@lobehub/chat 1.20.8 → 1.21.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/locales/ar/error.json +1 -0
- package/locales/ar/modelProvider.json +20 -0
- package/locales/ar/models.json +73 -4
- package/locales/ar/providers.json +6 -0
- package/locales/bg-BG/error.json +1 -0
- package/locales/bg-BG/modelProvider.json +20 -0
- package/locales/bg-BG/models.json +73 -4
- package/locales/bg-BG/providers.json +6 -0
- package/locales/de-DE/error.json +1 -0
- package/locales/de-DE/modelProvider.json +20 -0
- package/locales/de-DE/models.json +73 -4
- package/locales/de-DE/providers.json +6 -0
- package/locales/en-US/error.json +1 -0
- package/locales/en-US/modelProvider.json +20 -0
- package/locales/en-US/models.json +73 -4
- package/locales/en-US/providers.json +6 -0
- package/locales/es-ES/error.json +1 -0
- package/locales/es-ES/modelProvider.json +20 -0
- package/locales/es-ES/models.json +73 -4
- package/locales/es-ES/providers.json +6 -0
- package/locales/fr-FR/error.json +1 -0
- package/locales/fr-FR/modelProvider.json +20 -0
- package/locales/fr-FR/models.json +73 -4
- package/locales/fr-FR/providers.json +6 -0
- package/locales/it-IT/error.json +1 -0
- package/locales/it-IT/modelProvider.json +20 -0
- package/locales/it-IT/models.json +73 -4
- package/locales/it-IT/providers.json +6 -0
- package/locales/ja-JP/error.json +1 -0
- package/locales/ja-JP/modelProvider.json +20 -0
- package/locales/ja-JP/models.json +73 -4
- package/locales/ja-JP/providers.json +6 -0
- package/locales/ko-KR/error.json +1 -0
- package/locales/ko-KR/modelProvider.json +20 -0
- package/locales/ko-KR/models.json +73 -4
- package/locales/ko-KR/providers.json +6 -0
- package/locales/nl-NL/error.json +1 -0
- package/locales/nl-NL/modelProvider.json +20 -0
- package/locales/nl-NL/models.json +73 -4
- package/locales/nl-NL/providers.json +6 -0
- package/locales/pl-PL/error.json +1 -0
- package/locales/pl-PL/modelProvider.json +20 -0
- package/locales/pl-PL/models.json +73 -4
- package/locales/pl-PL/providers.json +6 -0
- package/locales/pt-BR/error.json +1 -0
- package/locales/pt-BR/modelProvider.json +20 -0
- package/locales/pt-BR/models.json +73 -4
- package/locales/pt-BR/providers.json +6 -0
- package/locales/ru-RU/error.json +1 -0
- package/locales/ru-RU/modelProvider.json +20 -0
- package/locales/ru-RU/models.json +73 -4
- package/locales/ru-RU/providers.json +6 -0
- package/locales/tr-TR/error.json +1 -0
- package/locales/tr-TR/modelProvider.json +20 -0
- package/locales/tr-TR/models.json +73 -4
- package/locales/tr-TR/providers.json +6 -0
- package/locales/vi-VN/error.json +1 -0
- package/locales/vi-VN/modelProvider.json +20 -0
- package/locales/vi-VN/models.json +73 -4
- package/locales/vi-VN/providers.json +6 -0
- package/locales/zh-CN/error.json +1 -0
- package/locales/zh-CN/modelProvider.json +20 -0
- package/locales/zh-CN/models.json +76 -7
- package/locales/zh-CN/providers.json +6 -0
- package/locales/zh-TW/error.json +1 -0
- package/locales/zh-TW/modelProvider.json +20 -0
- package/locales/zh-TW/models.json +73 -4
- package/locales/zh-TW/providers.json +6 -0
- package/package.json +3 -2
- package/src/app/(main)/settings/llm/ProviderList/Wenxin/index.tsx +46 -0
- package/src/app/(main)/settings/llm/ProviderList/providers.tsx +4 -1
- package/src/app/api/chat/agentRuntime.test.ts +21 -0
- package/src/app/api/chat/wenxin/route.test.ts +27 -0
- package/src/app/api/chat/wenxin/route.ts +30 -0
- package/src/app/api/errorResponse.ts +4 -0
- package/src/config/llm.ts +8 -0
- package/src/config/modelProviders/index.ts +4 -0
- package/src/config/modelProviders/wenxin.ts +159 -0
- package/src/const/auth.ts +4 -0
- package/src/const/settings/llm.ts +5 -0
- package/src/features/Conversation/Error/APIKeyForm/Wenxin.tsx +49 -0
- package/src/features/Conversation/Error/APIKeyForm/index.tsx +3 -0
- package/src/features/Conversation/Error/index.tsx +1 -0
- package/src/libs/agent-runtime/AgentRuntime.test.ts +1 -0
- package/src/libs/agent-runtime/error.ts +1 -0
- package/src/libs/agent-runtime/types/type.ts +1 -0
- package/src/libs/agent-runtime/utils/streams/wenxin.test.ts +149 -0
- package/src/libs/agent-runtime/utils/streams/wenxin.ts +46 -0
- package/src/libs/agent-runtime/wenxin/index.ts +106 -0
- package/src/libs/agent-runtime/wenxin/type.ts +84 -0
- package/src/locales/default/error.ts +2 -0
- package/src/locales/default/modelProvider.ts +20 -0
- package/src/server/globalConfig/index.ts +4 -1
- package/src/services/_auth.ts +14 -0
- package/src/store/user/slices/modelList/selectors/keyVaults.ts +2 -0
- package/src/types/user/settings/keyVaults.ts +6 -0
@@ -32,6 +32,39 @@
|
|
32
32
|
"Baichuan4": {
|
33
33
|
"description": "模型能力国内第一,在知识百科、长文本、生成创作等中文任务上超越国外主流模型。还具备行业领先的多模态能力,多项权威评测基准表现优异。"
|
34
34
|
},
|
35
|
+
"ERNIE-3.5-128K": {
|
36
|
+
"description": "百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。"
|
37
|
+
},
|
38
|
+
"ERNIE-3.5-8K": {
|
39
|
+
"description": "百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。"
|
40
|
+
},
|
41
|
+
"ERNIE-3.5-8K-Preview": {
|
42
|
+
"description": "百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。"
|
43
|
+
},
|
44
|
+
"ERNIE-4.0-8K-Latest": {
|
45
|
+
"description": "百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。"
|
46
|
+
},
|
47
|
+
"ERNIE-4.0-8K-Preview": {
|
48
|
+
"description": "百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。"
|
49
|
+
},
|
50
|
+
"ERNIE-4.0-Turbo-8K": {
|
51
|
+
"description": "百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀"
|
52
|
+
},
|
53
|
+
"ERNIE-4.0-Turbo-8K-Preview": {
|
54
|
+
"description": "百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀"
|
55
|
+
},
|
56
|
+
"ERNIE-Character-8K": {
|
57
|
+
"description": "百度自研的垂直场景大语言模型,适合游戏NPC、客服对话、对话角色扮演等应用场景,人设风格更为鲜明、一致,指令遵循能力更强,推理性能更优。"
|
58
|
+
},
|
59
|
+
"ERNIE-Lite-Pro-128K": {
|
60
|
+
"description": "百度自研的轻量级大语言模型,兼顾优异的模型效果与推理性能,效果比ERNIE Lite更优,适合低算力AI加速卡推理使用。"
|
61
|
+
},
|
62
|
+
"ERNIE-Speed-128K": {
|
63
|
+
"description": "百度2024年最新发布的自研高性能大语言模型,通用能力优异,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。"
|
64
|
+
},
|
65
|
+
"ERNIE-Speed-Pro-128K": {
|
66
|
+
"description": "百度2024年最新发布的自研高性能大语言模型,通用能力优异,效果比ERNIE Speed更优,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。"
|
67
|
+
},
|
35
68
|
"Gryphe/MythoMax-L2-13b": {
|
36
69
|
"description": "MythoMax-L2 (13B) 是一种创新模型,适合多领域应用和复杂任务。"
|
37
70
|
},
|
@@ -399,7 +432,10 @@
|
|
399
432
|
"description": "GLM-4-AllTools 是一个多功能智能体模型,优化以支持复杂指令规划与工具调用,如网络浏览、代码解释和文本生成,适用于多任务执行。"
|
400
433
|
},
|
401
434
|
"glm-4-flash": {
|
402
|
-
"description": "GLM-4-Flash
|
435
|
+
"description": "GLM-4-Flash 是处理简单任务的理想选择,速度最快且免费。"
|
436
|
+
},
|
437
|
+
"glm-4-flashx": {
|
438
|
+
"description": "GLM-4-FlashX 是Flash的增强版本,超快推理速度。"
|
403
439
|
},
|
404
440
|
"glm-4-long": {
|
405
441
|
"description": "GLM-4-Long 支持超长文本输入,适合记忆型任务与大规模文档处理。"
|
@@ -413,11 +449,11 @@
|
|
413
449
|
"glm-4v-plus": {
|
414
450
|
"description": "GLM-4V-Plus 具备对视频内容及多图片的理解能力,适合多模态任务。"
|
415
451
|
},
|
416
|
-
"google/gemini-flash-1.5
|
417
|
-
"description": "Gemini 1.5 Flash
|
452
|
+
"google/gemini-flash-1.5": {
|
453
|
+
"description": "Gemini 1.5 Flash 提供了优化后的多模态处理能力,适用多种复杂任务场景。"
|
418
454
|
},
|
419
|
-
"google/gemini-pro-1.5
|
420
|
-
"description": "Gemini 1.5 Pro
|
455
|
+
"google/gemini-pro-1.5": {
|
456
|
+
"description": "Gemini 1.5 Pro 结合最新优化技术,带来更高效的多模态数据处理能力。"
|
421
457
|
},
|
422
458
|
"google/gemma-2-27b-it": {
|
423
459
|
"description": "Gemma 2 延续了轻量化与高效的设计理念。"
|
@@ -491,6 +527,33 @@
|
|
491
527
|
"gryphe/mythomax-l2-13b": {
|
492
528
|
"description": "MythoMax l2 13B 是一款合并了多个顶尖模型的创意与智能相结合的语言模型。"
|
493
529
|
},
|
530
|
+
"hunyuan-code": {
|
531
|
+
"description": "混元最新代码生成模型,经过 200B 高质量代码数据增训基座模型,迭代半年高质量 SFT 数据训练,上下文长窗口长度增大到 8K,五大语言代码生成自动评测指标上位居前列;五大语言10项考量各方面综合代码任务人工高质量评测上,性能处于第一梯队"
|
532
|
+
},
|
533
|
+
"hunyuan-functioncall": {
|
534
|
+
"description": "混元最新 MOE 架构 FunctionCall 模型,经过高质量的 FunctionCall 数据训练,上下文窗口达 32K,在多个维度的评测指标上处于领先。"
|
535
|
+
},
|
536
|
+
"hunyuan-lite": {
|
537
|
+
"description": "升级为 MOE 结构,上下文窗口为 256k ,在 NLP,代码,数学,行业等多项评测集上领先众多开源模型。"
|
538
|
+
},
|
539
|
+
"hunyuan-pro": {
|
540
|
+
"description": "万亿级参数规模 MOE-32K 长文模型。在各种 benchmark 上达到绝对领先的水平,复杂指令和推理,具备复杂数学能力,支持 functioncall,在多语言翻译、金融法律医疗等领域应用重点优化。"
|
541
|
+
},
|
542
|
+
"hunyuan-role": {
|
543
|
+
"description": "混元最新版角色扮演模型,混元官方精调训练推出的角色扮演模型,基于混元模型结合角色扮演场景数据集进行增训,在角色扮演场景具有更好的基础效果。"
|
544
|
+
},
|
545
|
+
"hunyuan-standard": {
|
546
|
+
"description": "采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-32K 性价比相对更高,在平衡效果、价格的同时,可对实现对长文本输入的处理。"
|
547
|
+
},
|
548
|
+
"hunyuan-standard-256K": {
|
549
|
+
"description": "采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-256K 在长度和效果上进一步突破,极大的扩展了可输入长度。"
|
550
|
+
},
|
551
|
+
"hunyuan-turbo": {
|
552
|
+
"description": "混元全新一代大语言模型的预览版,采用全新的混合专家模型(MoE)结构,相比hunyuan-pro推理效率更快,效果表现更强。"
|
553
|
+
},
|
554
|
+
"hunyuan-vision": {
|
555
|
+
"description": "混元最新多模态模型,支持图片+文本输入生成文本内容。"
|
556
|
+
},
|
494
557
|
"internlm/internlm2_5-20b-chat": {
|
495
558
|
"description": "创新的开源模型InternLM2.5,通过大规模的参数提高了对话智能。"
|
496
559
|
},
|
@@ -634,6 +697,12 @@
|
|
634
697
|
"meta-llama/llama-3.1-8b-instruct:free": {
|
635
698
|
"description": "LLaMA 3.1 提供多语言支持,是业界领先的生成模型之一。"
|
636
699
|
},
|
700
|
+
"meta-llama/llama-3.2-11b-vision-instruct": {
|
701
|
+
"description": "LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。"
|
702
|
+
},
|
703
|
+
"meta-llama/llama-3.2-90b-vision-instruct": {
|
704
|
+
"description": "LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。"
|
705
|
+
},
|
637
706
|
"meta.llama3-1-405b-instruct-v1:0": {
|
638
707
|
"description": "Meta Llama 3.1 405B Instruct 是 Llama 3.1 Instruct 模型中最大、最强大的模型,是一款高度先进的对话推理和合成数据生成模型,也可以用作在特定领域进行专业持续预训练或微调的基础。Llama 3.1 提供的多语言大型语言模型 (LLMs) 是一组预训练的、指令调整的生成模型,包括 8B、70B 和 405B 大小 (文本输入/输出)。Llama 3.1 指令调整的文本模型 (8B、70B、405B) 专为多语言对话用例进行了优化,并在常见的行业基准测试中超过了许多可用的开源聊天模型。Llama 3.1 旨在用于多种语言的商业和研究用途。指令调整的文本模型适用于类似助手的聊天,而预训练模型可以适应各种自然语言生成任务。Llama 3.1 模型还支持利用其模型的输出来改进其他模型,包括合成数据生成和精炼。Llama 3.1 是使用优化的变压器架构的自回归语言模型。调整版本使用监督微调 (SFT) 和带有人类反馈的强化学习 (RLHF) 来符合人类对帮助性和安全性的偏好。"
|
639
708
|
},
|
@@ -722,10 +791,10 @@
|
|
722
791
|
"description": "Hermes 2 Pro Llama 3 8B 是 Nous Hermes 2的升级版本,包含最新的内部开发的数据集。"
|
723
792
|
},
|
724
793
|
"o1-mini": {
|
725
|
-
"description": "o1-
|
794
|
+
"description": "Smaller, faster, and 80% cheaper than o1-preview, performs well at code generation and small context operations."
|
726
795
|
},
|
727
796
|
"o1-preview": {
|
728
|
-
"description": "
|
797
|
+
"description": "Focused on advanced reasoning and solving complex problems, including math and science tasks. Ideal for applications that require deep contextual understanding and agentic workflows."
|
729
798
|
},
|
730
799
|
"open-codestral-mamba": {
|
731
800
|
"description": "Codestral Mamba是专注于代码生成的Mamba 2语言模型,为先进的代码和推理任务提供强力支持。"
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "Groq 的 LPU 推理引擎在最新的独立大语言模型(LLM)基准测试中表现卓越,以其惊人的速度和效率重新定义了 AI 解决方案的标准。Groq 是一种即时推理速度的代表,在基于云的部署中展现了良好的性能。"
|
32
32
|
},
|
33
|
+
"hunyuan": {
|
34
|
+
"description": "由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力"
|
35
|
+
},
|
33
36
|
"minimax": {
|
34
37
|
"description": "MiniMax 是 2021 年成立的通用人工智能科技公司,致力于与用户共创智能。MiniMax 自主研发了不同模态的通用大模型,其中包括万亿参数的 MoE 文本大模型、语音大模型以及图像大模型。并推出了海螺 AI 等应用。"
|
35
38
|
},
|
@@ -75,6 +78,9 @@
|
|
75
78
|
"upstage": {
|
76
79
|
"description": "Upstage 专注于为各种商业需求开发AI模型,包括 Solar LLM 和文档 AI,旨在实现工作的人造通用智能(AGI)。通过 Chat API 创建简单的对话代理,并支持功能调用、翻译、嵌入以及特定领域应用。"
|
77
80
|
},
|
81
|
+
"wenxin": {
|
82
|
+
"description": "企业级一站式大模型与AI原生应用开发及服务平台,提供最全面易用的生成式人工智能模型开发、应用开发全流程工具链"
|
83
|
+
},
|
78
84
|
"zeroone": {
|
79
85
|
"description": "01.AI 专注于AI 2.0时代的人工智能技术,大力推动“人+人工智能”的创新和应用,采用超强大模型和先进AI技术以提升人类生产力,实现技术赋能。"
|
80
86
|
},
|
package/locales/zh-TW/error.json
CHANGED
@@ -81,6 +81,7 @@
|
|
81
81
|
"PluginServerError": "外掛伺服器請求回傳錯誤。請根據下面的錯誤資訊檢查您的外掛描述檔案、外掛設定或伺服器實作",
|
82
82
|
"PluginSettingsInvalid": "該外掛需要正確設定後才可以使用。請檢查您的設定是否正確",
|
83
83
|
"ProviderBizError": "請求 {{provider}} 服務出錯,請根據以下資訊排查或重試",
|
84
|
+
"QuotaLimitReached": "很抱歉,當前 Token 用量或請求次數已達該金鑰的配額上限,請增加該金鑰的配額或稍後再試",
|
84
85
|
"StreamChunkError": "流式請求的消息塊解析錯誤,請檢查當前 API 介面是否符合標準規範,或聯繫你的 API 供應商諮詢",
|
85
86
|
"SubscriptionPlanLimit": "您的訂閱額度已用盡,無法使用該功能,請升級到更高的計劃,或購買資源包後繼續使用",
|
86
87
|
"UnknownChatFetchError": "很抱歉,遇到未知請求錯誤,請根據以下資訊排查或重試"
|
@@ -112,6 +112,26 @@
|
|
112
112
|
"title": "下載指定的 Ollama 模型"
|
113
113
|
}
|
114
114
|
},
|
115
|
+
"wenxin": {
|
116
|
+
"accessKey": {
|
117
|
+
"desc": "填入百度千帆平台的 Access Key",
|
118
|
+
"placeholder": "千帆 Access Key",
|
119
|
+
"title": "Access Key"
|
120
|
+
},
|
121
|
+
"checker": {
|
122
|
+
"desc": "測試 AccessKey / SecretAccess 是否填寫正確"
|
123
|
+
},
|
124
|
+
"secretKey": {
|
125
|
+
"desc": "填入百度千帆平台 Secret Key",
|
126
|
+
"placeholder": "千帆 Secret Key",
|
127
|
+
"title": "Secret Key"
|
128
|
+
},
|
129
|
+
"unlock": {
|
130
|
+
"customRegion": "自訂服務區域",
|
131
|
+
"description": "輸入你的 AccessKey / SecretKey 即可開始會話。應用不會記錄你的鑑權配置",
|
132
|
+
"title": "使用自訂文心一言鑑權資訊"
|
133
|
+
}
|
134
|
+
},
|
115
135
|
"zeroone": {
|
116
136
|
"title": "01.AI 零一萬物"
|
117
137
|
},
|
@@ -32,6 +32,39 @@
|
|
32
32
|
"Baichuan4": {
|
33
33
|
"description": "模型能力國內第一,在知識百科、長文本、生成創作等中文任務上超越國外主流模型。還具備行業領先的多模態能力,多項權威評測基準表現優異。"
|
34
34
|
},
|
35
|
+
"ERNIE-3.5-128K": {
|
36
|
+
"description": "百度自研的旗艦級大規模語言模型,覆蓋海量中英文語料,具有強大的通用能力,可滿足絕大部分對話問答、創作生成、插件應用場景要求;支持自動對接百度搜索插件,保障問答信息時效。"
|
37
|
+
},
|
38
|
+
"ERNIE-3.5-8K": {
|
39
|
+
"description": "百度自研的旗艦級大規模語言模型,覆蓋海量中英文語料,具有強大的通用能力,可滿足絕大部分對話問答、創作生成、插件應用場景要求;支持自動對接百度搜索插件,保障問答信息時效。"
|
40
|
+
},
|
41
|
+
"ERNIE-3.5-8K-Preview": {
|
42
|
+
"description": "百度自研的旗艦級大規模語言模型,覆蓋海量中英文語料,具有強大的通用能力,可滿足絕大部分對話問答、創作生成、插件應用場景要求;支持自動對接百度搜索插件,保障問答信息時效。"
|
43
|
+
},
|
44
|
+
"ERNIE-4.0-8K-Latest": {
|
45
|
+
"description": "百度自研的旗艦級超大規模語言模型,相較ERNIE 3.5實現了模型能力全面升級,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。"
|
46
|
+
},
|
47
|
+
"ERNIE-4.0-8K-Preview": {
|
48
|
+
"description": "百度自研的旗艦級超大規模語言模型,相較ERNIE 3.5實現了模型能力全面升級,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。"
|
49
|
+
},
|
50
|
+
"ERNIE-4.0-Turbo-8K": {
|
51
|
+
"description": "百度自研的旗艦級超大規模語言模型,綜合效果表現出色,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。相較於ERNIE 4.0在性能表現上更優秀。"
|
52
|
+
},
|
53
|
+
"ERNIE-4.0-Turbo-8K-Preview": {
|
54
|
+
"description": "百度自研的旗艦級超大規模語言模型,綜合效果表現出色,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。相較於ERNIE 4.0在性能表現上更優秀。"
|
55
|
+
},
|
56
|
+
"ERNIE-Character-8K": {
|
57
|
+
"description": "百度自研的垂直場景大語言模型,適合遊戲NPC、客服對話、對話角色扮演等應用場景,人設風格更為鮮明、一致,指令遵循能力更強,推理性能更優。"
|
58
|
+
},
|
59
|
+
"ERNIE-Lite-Pro-128K": {
|
60
|
+
"description": "百度自研的輕量級大語言模型,兼顧優異的模型效果與推理性能,效果比ERNIE Lite更優,適合低算力AI加速卡推理使用。"
|
61
|
+
},
|
62
|
+
"ERNIE-Speed-128K": {
|
63
|
+
"description": "百度2024年最新發布的自研高性能大語言模型,通用能力優異,適合作為基座模型進行精調,更好地處理特定場景問題,同時具備極佳的推理性能。"
|
64
|
+
},
|
65
|
+
"ERNIE-Speed-Pro-128K": {
|
66
|
+
"description": "百度2024年最新發布的自研高性能大語言模型,通用能力優異,效果比ERNIE Speed更優,適合作為基座模型進行精調,更好地處理特定場景問題,同時具備極佳的推理性能。"
|
67
|
+
},
|
35
68
|
"Gryphe/MythoMax-L2-13b": {
|
36
69
|
"description": "MythoMax-L2 (13B) 是一種創新模型,適合多領域應用和複雜任務。"
|
37
70
|
},
|
@@ -401,6 +434,9 @@
|
|
401
434
|
"glm-4-flash": {
|
402
435
|
"description": "GLM-4-Flash是處理簡單任務的理想選擇,速度最快且價格最優惠。"
|
403
436
|
},
|
437
|
+
"glm-4-flashx": {
|
438
|
+
"description": "GLM-4-FlashX 是 Flash 的增強版本,具備超快的推理速度。"
|
439
|
+
},
|
404
440
|
"glm-4-long": {
|
405
441
|
"description": "GLM-4-Long支持超長文本輸入,適合記憶型任務與大規模文檔處理。"
|
406
442
|
},
|
@@ -413,11 +449,11 @@
|
|
413
449
|
"glm-4v-plus": {
|
414
450
|
"description": "GLM-4V-Plus具備對視頻內容及多圖片的理解能力,適合多模態任務。"
|
415
451
|
},
|
416
|
-
"google/gemini-flash-1.5
|
417
|
-
"description": "Gemini 1.5 Flash
|
452
|
+
"google/gemini-flash-1.5": {
|
453
|
+
"description": "Gemini 1.5 Flash 提供了優化後的多模態處理能力,適用於多種複雜任務場景。"
|
418
454
|
},
|
419
|
-
"google/gemini-pro-1.5
|
420
|
-
"description": "Gemini 1.5 Pro
|
455
|
+
"google/gemini-pro-1.5": {
|
456
|
+
"description": "Gemini 1.5 Pro 結合最新的優化技術,帶來更高效的多模態數據處理能力。"
|
421
457
|
},
|
422
458
|
"google/gemma-2-27b-it": {
|
423
459
|
"description": "Gemma 2 延續了輕量化與高效的設計理念。"
|
@@ -491,6 +527,33 @@
|
|
491
527
|
"gryphe/mythomax-l2-13b": {
|
492
528
|
"description": "MythoMax l2 13B 是一款合併了多個頂尖模型的創意與智能相結合的語言模型。"
|
493
529
|
},
|
530
|
+
"hunyuan-code": {
|
531
|
+
"description": "混元最新代碼生成模型,經過 200B 高質量代碼數據增訓基座模型,迭代半年高質量 SFT 數據訓練,上下文長窗口長度增大到 8K,五大語言代碼生成自動評測指標上位居前列;五大語言 10 項考量各方面綜合代碼任務人工高質量評測上,性能處於第一梯隊。"
|
532
|
+
},
|
533
|
+
"hunyuan-functioncall": {
|
534
|
+
"description": "混元最新 MOE 架構 FunctionCall 模型,經過高質量的 FunctionCall 數據訓練,上下文窗口達 32K,在多個維度的評測指標上處於領先。"
|
535
|
+
},
|
536
|
+
"hunyuan-lite": {
|
537
|
+
"description": "升級為 MOE 結構,上下文窗口為 256k,在 NLP、代碼、數學、行業等多項評測集上領先眾多開源模型。"
|
538
|
+
},
|
539
|
+
"hunyuan-pro": {
|
540
|
+
"description": "萬億級參數規模 MOE-32K 長文模型。在各種 benchmark 上達到絕對領先的水平,具備複雜指令和推理能力,支持 functioncall,在多語言翻譯、金融法律醫療等領域應用重點優化。"
|
541
|
+
},
|
542
|
+
"hunyuan-role": {
|
543
|
+
"description": "混元最新版角色扮演模型,混元官方精調訓練推出的角色扮演模型,基於混元模型結合角色扮演場景數據集進行增訓,在角色扮演場景具有更好的基礎效果。"
|
544
|
+
},
|
545
|
+
"hunyuan-standard": {
|
546
|
+
"description": "採用更優的路由策略,同時緩解了負載均衡和專家趨同的問題。長文方面,大海撈針指標達到 99.9%。MOE-32K 性價比相對更高,在平衡效果和價格的同時,可實現對長文本輸入的處理。"
|
547
|
+
},
|
548
|
+
"hunyuan-standard-256K": {
|
549
|
+
"description": "採用更優的路由策略,同時緩解了負載均衡和專家趨同的問題。長文方面,大海撈針指標達到 99.9%。MOE-256K 在長度和效果上進一步突破,極大地擴展了可輸入長度。"
|
550
|
+
},
|
551
|
+
"hunyuan-turbo": {
|
552
|
+
"description": "混元全新一代大語言模型的預覽版,採用全新的混合專家模型(MoE)結構,相較於 hunyuan-pro 推理效率更快,效果表現更強。"
|
553
|
+
},
|
554
|
+
"hunyuan-vision": {
|
555
|
+
"description": "混元最新多模態模型,支持圖片 + 文本輸入生成文本內容。"
|
556
|
+
},
|
494
557
|
"internlm/internlm2_5-20b-chat": {
|
495
558
|
"description": "創新的開源模型InternLM2.5,通過大規模的參數提高了對話智能。"
|
496
559
|
},
|
@@ -634,6 +697,12 @@
|
|
634
697
|
"meta-llama/llama-3.1-8b-instruct:free": {
|
635
698
|
"description": "LLaMA 3.1 提供多語言支持,是業界領先的生成模型之一。"
|
636
699
|
},
|
700
|
+
"meta-llama/llama-3.2-11b-vision-instruct": {
|
701
|
+
"description": "LLaMA 3.2 旨在處理結合視覺和文本數據的任務。它在圖像描述和視覺問答等任務中表現出色,跨越了語言生成和視覺推理之間的鴻溝。"
|
702
|
+
},
|
703
|
+
"meta-llama/llama-3.2-90b-vision-instruct": {
|
704
|
+
"description": "LLaMA 3.2 旨在處理結合視覺和文本數據的任務。它在圖像描述和視覺問答等任務中表現出色,跨越了語言生成和視覺推理之間的鴻溝。"
|
705
|
+
},
|
637
706
|
"meta.llama3-1-405b-instruct-v1:0": {
|
638
707
|
"description": "Meta Llama 3.1 405B Instruct 是 Llama 3.1 Instruct 模型中最大、最強大的模型,是一款高度先進的對話推理和合成數據生成模型,也可以用作在特定領域進行專業持續預訓練或微調的基礎。Llama 3.1 提供的多語言大型語言模型 (LLMs) 是一組預訓練的、指令調整的生成模型,包括 8B、70B 和 405B 大小 (文本輸入/輸出)。Llama 3.1 指令調整的文本模型 (8B、70B、405B) 專為多語言對話用例進行了優化,並在常見的行業基準測試中超過了許多可用的開源聊天模型。Llama 3.1 旨在用於多種語言的商業和研究用途。指令調整的文本模型適用於類似助手的聊天,而預訓練模型可以適應各種自然語言生成任務。Llama 3.1 模型還支持利用其模型的輸出來改進其他模型,包括合成數據生成和精煉。Llama 3.1 是使用優化的變壓器架構的自回歸語言模型。調整版本使用監督微調 (SFT) 和帶有人類反饋的強化學習 (RLHF) 來符合人類對幫助性和安全性的偏好。"
|
639
708
|
},
|
@@ -30,6 +30,9 @@
|
|
30
30
|
"groq": {
|
31
31
|
"description": "Groq 的 LPU 推理引擎在最新的獨立大語言模型(LLM)基準測試中表現卓越,以其驚人的速度和效率重新定義了 AI 解決方案的標準。Groq 是一種即時推理速度的代表,在基於雲的部署中展現了良好的性能。"
|
32
32
|
},
|
33
|
+
"hunyuan": {
|
34
|
+
"description": "由騰訊研發的大語言模型,具備強大的中文創作能力、複雜語境下的邏輯推理能力,以及可靠的任務執行能力"
|
35
|
+
},
|
33
36
|
"minimax": {
|
34
37
|
"description": "MiniMax 是 2021 年成立的通用人工智慧科技公司,致力於與用戶共創智能。MiniMax 自主研發了不同模態的通用大模型,其中包括萬億參數的 MoE 文本大模型、語音大模型以及圖像大模型。並推出了海螺 AI 等應用。"
|
35
38
|
},
|
@@ -75,6 +78,9 @@
|
|
75
78
|
"upstage": {
|
76
79
|
"description": "Upstage 專注於為各種商業需求開發 AI 模型,包括 Solar LLM 和文檔 AI,旨在實現工作的人工通用智能(AGI)。通過 Chat API 創建簡單的對話代理,並支持功能調用、翻譯、嵌入以及特定領域應用。"
|
77
80
|
},
|
81
|
+
"wenxin": {
|
82
|
+
"description": "企業級一站式大模型與AI原生應用開發及服務平台,提供最全面易用的生成式人工智慧模型開發、應用開發全流程工具鏈"
|
83
|
+
},
|
78
84
|
"zeroone": {
|
79
85
|
"description": "01.AI 專注於 AI 2.0 時代的人工智慧技術,大力推動「人+人工智慧」的創新和應用,採用超強大模型和先進 AI 技術以提升人類生產力,實現技術賦能。"
|
80
86
|
},
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.
|
3
|
+
"version": "1.21.0",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -108,6 +108,7 @@
|
|
108
108
|
"@aws-sdk/s3-request-presigner": "^3.637.0",
|
109
109
|
"@azure/core-rest-pipeline": "1.16.0",
|
110
110
|
"@azure/openai": "1.0.0-beta.12",
|
111
|
+
"@baiducloud/qianfan": "^0.1.9",
|
111
112
|
"@cfworker/json-schema": "^2.0.0",
|
112
113
|
"@clerk/localizations": "^3.0.4",
|
113
114
|
"@clerk/nextjs": "^5.3.3",
|
@@ -120,7 +121,7 @@
|
|
120
121
|
"@langchain/community": "^0.2.31",
|
121
122
|
"@lobehub/chat-plugin-sdk": "^1.32.4",
|
122
123
|
"@lobehub/chat-plugins-gateway": "^1.9.0",
|
123
|
-
"@lobehub/icons": "^1.
|
124
|
+
"@lobehub/icons": "^1.34.2",
|
124
125
|
"@lobehub/tts": "^1.24.3",
|
125
126
|
"@lobehub/ui": "^1.150.3",
|
126
127
|
"@neondatabase/serverless": "^0.9.4",
|
@@ -0,0 +1,46 @@
|
|
1
|
+
'use client';
|
2
|
+
|
3
|
+
import { Wenxin } from '@lobehub/icons';
|
4
|
+
import { Input } from 'antd';
|
5
|
+
import { useTranslation } from 'react-i18next';
|
6
|
+
|
7
|
+
import { WenxinProviderCard } from '@/config/modelProviders';
|
8
|
+
import { GlobalLLMProviderKey } from '@/types/user/settings';
|
9
|
+
|
10
|
+
import { KeyVaultsConfigKey } from '../../const';
|
11
|
+
import { ProviderItem } from '../../type';
|
12
|
+
|
13
|
+
const providerKey: GlobalLLMProviderKey = 'wenxin';
|
14
|
+
|
15
|
+
export const useWenxinProvider = (): ProviderItem => {
|
16
|
+
const { t } = useTranslation('modelProvider');
|
17
|
+
|
18
|
+
return {
|
19
|
+
...WenxinProviderCard,
|
20
|
+
apiKeyItems: [
|
21
|
+
{
|
22
|
+
children: (
|
23
|
+
<Input.Password
|
24
|
+
autoComplete={'new-password'}
|
25
|
+
placeholder={t(`${providerKey}.accessKey.placeholder`)}
|
26
|
+
/>
|
27
|
+
),
|
28
|
+
desc: t(`${providerKey}.accessKey.desc`),
|
29
|
+
label: t(`${providerKey}.accessKey.title`),
|
30
|
+
name: [KeyVaultsConfigKey, providerKey, 'accessKey'],
|
31
|
+
},
|
32
|
+
{
|
33
|
+
children: (
|
34
|
+
<Input.Password
|
35
|
+
autoComplete={'new-password'}
|
36
|
+
placeholder={t(`${providerKey}.secretKey.placeholder`)}
|
37
|
+
/>
|
38
|
+
),
|
39
|
+
desc: t(`${providerKey}.secretKey.desc`),
|
40
|
+
label: t(`${providerKey}.secretKey.title`),
|
41
|
+
name: [KeyVaultsConfigKey, providerKey, 'secretKey'],
|
42
|
+
},
|
43
|
+
],
|
44
|
+
title: <Wenxin.Combine size={32} type={'color'} />,
|
45
|
+
};
|
46
|
+
};
|
@@ -33,6 +33,7 @@ import { useBedrockProvider } from './Bedrock';
|
|
33
33
|
import { useGithubProvider } from './Github';
|
34
34
|
import { useOllamaProvider } from './Ollama';
|
35
35
|
import { useOpenAIProvider } from './OpenAI';
|
36
|
+
import { useWenxinProvider } from './Wenxin';
|
36
37
|
|
37
38
|
export const useProviderList = (): ProviderItem[] => {
|
38
39
|
const AzureProvider = useAzureProvider();
|
@@ -40,6 +41,7 @@ export const useProviderList = (): ProviderItem[] => {
|
|
40
41
|
const OpenAIProvider = useOpenAIProvider();
|
41
42
|
const BedrockProvider = useBedrockProvider();
|
42
43
|
const GithubProvider = useGithubProvider();
|
44
|
+
const WenxinProvider = useWenxinProvider();
|
43
45
|
|
44
46
|
return useMemo(
|
45
47
|
() => [
|
@@ -61,6 +63,7 @@ export const useProviderList = (): ProviderItem[] => {
|
|
61
63
|
Ai21ProviderCard,
|
62
64
|
UpstageProviderCard,
|
63
65
|
QwenProviderCard,
|
66
|
+
WenxinProvider,
|
64
67
|
HunyuanProviderCard,
|
65
68
|
SparkProviderCard,
|
66
69
|
ZhiPuProviderCard,
|
@@ -73,6 +76,6 @@ export const useProviderList = (): ProviderItem[] => {
|
|
73
76
|
TaichuProviderCard,
|
74
77
|
SiliconCloudProviderCard,
|
75
78
|
],
|
76
|
-
[AzureProvider, OllamaProvider, OpenAIProvider, BedrockProvider, GithubProvider],
|
79
|
+
[AzureProvider, OllamaProvider, OpenAIProvider, BedrockProvider, GithubProvider,WenxinProvider],
|
77
80
|
);
|
78
81
|
};
|
@@ -25,6 +25,7 @@ import {
|
|
25
25
|
} from '@/libs/agent-runtime';
|
26
26
|
import { AgentRuntime } from '@/libs/agent-runtime';
|
27
27
|
import { LobeStepfunAI } from '@/libs/agent-runtime/stepfun';
|
28
|
+
import LobeWenxinAI from '@/libs/agent-runtime/wenxin';
|
28
29
|
|
29
30
|
import { initAgentRuntimeWithUserPayload } from './agentRuntime';
|
30
31
|
|
@@ -54,6 +55,9 @@ vi.mock('@/config/llm', () => ({
|
|
54
55
|
TOGETHERAI_API_KEY: 'test-togetherai-key',
|
55
56
|
QWEN_API_KEY: 'test-qwen-key',
|
56
57
|
STEPFUN_API_KEY: 'test-stepfun-key',
|
58
|
+
|
59
|
+
WENXIN_ACCESS_KEY: 'test-wenxin-access-key',
|
60
|
+
WENXIN_SECRET_KEY: 'test-wenxin-secret-key',
|
57
61
|
})),
|
58
62
|
}));
|
59
63
|
|
@@ -202,6 +206,16 @@ describe('initAgentRuntimeWithUserPayload method', () => {
|
|
202
206
|
expect(runtime['_runtime']).toBeInstanceOf(LobeStepfunAI);
|
203
207
|
});
|
204
208
|
|
209
|
+
it.skip('Wenxin AI provider: with apikey', async () => {
|
210
|
+
const jwtPayload: JWTPayload = {
|
211
|
+
wenxinAccessKey: 'user-wenxin-accessKey',
|
212
|
+
wenxinSecretKey: 'wenxin-secret-key',
|
213
|
+
};
|
214
|
+
const runtime = await initAgentRuntimeWithUserPayload(ModelProvider.Wenxin, jwtPayload);
|
215
|
+
expect(runtime).toBeInstanceOf(AgentRuntime);
|
216
|
+
expect(runtime['_runtime']).toBeInstanceOf(LobeWenxinAI);
|
217
|
+
});
|
218
|
+
|
205
219
|
it('Unknown Provider: with apikey and endpoint, should initialize to OpenAi', async () => {
|
206
220
|
const jwtPayload: JWTPayload = {
|
207
221
|
apiKey: 'user-unknown-key',
|
@@ -339,6 +353,13 @@ describe('initAgentRuntimeWithUserPayload method', () => {
|
|
339
353
|
expect(runtime['_runtime']).toBeInstanceOf(LobeTogetherAI);
|
340
354
|
});
|
341
355
|
|
356
|
+
it.skip('Wenxin AI provider: without apikey', async () => {
|
357
|
+
const jwtPayload = {};
|
358
|
+
const runtime = await initAgentRuntimeWithUserPayload(ModelProvider.Wenxin, jwtPayload);
|
359
|
+
expect(runtime).toBeInstanceOf(AgentRuntime);
|
360
|
+
expect(runtime['_runtime']).toBeInstanceOf(LobeWenxinAI);
|
361
|
+
});
|
362
|
+
|
342
363
|
it('Unknown Provider', async () => {
|
343
364
|
const jwtPayload = {};
|
344
365
|
const runtime = await initAgentRuntimeWithUserPayload('unknown', jwtPayload);
|
@@ -0,0 +1,27 @@
|
|
1
|
+
// @vitest-environment edge-runtime
|
2
|
+
import { describe, expect, it, vi } from 'vitest';
|
3
|
+
|
4
|
+
import { POST as UniverseRoute } from '../[provider]/route';
|
5
|
+
import { POST, runtime } from './route';
|
6
|
+
|
7
|
+
// 模拟 '../[provider]/route'
|
8
|
+
vi.mock('../[provider]/route', () => ({
|
9
|
+
POST: vi.fn().mockResolvedValue('mocked response'),
|
10
|
+
}));
|
11
|
+
|
12
|
+
describe('Configuration tests', () => {
|
13
|
+
it('should have runtime set to "edge"', () => {
|
14
|
+
expect(runtime).toBe('nodejs');
|
15
|
+
});
|
16
|
+
});
|
17
|
+
|
18
|
+
describe('Wenxin POST function tests', () => {
|
19
|
+
it('should call UniverseRoute with correct parameters', async () => {
|
20
|
+
const mockRequest = new Request('https://example.com', { method: 'POST' });
|
21
|
+
await POST(mockRequest);
|
22
|
+
expect(UniverseRoute).toHaveBeenCalledWith(mockRequest, {
|
23
|
+
createRuntime: expect.anything(),
|
24
|
+
params: { provider: 'wenxin' },
|
25
|
+
});
|
26
|
+
});
|
27
|
+
});
|
@@ -0,0 +1,30 @@
|
|
1
|
+
import { getLLMConfig } from '@/config/llm';
|
2
|
+
import { AgentRuntime } from '@/libs/agent-runtime';
|
3
|
+
import LobeWenxinAI from '@/libs/agent-runtime/wenxin';
|
4
|
+
|
5
|
+
import { POST as UniverseRoute } from '../[provider]/route';
|
6
|
+
|
7
|
+
export const runtime = 'nodejs';
|
8
|
+
|
9
|
+
export const maxDuration = 30;
|
10
|
+
|
11
|
+
export const POST = async (req: Request) =>
|
12
|
+
UniverseRoute(req, {
|
13
|
+
createRuntime: (payload) => {
|
14
|
+
const { WENXIN_ACCESS_KEY, WENXIN_SECRET_KEY } = getLLMConfig();
|
15
|
+
let accessKey: string | undefined = WENXIN_ACCESS_KEY;
|
16
|
+
let secretKey: string | undefined = WENXIN_SECRET_KEY;
|
17
|
+
|
18
|
+
// if the payload has the api key, use user
|
19
|
+
if (payload.apiKey) {
|
20
|
+
accessKey = payload?.wenxinAccessKey;
|
21
|
+
secretKey = payload?.wenxinSecretKey;
|
22
|
+
}
|
23
|
+
|
24
|
+
const params = { accessKey, secretKey };
|
25
|
+
const instance = new LobeWenxinAI(params);
|
26
|
+
|
27
|
+
return new AgentRuntime(instance);
|
28
|
+
},
|
29
|
+
params: { provider: 'wenxin' },
|
30
|
+
});
|
@@ -16,6 +16,10 @@ const getStatus = (errorType: ILobeAgentRuntimeErrorType | ErrorType) => {
|
|
16
16
|
return 403;
|
17
17
|
}
|
18
18
|
|
19
|
+
case AgentRuntimeErrorType.QuotaLimitReached: {
|
20
|
+
return 429;
|
21
|
+
}
|
22
|
+
|
19
23
|
// define the 471~480 as provider error
|
20
24
|
case AgentRuntimeErrorType.AgentRuntimeError: {
|
21
25
|
return 470;
|
package/src/config/llm.ts
CHANGED
@@ -80,6 +80,10 @@ export const getLLMConfig = () => {
|
|
80
80
|
AWS_SECRET_ACCESS_KEY: z.string().optional(),
|
81
81
|
AWS_SESSION_TOKEN: z.string().optional(),
|
82
82
|
|
83
|
+
ENABLED_WENXIN: z.boolean(),
|
84
|
+
WENXIN_ACCESS_KEY: z.string().optional(),
|
85
|
+
WENXIN_SECRET_KEY: z.string().optional(),
|
86
|
+
|
83
87
|
ENABLED_OLLAMA: z.boolean(),
|
84
88
|
OLLAMA_PROXY_URL: z.string().optional(),
|
85
89
|
OLLAMA_MODEL_LIST: z.string().optional(),
|
@@ -198,6 +202,10 @@ export const getLLMConfig = () => {
|
|
198
202
|
AWS_SECRET_ACCESS_KEY: process.env.AWS_SECRET_ACCESS_KEY,
|
199
203
|
AWS_SESSION_TOKEN: process.env.AWS_SESSION_TOKEN,
|
200
204
|
|
205
|
+
ENABLED_WENXIN: !!process.env.WENXIN_ACCESS_KEY && !!process.env.WENXIN_SECRET_KEY,
|
206
|
+
WENXIN_ACCESS_KEY: process.env.WENXIN_ACCESS_KEY,
|
207
|
+
WENXIN_SECRET_KEY: process.env.WENXIN_SECRET_KEY,
|
208
|
+
|
201
209
|
ENABLED_OLLAMA: process.env.ENABLED_OLLAMA !== '0',
|
202
210
|
OLLAMA_PROXY_URL: process.env.OLLAMA_PROXY_URL || '',
|
203
211
|
OLLAMA_MODEL_LIST: process.env.OLLAMA_MODEL_LIST,
|
@@ -27,6 +27,7 @@ import StepfunProvider from './stepfun';
|
|
27
27
|
import TaichuProvider from './taichu';
|
28
28
|
import TogetherAIProvider from './togetherai';
|
29
29
|
import UpstageProvider from './upstage';
|
30
|
+
import WenxinProvider from './wenxin';
|
30
31
|
import ZeroOneProvider from './zeroone';
|
31
32
|
import ZhiPuProvider from './zhipu';
|
32
33
|
|
@@ -59,6 +60,7 @@ export const LOBE_DEFAULT_MODEL_LIST: ChatModelCard[] = [
|
|
59
60
|
SparkProvider.chatModels,
|
60
61
|
Ai21Provider.chatModels,
|
61
62
|
HunyuanProvider.chatModels,
|
63
|
+
WenxinProvider.chatModels,
|
62
64
|
].flat();
|
63
65
|
|
64
66
|
export const DEFAULT_MODEL_PROVIDER_LIST = [
|
@@ -80,6 +82,7 @@ export const DEFAULT_MODEL_PROVIDER_LIST = [
|
|
80
82
|
Ai21Provider,
|
81
83
|
UpstageProvider,
|
82
84
|
QwenProvider,
|
85
|
+
WenxinProvider,
|
83
86
|
HunyuanProvider,
|
84
87
|
SparkProvider,
|
85
88
|
ZhiPuProvider,
|
@@ -129,5 +132,6 @@ export { default as StepfunProviderCard } from './stepfun';
|
|
129
132
|
export { default as TaichuProviderCard } from './taichu';
|
130
133
|
export { default as TogetherAIProviderCard } from './togetherai';
|
131
134
|
export { default as UpstageProviderCard } from './upstage';
|
135
|
+
export { default as WenxinProviderCard } from './wenxin';
|
132
136
|
export { default as ZeroOneProviderCard } from './zeroone';
|
133
137
|
export { default as ZhiPuProviderCard } from './zhipu';
|