@lobehub/chat 1.21.16 → 1.22.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +58 -0
- package/README.zh-CN.md +8 -6
- package/docs/usage/providers/wenxin.mdx +4 -3
- package/docs/usage/providers/wenxin.zh-CN.mdx +4 -3
- package/locales/ar/error.json +1 -0
- package/locales/ar/modelProvider.json +7 -0
- package/locales/ar/models.json +18 -6
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/error.json +1 -0
- package/locales/bg-BG/modelProvider.json +7 -0
- package/locales/bg-BG/models.json +18 -6
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/error.json +1 -0
- package/locales/de-DE/modelProvider.json +7 -0
- package/locales/de-DE/models.json +18 -6
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/error.json +1 -0
- package/locales/en-US/modelProvider.json +7 -0
- package/locales/en-US/models.json +18 -6
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/error.json +1 -0
- package/locales/es-ES/modelProvider.json +7 -0
- package/locales/es-ES/models.json +18 -6
- package/locales/es-ES/providers.json +3 -0
- package/locales/fr-FR/error.json +1 -0
- package/locales/fr-FR/modelProvider.json +7 -0
- package/locales/fr-FR/models.json +17 -5
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/error.json +1 -0
- package/locales/it-IT/modelProvider.json +7 -0
- package/locales/it-IT/models.json +18 -6
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/error.json +1 -0
- package/locales/ja-JP/modelProvider.json +7 -0
- package/locales/ja-JP/models.json +18 -6
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/error.json +1 -0
- package/locales/ko-KR/modelProvider.json +7 -0
- package/locales/ko-KR/models.json +17 -5
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/error.json +1 -0
- package/locales/nl-NL/modelProvider.json +7 -0
- package/locales/nl-NL/models.json +17 -5
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/error.json +1 -0
- package/locales/pl-PL/modelProvider.json +7 -0
- package/locales/pl-PL/models.json +18 -6
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/error.json +1 -0
- package/locales/pt-BR/modelProvider.json +7 -0
- package/locales/pt-BR/models.json +18 -6
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/error.json +1 -0
- package/locales/ru-RU/modelProvider.json +7 -0
- package/locales/ru-RU/models.json +18 -6
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/error.json +1 -0
- package/locales/tr-TR/modelProvider.json +7 -0
- package/locales/tr-TR/models.json +18 -6
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/error.json +1 -0
- package/locales/vi-VN/modelProvider.json +7 -0
- package/locales/vi-VN/models.json +18 -6
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/error.json +2 -1
- package/locales/zh-CN/modelProvider.json +8 -1
- package/locales/zh-CN/models.json +16 -4
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/error.json +1 -0
- package/locales/zh-TW/modelProvider.json +7 -0
- package/locales/zh-TW/models.json +16 -4
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +5 -3
- package/src/app/(main)/settings/llm/ProviderList/HuggingFace/index.tsx +53 -0
- package/src/app/(main)/settings/llm/ProviderList/providers.tsx +12 -1
- package/src/config/llm.ts +10 -0
- package/src/config/modelProviders/huggingface.ts +50 -0
- package/src/config/modelProviders/index.ts +4 -0
- package/src/const/settings/llm.ts +5 -0
- package/src/features/Conversation/Error/index.tsx +1 -0
- package/src/libs/agent-runtime/AgentRuntime.ts +7 -0
- package/src/libs/agent-runtime/error.ts +1 -0
- package/src/libs/agent-runtime/groq/index.ts +1 -1
- package/src/libs/agent-runtime/huggingface/index.ts +48 -0
- package/src/libs/agent-runtime/siliconcloud/index.ts +8 -0
- package/src/libs/agent-runtime/types/type.ts +1 -0
- package/src/libs/agent-runtime/utils/openaiCompatibleFactory/index.ts +58 -20
- package/src/libs/agent-runtime/utils/streams/openai.test.ts +78 -7
- package/src/libs/agent-runtime/utils/streams/openai.ts +38 -5
- package/src/libs/agent-runtime/utils/streams/protocol.ts +63 -4
- package/src/locales/default/error.ts +2 -2
- package/src/locales/default/modelProvider.ts +8 -1
- package/src/server/globalConfig/index.ts +12 -1
- package/src/server/modules/AgentRuntime/index.ts +10 -0
- package/src/services/_url.ts +4 -5
- package/src/types/user/settings/keyVaults.ts +1 -0
- /package/src/app/(backend)/{api → webapi}/chat/[provider]/route.test.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/[provider]/route.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/anthropic/route.test.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/anthropic/route.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/google/route.test.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/google/route.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/minimax/route.test.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/minimax/route.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/models/[provider]/route.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/openai/route.test.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/openai/route.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/wenxin/route.test.ts +0 -0
- /package/src/app/(backend)/{api → webapi}/chat/wenxin/route.ts +0 -0
@@ -458,6 +458,9 @@
|
|
458
458
|
"google/gemma-2-27b-it": {
|
459
459
|
"description": "Gemma 2 continúa con el concepto de diseño ligero y eficiente."
|
460
460
|
},
|
461
|
+
"google/gemma-2-2b-it": {
|
462
|
+
"description": "Modelo de ajuste de instrucciones ligero de Google."
|
463
|
+
},
|
461
464
|
"google/gemma-2-9b-it": {
|
462
465
|
"description": "Gemma 2 es una serie de modelos de texto de código abierto y ligeros de Google."
|
463
466
|
},
|
@@ -589,6 +592,12 @@
|
|
589
592
|
"llama-3.1-sonar-small-128k-online": {
|
590
593
|
"description": "El modelo Llama 3.1 Sonar Small Online, con 8B de parámetros, soporta una longitud de contexto de aproximadamente 127,000 tokens, diseñado para chat en línea, capaz de manejar eficientemente diversas interacciones textuales."
|
591
594
|
},
|
595
|
+
"llama-3.2-11b-vision-preview": {
|
596
|
+
"description": "Llama 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Destaca en tareas como la descripción de imágenes y preguntas visuales, cruzando la brecha entre la generación de lenguaje y el razonamiento visual."
|
597
|
+
},
|
598
|
+
"llama-3.2-90b-vision-preview": {
|
599
|
+
"description": "Llama 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Destaca en tareas como la descripción de imágenes y preguntas visuales, cruzando la brecha entre la generación de lenguaje y el razonamiento visual."
|
600
|
+
},
|
592
601
|
"llama3-70b-8192": {
|
593
602
|
"description": "Meta Llama 3 70B proporciona una capacidad de procesamiento de complejidad inigualable, diseñado a medida para proyectos de alta demanda."
|
594
603
|
},
|
@@ -643,6 +652,9 @@
|
|
643
652
|
"meta-llama/Llama-2-13b-chat-hf": {
|
644
653
|
"description": "LLaMA-2 Chat (13B) ofrece una excelente capacidad de procesamiento de lenguaje y una experiencia de interacción sobresaliente."
|
645
654
|
},
|
655
|
+
"meta-llama/Llama-2-7b-chat-hf": {
|
656
|
+
"description": "Uno de los mejores modelos de conversación."
|
657
|
+
},
|
646
658
|
"meta-llama/Llama-3-70b-chat-hf": {
|
647
659
|
"description": "LLaMA-3 Chat (70B) es un modelo de chat potente, que soporta necesidades de conversación complejas."
|
648
660
|
},
|
@@ -811,8 +823,8 @@
|
|
811
823
|
"open-mixtral-8x7b": {
|
812
824
|
"description": "Mixtral 8x7B es un modelo de expertos dispersos que utiliza múltiples parámetros para mejorar la velocidad de razonamiento, adecuado para el procesamiento de tareas de múltiples idiomas y generación de código."
|
813
825
|
},
|
814
|
-
"openai/gpt-4o
|
815
|
-
"description": "ChatGPT-4o es un modelo dinámico que se actualiza en tiempo real para mantener la versión más actual. Combina una poderosa
|
826
|
+
"openai/gpt-4o": {
|
827
|
+
"description": "ChatGPT-4o es un modelo dinámico que se actualiza en tiempo real para mantener la versión más actual. Combina una poderosa comprensión y generación de lenguaje, adecuado para escenarios de aplicación a gran escala, incluyendo servicio al cliente, educación y soporte técnico."
|
816
828
|
},
|
817
829
|
"openai/gpt-4o-mini": {
|
818
830
|
"description": "GPT-4o mini es el modelo más reciente de OpenAI, lanzado después de GPT-4 Omni, que admite entradas de texto e imagen y genera texto como salida. Como su modelo más avanzado de tamaño pequeño, es mucho más económico que otros modelos de vanguardia recientes y más de un 60% más barato que GPT-3.5 Turbo. Mantiene una inteligencia de vanguardia mientras ofrece una relación calidad-precio notable. GPT-4o mini obtuvo un puntaje del 82% en la prueba MMLU y actualmente se clasifica por encima de GPT-4 en preferencias de chat."
|
@@ -862,11 +874,11 @@
|
|
862
874
|
"qwen-vl-chat-v1": {
|
863
875
|
"description": "Qwen VL admite formas de interacción flexibles, incluyendo múltiples imágenes, preguntas y respuestas en múltiples rondas, y capacidades creativas."
|
864
876
|
},
|
865
|
-
"qwen-vl-max": {
|
866
|
-
"description": "
|
877
|
+
"qwen-vl-max-latest": {
|
878
|
+
"description": "Modelo de lenguaje visual a ultra gran escala Tongyi Qianwen. En comparación con la versión mejorada, mejora aún más la capacidad de razonamiento visual y de seguimiento de instrucciones, ofreciendo un nivel más alto de percepción y cognición visual."
|
867
879
|
},
|
868
|
-
"qwen-vl-plus": {
|
869
|
-
"description": "
|
880
|
+
"qwen-vl-plus-latest": {
|
881
|
+
"description": "Versión mejorada del modelo de lenguaje visual a gran escala Tongyi Qianwen. Mejora significativamente la capacidad de reconocimiento de detalles y de texto, soportando imágenes con resolución de más de un millón de píxeles y proporciones de ancho y alto arbitrarias."
|
870
882
|
},
|
871
883
|
"qwen-vl-v1": {
|
872
884
|
"description": "Iniciado con el modelo de lenguaje Qwen-7B, se añade un modelo de imagen, un modelo preentrenado con una resolución de entrada de imagen de 448."
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "El motor de inferencia LPU de Groq ha demostrado un rendimiento excepcional en las pruebas de referencia de modelos de lenguaje de gran tamaño (LLM), redefiniendo los estándares de soluciones de IA con su asombrosa velocidad y eficiencia. Groq es un referente en velocidad de inferencia instantánea, mostrando un buen rendimiento en implementaciones basadas en la nube."
|
32
32
|
},
|
33
|
+
"huggingface": {
|
34
|
+
"description": "La API de Inferencia de HuggingFace ofrece una forma rápida y gratuita de explorar miles de modelos para diversas tareas. Ya sea que esté prototipando una nueva aplicación o probando las capacidades del aprendizaje automático, esta API le brinda acceso instantáneo a modelos de alto rendimiento en múltiples dominios."
|
35
|
+
},
|
33
36
|
"hunyuan": {
|
34
37
|
"description": "Un modelo de lenguaje desarrollado por Tencent, que posee una poderosa capacidad de creación en chino, habilidades de razonamiento lógico en contextos complejos y una capacidad confiable para ejecutar tareas."
|
35
38
|
},
|
package/locales/fr-FR/error.json
CHANGED
@@ -67,6 +67,7 @@
|
|
67
67
|
"OllamaBizError": "Erreur commerciale lors de la demande de service Ollama, veuillez vérifier les informations ci-dessous ou réessayer",
|
68
68
|
"OllamaServiceUnavailable": "Le service Ollama n'est pas disponible. Veuillez vérifier si Ollama fonctionne correctement ou si la configuration de la communication inter-domaines d'Ollama est correcte.",
|
69
69
|
"OpenAIBizError": "Erreur de service OpenAI. Veuillez vérifier les informations suivantes ou réessayer.",
|
70
|
+
"PermissionDenied": "Désolé, vous n'avez pas la permission d'accéder à ce service. Veuillez vérifier si votre clé a les droits d'accès.",
|
70
71
|
"PluginApiNotFound": "Désolé, l'API spécifiée n'existe pas dans le manifeste du plugin. Veuillez vérifier que votre méthode de requête correspond à l'API du manifeste du plugin",
|
71
72
|
"PluginApiParamsError": "Désolé, la validation des paramètres d'entrée de la requête de ce plugin a échoué. Veuillez vérifier que les paramètres d'entrée correspondent aux informations de l'API",
|
72
73
|
"PluginFailToTransformArguments": "Désolé, échec de la transformation des arguments de l'appel du plugin. Veuillez essayer de régénérer le message d'assistance ou de changer de modèle d'IA avec une capacité d'appel d'outils plus puissante, puis réessayer.",
|
@@ -58,6 +58,13 @@
|
|
58
58
|
"title": "GitHub PAT"
|
59
59
|
}
|
60
60
|
},
|
61
|
+
"huggingface": {
|
62
|
+
"accessToken": {
|
63
|
+
"desc": "Entrez votre jeton HuggingFace, cliquez [ici](https://huggingface.co/settings/tokens) pour en créer un",
|
64
|
+
"placeholder": "hf_xxxxxxxxx",
|
65
|
+
"title": "Jeton HuggingFace"
|
66
|
+
}
|
67
|
+
},
|
61
68
|
"ollama": {
|
62
69
|
"checker": {
|
63
70
|
"desc": "Vérifiez si l'adresse du proxy est correctement saisie",
|
@@ -458,6 +458,9 @@
|
|
458
458
|
"google/gemma-2-27b-it": {
|
459
459
|
"description": "Gemma 2 poursuit le concept de conception légère et efficace."
|
460
460
|
},
|
461
|
+
"google/gemma-2-2b-it": {
|
462
|
+
"description": "Modèle d'optimisation des instructions léger de Google."
|
463
|
+
},
|
461
464
|
"google/gemma-2-9b-it": {
|
462
465
|
"description": "Gemma 2 est une série de modèles de texte open source allégés de Google."
|
463
466
|
},
|
@@ -589,6 +592,12 @@
|
|
589
592
|
"llama-3.1-sonar-small-128k-online": {
|
590
593
|
"description": "Le modèle Llama 3.1 Sonar Small Online, avec 8B de paramètres, prend en charge une longueur de contexte d'environ 127 000 jetons, conçu pour le chat en ligne, capable de traiter efficacement diverses interactions textuelles."
|
591
594
|
},
|
595
|
+
"llama-3.2-11b-vision-preview": {
|
596
|
+
"description": "Llama 3.2 est conçu pour traiter des tâches combinant des données visuelles et textuelles. Il excelle dans des tâches telles que la description d'images et les questions-réponses visuelles, comblant le fossé entre la génération de langage et le raisonnement visuel."
|
597
|
+
},
|
598
|
+
"llama-3.2-90b-vision-preview": {
|
599
|
+
"description": "Llama 3.2 est conçu pour traiter des tâches combinant des données visuelles et textuelles. Il excelle dans des tâches telles que la description d'images et les questions-réponses visuelles, comblant le fossé entre la génération de langage et le raisonnement visuel."
|
600
|
+
},
|
592
601
|
"llama3-70b-8192": {
|
593
602
|
"description": "Meta Llama 3 70B offre une capacité de traitement de complexité inégalée, sur mesure pour des projets exigeants."
|
594
603
|
},
|
@@ -643,6 +652,9 @@
|
|
643
652
|
"meta-llama/Llama-2-13b-chat-hf": {
|
644
653
|
"description": "LLaMA-2 Chat (13B) offre d'excellentes capacités de traitement du langage et une expérience interactive exceptionnelle."
|
645
654
|
},
|
655
|
+
"meta-llama/Llama-2-7b-chat-hf": {
|
656
|
+
"description": "L'un des meilleurs modèles de conversation."
|
657
|
+
},
|
646
658
|
"meta-llama/Llama-3-70b-chat-hf": {
|
647
659
|
"description": "LLaMA-3 Chat (70B) est un modèle de chat puissant, prenant en charge des besoins de dialogue complexes."
|
648
660
|
},
|
@@ -811,7 +823,7 @@
|
|
811
823
|
"open-mixtral-8x7b": {
|
812
824
|
"description": "Mixtral 8x7B est un modèle d'expert épars, utilisant plusieurs paramètres pour améliorer la vitesse de raisonnement, adapté au traitement de tâches multilingues et de génération de code."
|
813
825
|
},
|
814
|
-
"openai/gpt-4o
|
826
|
+
"openai/gpt-4o": {
|
815
827
|
"description": "ChatGPT-4o est un modèle dynamique, mis à jour en temps réel pour rester à jour avec la dernière version. Il combine une compréhension et une génération de langage puissantes, adapté à des scénarios d'application à grande échelle, y compris le service client, l'éducation et le support technique."
|
816
828
|
},
|
817
829
|
"openai/gpt-4o-mini": {
|
@@ -862,11 +874,11 @@
|
|
862
874
|
"qwen-vl-chat-v1": {
|
863
875
|
"description": "Qwen VL prend en charge des modes d'interaction flexibles, y compris la capacité de poser des questions à plusieurs images, des dialogues multi-tours, et plus encore."
|
864
876
|
},
|
865
|
-
"qwen-vl-max": {
|
866
|
-
"description": "
|
877
|
+
"qwen-vl-max-latest": {
|
878
|
+
"description": "Modèle de langage visuel à très grande échelle Tongyi Qianwen. Par rapport à la version améliorée, il améliore encore les capacités de raisonnement visuel et de suivi des instructions, offrant un niveau de perception visuelle et de cognition plus élevé."
|
867
879
|
},
|
868
|
-
"qwen-vl-plus": {
|
869
|
-
"description": "
|
880
|
+
"qwen-vl-plus-latest": {
|
881
|
+
"description": "Version améliorée du modèle de langage visuel à grande échelle Tongyi Qianwen. Amélioration significative des capacités de reconnaissance des détails et de reconnaissance de texte, prenant en charge des résolutions d'image de plus d'un million de pixels et des rapports d'aspect de n'importe quelle taille."
|
870
882
|
},
|
871
883
|
"qwen-vl-v1": {
|
872
884
|
"description": "Initialisé avec le modèle de langage Qwen-7B, ajoutant un modèle d'image, un modèle pré-entraîné avec une résolution d'entrée d'image de 448."
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "Le moteur d'inférence LPU de Groq a excellé dans les derniers tests de référence des grands modèles de langage (LLM), redéfinissant les normes des solutions IA grâce à sa vitesse et son efficacité impressionnantes. Groq représente une vitesse d'inférence instantanée, montrant de bonnes performances dans les déploiements basés sur le cloud."
|
32
32
|
},
|
33
|
+
"huggingface": {
|
34
|
+
"description": "L'API d'inférence HuggingFace offre un moyen rapide et gratuit d'explorer des milliers de modèles adaptés à diverses tâches. Que vous soyez en train de prototyper une nouvelle application ou d'expérimenter les capacités de l'apprentissage automatique, cette API vous permet d'accéder instantanément à des modèles performants dans de nombreux domaines."
|
35
|
+
},
|
33
36
|
"hunyuan": {
|
34
37
|
"description": "Un modèle de langage développé par Tencent, doté d'une puissante capacité de création en chinois, d'une capacité de raisonnement logique dans des contextes complexes, ainsi que d'une capacité fiable d'exécution des tâches."
|
35
38
|
},
|
package/locales/it-IT/error.json
CHANGED
@@ -67,6 +67,7 @@
|
|
67
67
|
"OllamaBizError": "Errore di servizio Ollama, controllare le informazioni seguenti o riprovare",
|
68
68
|
"OllamaServiceUnavailable": "Servizio Ollama non disponibile: controllare che Ollama sia in esecuzione correttamente o che la configurazione di cross-origin di Ollama sia corretta",
|
69
69
|
"OpenAIBizError": "Errore di business di OpenAI. Si prega di controllare le informazioni seguenti o riprovare.",
|
70
|
+
"PermissionDenied": "Ci dispiace, non hai il permesso di accedere a questo servizio. Controlla se la tua chiave ha i diritti di accesso.",
|
70
71
|
"PluginApiNotFound": "Spiacenti, l'API specificata non esiste nel manifesto del plugin. Verifica che il metodo di richiesta corrisponda all'API del manifesto del plugin",
|
71
72
|
"PluginApiParamsError": "Spiacenti, la convalida dei parametri di input della richiesta del plugin non è riuscita. Verifica che i parametri di input corrispondano alle informazioni dell'API",
|
72
73
|
"PluginFailToTransformArguments": "Spiacenti, la trasformazione degli argomenti della chiamata al plugin non è riuscita. Si prega di provare a rigenerare il messaggio dell'assistente o riprovare dopo aver cambiato il modello AI di Tools Calling con capacità più avanzate.",
|
@@ -58,6 +58,13 @@
|
|
58
58
|
"title": "GitHub PAT"
|
59
59
|
}
|
60
60
|
},
|
61
|
+
"huggingface": {
|
62
|
+
"accessToken": {
|
63
|
+
"desc": "Inserisci il tuo token HuggingFace, clicca [qui](https://huggingface.co/settings/tokens) per crearne uno",
|
64
|
+
"placeholder": "hf_xxxxxxxxx",
|
65
|
+
"title": "Token HuggingFace"
|
66
|
+
}
|
67
|
+
},
|
61
68
|
"ollama": {
|
62
69
|
"checker": {
|
63
70
|
"desc": "Verifica se l'indirizzo del proxy è stato compilato correttamente",
|
@@ -458,6 +458,9 @@
|
|
458
458
|
"google/gemma-2-27b-it": {
|
459
459
|
"description": "Gemma 2 continua il concetto di design leggero ed efficiente."
|
460
460
|
},
|
461
|
+
"google/gemma-2-2b-it": {
|
462
|
+
"description": "Modello di ottimizzazione delle istruzioni leggero di Google"
|
463
|
+
},
|
461
464
|
"google/gemma-2-9b-it": {
|
462
465
|
"description": "Gemma 2 è una serie di modelli di testo open source leggeri di Google."
|
463
466
|
},
|
@@ -589,6 +592,12 @@
|
|
589
592
|
"llama-3.1-sonar-small-128k-online": {
|
590
593
|
"description": "Il modello Llama 3.1 Sonar Small Online, con 8B parametri, supporta una lunghezza di contesto di circa 127.000 token, progettato per chat online, in grado di gestire interazioni testuali in modo efficiente."
|
591
594
|
},
|
595
|
+
"llama-3.2-11b-vision-preview": {
|
596
|
+
"description": "Llama 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione delle immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
597
|
+
},
|
598
|
+
"llama-3.2-90b-vision-preview": {
|
599
|
+
"description": "Llama 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione delle immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
600
|
+
},
|
592
601
|
"llama3-70b-8192": {
|
593
602
|
"description": "Meta Llama 3 70B offre capacità di elaborazione della complessità senza pari, progettato su misura per progetti ad alta richiesta."
|
594
603
|
},
|
@@ -643,6 +652,9 @@
|
|
643
652
|
"meta-llama/Llama-2-13b-chat-hf": {
|
644
653
|
"description": "LLaMA-2 Chat (13B) offre eccellenti capacità di elaborazione linguistica e un'interazione di alta qualità."
|
645
654
|
},
|
655
|
+
"meta-llama/Llama-2-7b-chat-hf": {
|
656
|
+
"description": "Uno dei migliori modelli di conversazione"
|
657
|
+
},
|
646
658
|
"meta-llama/Llama-3-70b-chat-hf": {
|
647
659
|
"description": "LLaMA-3 Chat (70B) è un potente modello di chat, in grado di gestire esigenze di dialogo complesse."
|
648
660
|
},
|
@@ -811,8 +823,8 @@
|
|
811
823
|
"open-mixtral-8x7b": {
|
812
824
|
"description": "Mixtral 8x7B è un modello di esperti sparsi, che utilizza più parametri per aumentare la velocità di ragionamento, adatto per gestire compiti di generazione di linguaggio e codice multilingue."
|
813
825
|
},
|
814
|
-
"openai/gpt-4o
|
815
|
-
"description": "ChatGPT-4o è un modello dinamico, aggiornato in tempo reale per mantenere la versione più recente. Combina potenti capacità di comprensione e generazione del linguaggio, adatto a scenari
|
826
|
+
"openai/gpt-4o": {
|
827
|
+
"description": "ChatGPT-4o è un modello dinamico, aggiornato in tempo reale per mantenere la versione più recente. Combina potenti capacità di comprensione e generazione del linguaggio, adatto a scenari di applicazione su larga scala, tra cui assistenza clienti, istruzione e supporto tecnico."
|
816
828
|
},
|
817
829
|
"openai/gpt-4o-mini": {
|
818
830
|
"description": "GPT-4o mini è il modello più recente di OpenAI, lanciato dopo GPT-4 Omni, che supporta input visivi e testuali e produce output testuali. Come il loro modello di piccole dimensioni più avanzato, è molto più economico rispetto ad altri modelli all'avanguardia recenti e costa oltre il 60% in meno rispetto a GPT-3.5 Turbo. Mantiene un'intelligenza all'avanguardia, offrendo un notevole rapporto qualità-prezzo. GPT-4o mini ha ottenuto un punteggio dell'82% nel test MMLU e attualmente è classificato più in alto di GPT-4 per preferenze di chat."
|
@@ -862,11 +874,11 @@
|
|
862
874
|
"qwen-vl-chat-v1": {
|
863
875
|
"description": "Qwen VL supporta modalità di interazione flessibili, inclusi modelli di domande e risposte multipli e creativi."
|
864
876
|
},
|
865
|
-
"qwen-vl-max": {
|
866
|
-
"description": "
|
877
|
+
"qwen-vl-max-latest": {
|
878
|
+
"description": "Modello di linguaggio visivo Qwen di grande scala. Rispetto alla versione potenziata, migliora ulteriormente la capacità di ragionamento visivo e di aderenza alle istruzioni, offrendo un livello superiore di percezione visiva e cognizione."
|
867
879
|
},
|
868
|
-
"qwen-vl-plus": {
|
869
|
-
"description": "
|
880
|
+
"qwen-vl-plus-latest": {
|
881
|
+
"description": "Versione potenziata del modello di linguaggio visivo Qwen. Migliora notevolmente la capacità di riconoscimento dei dettagli e di riconoscimento del testo, supportando risoluzioni superiori a un milione di pixel e immagini di qualsiasi rapporto di aspetto."
|
870
882
|
},
|
871
883
|
"qwen-vl-v1": {
|
872
884
|
"description": "Inizializzato con il modello di linguaggio Qwen-7B, aggiunge un modello di immagine, con una risoluzione di input dell'immagine di 448."
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "Il motore di inferenza LPU di Groq ha mostrato prestazioni eccezionali nei recenti benchmark indipendenti sui modelli di linguaggio di grandi dimensioni (LLM), ridefinendo gli standard delle soluzioni AI con la sua incredibile velocità ed efficienza. Groq rappresenta una velocità di inferenza istantanea, mostrando buone prestazioni nelle implementazioni basate su cloud."
|
32
32
|
},
|
33
|
+
"huggingface": {
|
34
|
+
"description": "L'API di Inferenza di HuggingFace offre un modo rapido e gratuito per esplorare migliaia di modelli per una varietà di compiti. Che tu stia prototipando una nuova applicazione o cercando di sperimentare le funzionalità del machine learning, questa API ti consente di accedere immediatamente a modelli ad alte prestazioni in diversi ambiti."
|
35
|
+
},
|
33
36
|
"hunyuan": {
|
34
37
|
"description": "Un modello di linguaggio sviluppato da Tencent, dotato di potenti capacità di creazione in cinese, abilità di ragionamento logico in contesti complessi e capacità affidabili di esecuzione dei compiti."
|
35
38
|
},
|
package/locales/ja-JP/error.json
CHANGED
@@ -67,6 +67,7 @@
|
|
67
67
|
"OllamaBizError": "Ollamaサービスのリクエストでエラーが発生しました。以下の情報に基づいてトラブルシューティングを行うか、再度お試しください",
|
68
68
|
"OllamaServiceUnavailable": "Ollamaサービスが利用できません。Ollamaが正常に動作しているか、またはOllamaのクロスオリジン設定が正しく行われているかを確認してください",
|
69
69
|
"OpenAIBizError": "リクエスト OpenAI サービスでエラーが発生しました。以下の情報を確認して再試行してください。",
|
70
|
+
"PermissionDenied": "申し訳ありませんが、このサービスにアクセスする権限がありません。あなたのキーにアクセス権があるかどうかを確認してください。",
|
70
71
|
"PluginApiNotFound": "申し訳ありませんが、プラグインのマニフェストに指定されたAPIが見つかりませんでした。リクエストメソッドとプラグインのマニフェストのAPIが一致しているかどうかを確認してください",
|
71
72
|
"PluginApiParamsError": "申し訳ありませんが、プラグインのリクエストパラメータの検証に失敗しました。パラメータとAPIの説明が一致しているかどうか確認してください",
|
72
73
|
"PluginFailToTransformArguments": "申し訳ありませんが、プラグインの引数変換に失敗しました。助手メッセージを再生成するか、より強力な Tools Calling 機能を持つAIモデルに切り替えて再試行してください",
|
@@ -58,6 +58,13 @@
|
|
58
58
|
"title": "GitHub PAT"
|
59
59
|
}
|
60
60
|
},
|
61
|
+
"huggingface": {
|
62
|
+
"accessToken": {
|
63
|
+
"desc": "あなたの HuggingFace トークンを入力してください。 [こちら](https://huggingface.co/settings/tokens) をクリックして作成します。",
|
64
|
+
"placeholder": "hf_xxxxxxxxx",
|
65
|
+
"title": "HuggingFace トークン"
|
66
|
+
}
|
67
|
+
},
|
61
68
|
"ollama": {
|
62
69
|
"checker": {
|
63
70
|
"desc": "プロキシアドレスが正しく入力されているかをテストします",
|
@@ -458,6 +458,9 @@
|
|
458
458
|
"google/gemma-2-27b-it": {
|
459
459
|
"description": "Gemma 2は、軽量化と高効率のデザイン理念を継承しています。"
|
460
460
|
},
|
461
|
+
"google/gemma-2-2b-it": {
|
462
|
+
"description": "Googleの軽量指示調整モデル"
|
463
|
+
},
|
461
464
|
"google/gemma-2-9b-it": {
|
462
465
|
"description": "Gemma 2は、Googleの軽量オープンソーステキストモデルシリーズです。"
|
463
466
|
},
|
@@ -589,6 +592,12 @@
|
|
589
592
|
"llama-3.1-sonar-small-128k-online": {
|
590
593
|
"description": "Llama 3.1 Sonar Small Onlineモデルは、8Bパラメータを持ち、約127,000トークンのコンテキスト長をサポートし、オンラインチャット用に設計されており、さまざまなテキストインタラクションを効率的に処理できます。"
|
591
594
|
},
|
595
|
+
"llama-3.2-11b-vision-preview": {
|
596
|
+
"description": "Llama 3.2は、視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
597
|
+
},
|
598
|
+
"llama-3.2-90b-vision-preview": {
|
599
|
+
"description": "Llama 3.2は、視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
600
|
+
},
|
592
601
|
"llama3-70b-8192": {
|
593
602
|
"description": "Meta Llama 3 70Bは、比類のない複雑性処理能力を提供し、高要求プロジェクトに特化しています。"
|
594
603
|
},
|
@@ -643,6 +652,9 @@
|
|
643
652
|
"meta-llama/Llama-2-13b-chat-hf": {
|
644
653
|
"description": "LLaMA-2 Chat (13B)は、優れた言語処理能力と素晴らしいインタラクション体験を提供します。"
|
645
654
|
},
|
655
|
+
"meta-llama/Llama-2-7b-chat-hf": {
|
656
|
+
"description": "最高の対話モデルの一つ"
|
657
|
+
},
|
646
658
|
"meta-llama/Llama-3-70b-chat-hf": {
|
647
659
|
"description": "LLaMA-3 Chat (70B)は、強力なチャットモデルであり、複雑な対話ニーズをサポートします。"
|
648
660
|
},
|
@@ -811,8 +823,8 @@
|
|
811
823
|
"open-mixtral-8x7b": {
|
812
824
|
"description": "Mixtral 8x7Bは、スパースエキスパートモデルであり、複数のパラメータを利用して推論速度を向上させ、多言語およびコード生成タスクの処理に適しています。"
|
813
825
|
},
|
814
|
-
"openai/gpt-4o
|
815
|
-
"description": "ChatGPT-4o
|
826
|
+
"openai/gpt-4o": {
|
827
|
+
"description": "ChatGPT-4oは動的モデルで、最新のバージョンを維持するためにリアルタイムで更新されます。強力な言語理解と生成能力を組み合わせており、顧客サービス、教育、技術サポートなどの大規模なアプリケーションシナリオに適しています。"
|
816
828
|
},
|
817
829
|
"openai/gpt-4o-mini": {
|
818
830
|
"description": "GPT-4o miniはOpenAIがGPT-4 Omniの後に発表した最新モデルで、画像とテキストの入力をサポートし、テキストを出力します。彼らの最先端の小型モデルとして、最近の他の最前線モデルよりもはるかに安価で、GPT-3.5 Turboよりも60%以上安価です。最先端の知能を維持しつつ、顕著なコストパフォーマンスを誇ります。GPT-4o miniはMMLUテストで82%のスコアを獲得し、現在チャットの好みでGPT-4よりも高い評価を得ています。"
|
@@ -862,11 +874,11 @@
|
|
862
874
|
"qwen-vl-chat-v1": {
|
863
875
|
"description": "通義千問VLは、複数の画像、多段階の質問応答、創作などの柔軟なインタラクション方式をサポートするモデルです。"
|
864
876
|
},
|
865
|
-
"qwen-vl-max": {
|
866
|
-
"description": "
|
877
|
+
"qwen-vl-max-latest": {
|
878
|
+
"description": "通義千問の超大規模視覚言語モデル。強化版に比べて、視覚推論能力と指示遵守能力をさらに向上させ、より高い視覚認識と認知レベルを提供します。"
|
867
879
|
},
|
868
|
-
"qwen-vl-plus": {
|
869
|
-
"description": "
|
880
|
+
"qwen-vl-plus-latest": {
|
881
|
+
"description": "通義千問の大規模視覚言語モデルの強化版。詳細認識能力と文字認識能力を大幅に向上させ、100万ピクセル以上の解像度と任意のアスペクト比の画像をサポートします。"
|
870
882
|
},
|
871
883
|
"qwen-vl-v1": {
|
872
884
|
"description": "Qwen-7B言語モデルを初期化し、画像モデルを追加した、画像入力解像度448の事前トレーニングモデルです。"
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "GroqのLPU推論エンジンは、最新の独立した大規模言語モデル(LLM)ベンチマークテストで卓越したパフォーマンスを示し、その驚異的な速度と効率でAIソリューションの基準を再定義しています。Groqは、即時推論速度の代表であり、クラウドベースの展開で良好なパフォーマンスを発揮しています。"
|
32
32
|
},
|
33
|
+
"huggingface": {
|
34
|
+
"description": "HuggingFace Inference APIは、数千のモデルをさまざまなタスクに対して探索するための迅速かつ無料の方法を提供します。新しいアプリケーションのプロトタイプを作成している場合でも、機械学習の機能を試している場合でも、このAPIは複数の分野の高性能モデルに即座にアクセスできるようにします。"
|
35
|
+
},
|
33
36
|
"hunyuan": {
|
34
37
|
"description": "テンセントが開発した大規模言語モデルであり、強力な中国語の創作能力、複雑な文脈における論理的推論能力、そして信頼性の高いタスク実行能力を備えています。"
|
35
38
|
},
|
package/locales/ko-KR/error.json
CHANGED
@@ -67,6 +67,7 @@
|
|
67
67
|
"OllamaBizError": "Ollama 서비스 요청 중 오류가 발생했습니다. 아래 정보를 확인하고 다시 시도하십시오.",
|
68
68
|
"OllamaServiceUnavailable": "Ollama 서비스를 사용할 수 없습니다. Ollama가 올바르게 작동하는지 또는 Ollama의 교차 도메인 구성이 올바르게 설정되었는지 확인하십시오.",
|
69
69
|
"OpenAIBizError": "OpenAI 서비스 요청 중 오류가 발생했습니다. 아래 정보를 확인하고 다시 시도해주세요.",
|
70
|
+
"PermissionDenied": "죄송합니다. 이 서비스에 접근할 권한이 없습니다. 키에 접근 권한이 있는지 확인해 주세요.",
|
70
71
|
"PluginApiNotFound": "죄송합니다. 플러그인 설명서에 해당 API가 없습니다. 요청 메서드와 플러그인 설명서 API가 일치하는지 확인해주세요.",
|
71
72
|
"PluginApiParamsError": "죄송합니다. 플러그인 요청의 입력 매개변수 유효성 검사에 실패했습니다. 입력 매개변수와 API 설명 정보가 일치하는지 확인해주세요.",
|
72
73
|
"PluginFailToTransformArguments": "죄송합니다. 플러그인 호출 인수 변환에 실패했습니다. 도우미 메시지를 다시 생성하거나 더 강력한 AI 모델로 Tools Calling 능력을 변경한 후 다시 시도해주세요.",
|
@@ -58,6 +58,13 @@
|
|
58
58
|
"title": "GitHub PAT"
|
59
59
|
}
|
60
60
|
},
|
61
|
+
"huggingface": {
|
62
|
+
"accessToken": {
|
63
|
+
"desc": "당신의 HuggingFace 토큰을 입력하세요. [여기](https://huggingface.co/settings/tokens)를 클릭하여 생성하세요.",
|
64
|
+
"placeholder": "hf_xxxxxxxxx",
|
65
|
+
"title": "HuggingFace 토큰"
|
66
|
+
}
|
67
|
+
},
|
61
68
|
"ollama": {
|
62
69
|
"checker": {
|
63
70
|
"desc": "프록시 주소가 올바르게 입력되었는지 테스트합니다",
|
@@ -458,6 +458,9 @@
|
|
458
458
|
"google/gemma-2-27b-it": {
|
459
459
|
"description": "Gemma 2는 경량화와 효율적인 설계를 이어갑니다."
|
460
460
|
},
|
461
|
+
"google/gemma-2-2b-it": {
|
462
|
+
"description": "Google의 경량 지시 조정 모델"
|
463
|
+
},
|
461
464
|
"google/gemma-2-9b-it": {
|
462
465
|
"description": "Gemma 2는 Google의 경량화된 오픈 소스 텍스트 모델 시리즈입니다."
|
463
466
|
},
|
@@ -589,6 +592,12 @@
|
|
589
592
|
"llama-3.1-sonar-small-128k-online": {
|
590
593
|
"description": "Llama 3.1 Sonar Small Online 모델은 8B 매개변수를 갖추고 있으며, 약 127,000개의 토큰의 컨텍스트 길이를 지원하여 온라인 채팅을 위해 설계되었습니다."
|
591
594
|
},
|
595
|
+
"llama-3.2-11b-vision-preview": {
|
596
|
+
"description": "Llama 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
|
597
|
+
},
|
598
|
+
"llama-3.2-90b-vision-preview": {
|
599
|
+
"description": "Llama 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
|
600
|
+
},
|
592
601
|
"llama3-70b-8192": {
|
593
602
|
"description": "Meta Llama 3 70B는 비할 데 없는 복잡성 처리 능력을 제공하며, 높은 요구 사항을 가진 프로젝트에 맞춤형으로 설계되었습니다."
|
594
603
|
},
|
@@ -643,6 +652,9 @@
|
|
643
652
|
"meta-llama/Llama-2-13b-chat-hf": {
|
644
653
|
"description": "LLaMA-2 Chat (13B)는 뛰어난 언어 처리 능력과 우수한 상호작용 경험을 제공합니다."
|
645
654
|
},
|
655
|
+
"meta-llama/Llama-2-7b-chat-hf": {
|
656
|
+
"description": "최고의 대화 모델 중 하나"
|
657
|
+
},
|
646
658
|
"meta-llama/Llama-3-70b-chat-hf": {
|
647
659
|
"description": "LLaMA-3 Chat (70B)는 강력한 채팅 모델로, 복잡한 대화 요구를 지원합니다."
|
648
660
|
},
|
@@ -811,7 +823,7 @@
|
|
811
823
|
"open-mixtral-8x7b": {
|
812
824
|
"description": "Mixtral 8x7B는 희소 전문가 모델로, 여러 매개변수를 활용하여 추론 속도를 높이며, 다국어 및 코드 생성 작업 처리에 적합합니다."
|
813
825
|
},
|
814
|
-
"openai/gpt-4o
|
826
|
+
"openai/gpt-4o": {
|
815
827
|
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 응용 프로그램에 적합합니다."
|
816
828
|
},
|
817
829
|
"openai/gpt-4o-mini": {
|
@@ -862,11 +874,11 @@
|
|
862
874
|
"qwen-vl-chat-v1": {
|
863
875
|
"description": "통의천문 VL은 다중 이미지, 다중 회차 질문 응답, 창작 등 유연한 상호작용 방식을 지원하는 모델입니다."
|
864
876
|
},
|
865
|
-
"qwen-vl-max": {
|
866
|
-
"description": "통의천문 초대규모
|
877
|
+
"qwen-vl-max-latest": {
|
878
|
+
"description": "통의천문 초대규모 비주얼 언어 모델. 강화판에 비해 시각적 추론 능력과 지시 준수 능력을 다시 한 번 향상시켜, 더 높은 시각적 인식과 인지 수준을 제공합니다."
|
867
879
|
},
|
868
|
-
"qwen-vl-plus": {
|
869
|
-
"description": "통의천문 대규모
|
880
|
+
"qwen-vl-plus-latest": {
|
881
|
+
"description": "통의천문 대규모 비주얼 언어 모델 강화판. 세부 사항 인식 능력과 문자 인식 능력을 크게 향상시켰으며, 백만 화소 이상의 해상도와 임의의 가로 세로 비율의 이미지를 지원합니다."
|
870
882
|
},
|
871
883
|
"qwen-vl-v1": {
|
872
884
|
"description": "Qwen-7B 언어 모델로 초기화된 모델로, 이미지 모델을 추가하여 이미지 입력 해상도가 448인 사전 훈련 모델입니다."
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "Groq의 LPU 추론 엔진은 최신 독립 대형 언어 모델(LLM) 벤치마크 테스트에서 뛰어난 성능을 보이며, 놀라운 속도와 효율성으로 AI 솔루션의 기준을 재정의하고 있습니다. Groq는 즉각적인 추론 속도의 대표주자로, 클라우드 기반 배포에서 우수한 성능을 보여줍니다."
|
32
32
|
},
|
33
|
+
"huggingface": {
|
34
|
+
"description": "HuggingFace Inference API는 수천 개의 모델을 탐색할 수 있는 빠르고 무료의 방법을 제공합니다. 새로운 애플리케이션을 프로토타입 하거나 머신러닝의 기능을 시도하는 경우, 이 API는 여러 분야의 고성능 모델에 즉시 접근할 수 있게 해줍니다."
|
35
|
+
},
|
33
36
|
"hunyuan": {
|
34
37
|
"description": "텐센트가 개발한 대형 언어 모델로, 강력한 한국어 창작 능력과 복잡한 맥락에서의 논리적 추론 능력, 그리고 신뢰할 수 있는 작업 수행 능력을 갖추고 있습니다."
|
35
38
|
},
|
package/locales/nl-NL/error.json
CHANGED
@@ -67,6 +67,7 @@
|
|
67
67
|
"OllamaBizError": "Fout bij het aanroepen van de Ollama-service, controleer de onderstaande informatie en probeer opnieuw",
|
68
68
|
"OllamaServiceUnavailable": "Ollama-service niet beschikbaar. Controleer of Ollama correct werkt en of de cross-origin configuratie van Ollama juist is ingesteld.",
|
69
69
|
"OpenAIBizError": "Er is een fout opgetreden bij het aanvragen van de OpenAI-service. Controleer de volgende informatie of probeer het opnieuw.",
|
70
|
+
"PermissionDenied": "Het spijt ons, je hebt geen toestemming om deze service te gebruiken. Controleer of je sleutel de juiste toegangsrechten heeft.",
|
70
71
|
"PluginApiNotFound": "Sorry, de API van de plug-inbeschrijvingslijst bestaat niet. Controleer of uw verzoeksmethode overeenkomt met de plug-inbeschrijvingslijst API",
|
71
72
|
"PluginApiParamsError": "Sorry, de validatie van de invoerparameters van de plug-in is mislukt. Controleer of de invoerparameters overeenkomen met de API-beschrijving",
|
72
73
|
"PluginFailToTransformArguments": "Sorry, the plugin failed to parse the arguments. Please try regenerating the assistant message or retry with a more powerful AI model with Tools Calling capability.",
|
@@ -58,6 +58,13 @@
|
|
58
58
|
"title": "GitHub PAT"
|
59
59
|
}
|
60
60
|
},
|
61
|
+
"huggingface": {
|
62
|
+
"accessToken": {
|
63
|
+
"desc": "Vul je HuggingFace Token in, klik [hier](https://huggingface.co/settings/tokens) om er een te maken",
|
64
|
+
"placeholder": "hf_xxxxxxxxx",
|
65
|
+
"title": "HuggingFace Token"
|
66
|
+
}
|
67
|
+
},
|
61
68
|
"ollama": {
|
62
69
|
"checker": {
|
63
70
|
"desc": "Test of het proxyadres correct is ingevuld",
|
@@ -458,6 +458,9 @@
|
|
458
458
|
"google/gemma-2-27b-it": {
|
459
459
|
"description": "Gemma 2 behoudt het ontwerpprincipe van lichtgewicht en efficiëntie."
|
460
460
|
},
|
461
|
+
"google/gemma-2-2b-it": {
|
462
|
+
"description": "Google's lichtgewicht instructieafstemmingsmodel"
|
463
|
+
},
|
461
464
|
"google/gemma-2-9b-it": {
|
462
465
|
"description": "Gemma 2 is een lichtgewicht open-source tekstmodelserie van Google."
|
463
466
|
},
|
@@ -589,6 +592,12 @@
|
|
589
592
|
"llama-3.1-sonar-small-128k-online": {
|
590
593
|
"description": "Llama 3.1 Sonar Small Online model, met 8B parameters, ondersteunt een contextlengte van ongeveer 127.000 tokens, speciaal ontworpen voor online chat en kan efficiënt verschillende tekstinteracties verwerken."
|
591
594
|
},
|
595
|
+
"llama-3.2-11b-vision-preview": {
|
596
|
+
"description": "Llama 3.2 is ontworpen om taken te verwerken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redeneervaardigheden."
|
597
|
+
},
|
598
|
+
"llama-3.2-90b-vision-preview": {
|
599
|
+
"description": "Llama 3.2 is ontworpen om taken te verwerken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redeneervaardigheden."
|
600
|
+
},
|
592
601
|
"llama3-70b-8192": {
|
593
602
|
"description": "Meta Llama 3 70B biedt ongeëvenaarde complexiteitsverwerkingscapaciteiten, op maat gemaakt voor veeleisende projecten."
|
594
603
|
},
|
@@ -643,6 +652,9 @@
|
|
643
652
|
"meta-llama/Llama-2-13b-chat-hf": {
|
644
653
|
"description": "LLaMA-2 Chat (13B) biedt uitstekende taalverwerkingscapaciteiten en een geweldige interactie-ervaring."
|
645
654
|
},
|
655
|
+
"meta-llama/Llama-2-7b-chat-hf": {
|
656
|
+
"description": "Een van de beste gespreksmodellen"
|
657
|
+
},
|
646
658
|
"meta-llama/Llama-3-70b-chat-hf": {
|
647
659
|
"description": "LLaMA-3 Chat (70B) is een krachtig chatmodel dat complexe gespreksbehoeften ondersteunt."
|
648
660
|
},
|
@@ -811,7 +823,7 @@
|
|
811
823
|
"open-mixtral-8x7b": {
|
812
824
|
"description": "Mixtral 8x7B is een spaarzaam expertmodel dat meerdere parameters benut om de inferentiesnelheid te verhogen, geschikt voor het verwerken van meertalige en codegeneratietaken."
|
813
825
|
},
|
814
|
-
"openai/gpt-4o
|
826
|
+
"openai/gpt-4o": {
|
815
827
|
"description": "ChatGPT-4o is een dynamisch model dat in realtime wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip- en generatiecapaciteiten, geschikt voor grootschalige toepassingsscenario's, waaronder klantenservice, onderwijs en technische ondersteuning."
|
816
828
|
},
|
817
829
|
"openai/gpt-4o-mini": {
|
@@ -862,11 +874,11 @@
|
|
862
874
|
"qwen-vl-chat-v1": {
|
863
875
|
"description": "Qwen VL ondersteunt flexibele interactiemethoden, inclusief meerdere afbeeldingen, meerdere rondes van vraag en antwoord, en creatiecapaciteiten."
|
864
876
|
},
|
865
|
-
"qwen-vl-max": {
|
866
|
-
"description": "
|
877
|
+
"qwen-vl-max-latest": {
|
878
|
+
"description": "Het Tongyi Qianwen ultra-grootschalige visuele taalmodel. In vergelijking met de verbeterde versie, verhoogt het opnieuw de visuele redeneervaardigheden en de naleving van instructies, en biedt het een hoger niveau van visuele waarneming en cognitie."
|
867
879
|
},
|
868
|
-
"qwen-vl-plus": {
|
869
|
-
"description": "
|
880
|
+
"qwen-vl-plus-latest": {
|
881
|
+
"description": "De verbeterde versie van het Tongyi Qianwen grootschalige visuele taalmodel. Het verbetert aanzienlijk de detailherkenning en tekstherkenning, ondersteunt resoluties van meer dan een miljoen pixels en afbeeldingen met elke verhouding."
|
870
882
|
},
|
871
883
|
"qwen-vl-v1": {
|
872
884
|
"description": "Geïnitieerd met het Qwen-7B taalmodel, voegt het een afbeeldingsmodel toe, met een invoerresolutie van 448 voor het voorgetrainde model."
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "De LPU-inferentie-engine van Groq presteert uitstekend in de nieuwste onafhankelijke benchmarktests voor grote taalmodellen (LLM), en herdefinieert de normen voor AI-oplossingen met zijn verbazingwekkende snelheid en efficiëntie. Groq is een vertegenwoordiger van onmiddellijke inferentiesnelheid en toont goede prestaties in cloudgebaseerde implementaties."
|
32
32
|
},
|
33
|
+
"huggingface": {
|
34
|
+
"description": "HuggingFace Inference API biedt een snelle en gratis manier om duizenden modellen te verkennen voor verschillende taken. Of u nu prototypes voor nieuwe applicaties ontwerpt of de mogelijkheden van machine learning uitprobeert, deze API geeft u directe toegang tot hoogpresterende modellen in meerdere domeinen."
|
35
|
+
},
|
33
36
|
"hunyuan": {
|
34
37
|
"description": "Een door Tencent ontwikkeld groot taalmodel, dat beschikt over krachtige Chinese creatiecapaciteiten, logische redeneervaardigheden in complexe contexten, en betrouwbare taakuitvoeringscapaciteiten."
|
35
38
|
},
|
package/locales/pl-PL/error.json
CHANGED
@@ -67,6 +67,7 @@
|
|
67
67
|
"OllamaBizError": "Błąd usługi Ollama, sprawdź poniższe informacje lub spróbuj ponownie",
|
68
68
|
"OllamaServiceUnavailable": "Usługa Ollama jest niedostępna. Sprawdź, czy Ollama działa poprawnie, lub czy poprawnie skonfigurowano ustawienia przekraczania domeny Ollama",
|
69
69
|
"OpenAIBizError": "Wystąpił błąd usługi OpenAI, proszę sprawdzić poniższe informacje lub spróbować ponownie",
|
70
|
+
"PermissionDenied": "Przykro nam, nie masz uprawnień do dostępu do tej usługi. Proszę sprawdzić, czy Twój klucz ma odpowiednie uprawnienia dostępu.",
|
70
71
|
"PluginApiNotFound": "Przepraszamy, w manifestach wtyczki nie istnieje to API. Proszę sprawdź, czy metoda żądania jest zgodna z API w manifestach wtyczki",
|
71
72
|
"PluginApiParamsError": "Przepraszamy, walidacja parametrów wejściowych żądanej wtyczki nie powiodła się. Proszę sprawdź, czy parametry wejściowe są zgodne z informacjami opisującymi API",
|
72
73
|
"PluginFailToTransformArguments": "Przepraszamy, nie udało się przekształcić argumentów wywołania wtyczki. Spróbuj ponownie wygenerować wiadomość pomocnika lub zmień model AI o większej zdolności do wywoływania narzędzi i spróbuj ponownie",
|
@@ -58,6 +58,13 @@
|
|
58
58
|
"title": "GitHub PAT"
|
59
59
|
}
|
60
60
|
},
|
61
|
+
"huggingface": {
|
62
|
+
"accessToken": {
|
63
|
+
"desc": "Wprowadź swój token HuggingFace, kliknij [tutaj](https://huggingface.co/settings/tokens), aby go utworzyć",
|
64
|
+
"placeholder": "hf_xxxxxxxxx",
|
65
|
+
"title": "Token HuggingFace"
|
66
|
+
}
|
67
|
+
},
|
61
68
|
"ollama": {
|
62
69
|
"checker": {
|
63
70
|
"desc": "Test czy adres proxy jest poprawnie wypełniony",
|