enabled: true,
|
27
25
|
functionCall: true,
|
28
|
-
id: 'glm-4-
|
26
|
+
id: 'glm-4-flashx',
|
29
27
|
pricing: {
|
30
28
|
currency: 'CNY',
|
31
|
-
input:
|
32
|
-
output:
|
29
|
+
input: 0.1,
|
30
|
+
output: 0.1,
|
33
31
|
},
|
34
32
|
tokens: 128_000,
|
35
33
|
},
|
36
34
|
{
|
37
|
-
description: 'GLM-4-
|
38
|
-
displayName: 'GLM-4-
|
35
|
+
description: 'GLM-4-Long 支持超长文本输入,适合记忆型任务与大规模文档处理。',
|
36
|
+
displayName: 'GLM-4-Long',
|
39
37
|
functionCall: true,
|
40
|
-
id: 'glm-4-
|
38
|
+
id: 'glm-4-long',
|
41
39
|
pricing: {
|
42
40
|
currency: 'CNY',
|
43
|
-
input:
|
44
|
-
output:
|
41
|
+
input: 1,
|
42
|
+
output: 1,
|
45
43
|
},
|
46
|
-
tokens:
|
44
|
+
tokens: 1_024_000,
|
47
45
|
},
|
48
46
|
{
|
49
|
-
description: 'GLM-4
|
50
|
-
displayName: 'GLM-4',
|
47
|
+
description: 'GLM-4-Air 是性价比高的版本,性能接近GLM-4,提供快速度和实惠的价格。',
|
48
|
+
displayName: 'GLM-4-Air',
|
49
|
+
enabled: true,
|
51
50
|
functionCall: true,
|
52
|
-
id: 'glm-4',
|
51
|
+
id: 'glm-4-air',
|
53
52
|
pricing: {
|
54
53
|
currency: 'CNY',
|
55
|
-
input:
|
56
|
-
output:
|
54
|
+
input: 1,
|
55
|
+
output: 1,
|
57
56
|
},
|
58
57
|
tokens: 128_000,
|
59
58
|
},
|
@@ -71,54 +70,40 @@ const ZhiPu: ModelProviderCard = {
|
|
71
70
|
tokens: 8192,
|
72
71
|
},
|
73
72
|
{
|
74
|
-
description:
|
75
|
-
|
73
|
+
description:
|
74
|
+
'GLM-4-Plus 作为高智能旗舰,具备强大的处理长文本和复杂任务的能力,性能全面提升。',
|
75
|
+
displayName: 'GLM-4-Plus',
|
76
76
|
enabled: true,
|
77
77
|
functionCall: true,
|
78
|
-
id: 'glm-4-
|
78
|
+
id: 'glm-4-plus',
|
79
79
|
pricing: {
|
80
80
|
currency: 'CNY',
|
81
|
-
input:
|
82
|
-
output:
|
81
|
+
input: 50,
|
82
|
+
output: 50,
|
83
83
|
},
|
84
84
|
tokens: 128_000,
|
85
85
|
},
|
86
86
|
{
|
87
|
-
description: 'GLM-4-
|
88
|
-
displayName: 'GLM-4-
|
89
|
-
enabled: true,
|
90
|
-
functionCall: true,
|
91
|
-
id: 'glm-4-long',
|
92
|
-
pricing: {
|
93
|
-
currency: 'CNY',
|
94
|
-
input: 1,
|
95
|
-
output: 1,
|
96
|
-
},
|
97
|
-
tokens: 1_024_000,
|
98
|
-
},
|
99
|
-
{
|
100
|
-
description: 'GLM-4-FlashX 是Flash的增强版本,超快推理速度。',
|
101
|
-
displayName: 'GLM-4-FlashX',
|
102
|
-
enabled: true,
|
87
|
+
description: 'GLM-4-0520 是最新模型版本,专为高度复杂和多样化任务设计,表现卓越。',
|
88
|
+
displayName: 'GLM-4-0520',
|
103
89
|
functionCall: true,
|
104
|
-
id: 'glm-4-
|
90
|
+
id: 'glm-4-0520',
|
105
91
|
pricing: {
|
106
92
|
currency: 'CNY',
|
107
|
-
input:
|
108
|
-
output:
|
93
|
+
input: 100,
|
94
|
+
output: 100,
|
109
95
|
},
|
110
96
|
tokens: 128_000,
|
111
97
|
},
|
112
98
|
{
|
113
|
-
description: 'GLM-4-
|
114
|
-
displayName: 'GLM-4
|
115
|
-
enabled: true,
|
99
|
+
description: 'GLM-4 是发布于2024年1月的旧旗舰版本,目前已被更强的 GLM-4-0520 取代。',
|
100
|
+
displayName: 'GLM-4',
|
116
101
|
functionCall: true,
|
117
|
-
id: 'glm-4
|
102
|
+
id: 'glm-4',
|
118
103
|
pricing: {
|
119
104
|
currency: 'CNY',
|
120
|
-
input:
|
121
|
-
output:
|
105
|
+
input: 100,
|
106
|
+
output: 100,
|
122
107
|
},
|
123
108
|
tokens: 128_000,
|
124
109
|
},
|
@@ -147,11 +132,25 @@ const ZhiPu: ModelProviderCard = {
|
|
147
132
|
tokens: 2048,
|
148
133
|
vision: true,
|
149
134
|
},
|
135
|
+
{
|
136
|
+
description:
|
137
|
+
'GLM-4-AllTools 是一个多功能智能体模型,优化以支持复杂指令规划与工具调用,如网络浏览、代码解释和文本生成,适用于多任务执行。',
|
138
|
+
displayName: 'GLM-4-AllTools',
|
139
|
+
enabled: true,
|
140
|
+
functionCall: true,
|
141
|
+
id: 'glm-4-alltools',
|
142
|
+
pricing: {
|
143
|
+
currency: 'CNY',
|
144
|
+
input: 100,
|
145
|
+
output: 100,
|
146
|
+
},
|
147
|
+
tokens: 128_000,
|
148
|
+
vision: true,
|
149
|
+
},
|
150
150
|
{
|
151
151
|
description:
|
152
152
|
'CodeGeeX-4 是强大的AI编程助手,支持多种编程语言的智能问答与代码补全,提升开发效率。',
|
153
153
|
displayName: 'CodeGeeX-4',
|
154
|
-
enabled: true,
|
155
154
|
id: 'codegeex-4',
|
156
155
|
pricing: {
|
157
156
|
currency: 'CNY',
|
@@ -7,6 +7,7 @@ import CloudflareZeroTrust from './cloudflare-zero-trust';
|
|
7
7
|
import GenericOIDC from './generic-oidc';
|
8
8
|
import Github from './github';
|
9
9
|
import Logto from './logto';
|
10
|
+
import MicrosoftEntraID from './microsoft-entra-id';
|
10
11
|
import Zitadel from './zitadel';
|
11
12
|
|
12
13
|
export const ssoProviders = [
|
@@ -20,4 +21,5 @@ export const ssoProviders = [
|
|
20
21
|
Logto,
|
21
22
|
CloudflareZeroTrust,
|
22
23
|
Casdoor,
|
24
|
+
MicrosoftEntraID,
|
23
25
|
];
|
@@ -0,0 +1,15 @@
|
|
1
|
+
import MicrosoftEntraID from 'next-auth/providers/microsoft-entra-id';
|
2
|
+
|
3
|
+
import { CommonProviderConfig } from './sso.config';
|
4
|
+
|
5
|
+
const provider = {
|
6
|
+
id: 'microsoft-entra-id',
|
7
|
+
provider: MicrosoftEntraID({
|
8
|
+
...CommonProviderConfig,
|
9
|
+
// Specify auth scope, at least include 'openid email'
|
10
|
+
// all scopes in Azure AD ref: https://learn.microsoft.com/en-us/entra/identity-platform/scopes-oidc#openid-connect-scopes
|
11
|
+
authorization: { params: { scope: 'openid email profile' } },
|
12
|
+
}),
|
13
|
+
};
|
14
|
+
|
15
|
+
export default provider;
|