@lobehub/chat 1.16.8 → 1.16.10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of @lobehub/chat might be problematic. Click here for more details.
- package/CHANGELOG.md +58 -0
- package/package.json +3 -3
- package/src/config/__tests__/auth.test.ts +200 -0
- package/src/config/auth.ts +97 -2
- package/src/config/modelProviders/ai360.ts +11 -0
- package/src/config/modelProviders/anthropic.ts +27 -18
- package/src/config/modelProviders/azure.ts +12 -3
- package/src/config/modelProviders/baichuan.ts +3 -1
- package/src/config/modelProviders/bedrock.ts +20 -18
- package/src/config/modelProviders/deepseek.ts +3 -1
- package/src/config/modelProviders/fireworksai.ts +33 -5
- package/src/config/modelProviders/google.ts +16 -13
- package/src/config/modelProviders/groq.ts +19 -8
- package/src/config/modelProviders/minimax.ts +8 -6
- package/src/config/modelProviders/mistral.ts +19 -3
- package/src/config/modelProviders/moonshot.ts +11 -1
- package/src/config/modelProviders/novita.ts +24 -0
- package/src/config/modelProviders/ollama.ts +58 -1
- package/src/config/modelProviders/openai.ts +52 -18
- package/src/config/modelProviders/openrouter.ts +21 -1
- package/src/config/modelProviders/perplexity.ts +19 -3
- package/src/config/modelProviders/qwen.ts +11 -8
- package/src/config/modelProviders/siliconcloud.ts +34 -1
- package/src/config/modelProviders/spark.ts +16 -7
- package/src/config/modelProviders/stepfun.ts +13 -1
- package/src/config/modelProviders/taichu.ts +7 -2
- package/src/config/modelProviders/togetherai.ts +38 -2
- package/src/config/modelProviders/upstage.ts +11 -4
- package/src/config/modelProviders/zeroone.ts +5 -1
- package/src/config/modelProviders/zhipu.ts +20 -18
- package/src/libs/agent-runtime/openai/__snapshots__/index.test.ts.snap +13 -6
- package/src/libs/agent-runtime/qwen/index.test.ts +20 -4
- package/src/libs/agent-runtime/qwen/index.ts +1 -1
- package/src/libs/next-auth/auth.config.ts +3 -1
- package/src/libs/next-auth/sso-providers/auth0.ts +5 -3
- package/src/libs/next-auth/sso-providers/authelia.ts +6 -6
- package/src/libs/next-auth/sso-providers/authentik.ts +5 -3
- package/src/libs/next-auth/sso-providers/azure-ad.ts +5 -3
- package/src/libs/next-auth/sso-providers/cloudflare-zero-trust.ts +4 -3
- package/src/libs/next-auth/sso-providers/generic-oidc.ts +3 -3
- package/src/libs/next-auth/sso-providers/github.ts +4 -2
- package/src/libs/next-auth/sso-providers/logto.ts +3 -3
- package/src/libs/next-auth/sso-providers/zitadel.ts +5 -3
- package/src/migrations/FromV3ToV4/fixtures/ollama-output-v4.json +1 -0
- package/src/server/routers/edge/config/__snapshots__/index.test.ts.snap +24 -4
- package/src/server/routers/edge/config/index.test.ts +3 -11
- package/src/store/user/slices/modelList/__snapshots__/action.test.ts.snap +12 -0
- package/src/store/user/slices/modelList/action.test.ts +3 -7
- package/src/types/llm.ts +1 -0
- package/src/utils/__snapshots__/parseModels.test.ts.snap +32 -0
- package/src/utils/parseModels.test.ts +1 -28
@@ -1,29 +1,36 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref https://docs.mistral.ai/getting-started/models/
|
4
|
-
// ref https://docs.mistral.ai/capabilities/function_calling/
|
3
|
+
// ref: https://docs.mistral.ai/getting-started/models/
|
4
|
+
// ref: https://docs.mistral.ai/capabilities/function_calling/
|
5
5
|
const Mistral: ModelProviderCard = {
|
6
6
|
chatModels: [
|
7
7
|
{
|
8
|
+
description:
|
9
|
+
'Mistral 7B是一款紧凑但高性能的模型,擅长批量处理和简单任务,如分类和文本生成,具有良好的推理能力。',
|
8
10
|
displayName: 'Mistral 7B',
|
9
11
|
enabled: true,
|
10
12
|
id: 'open-mistral-7b',
|
11
13
|
tokens: 32_768,
|
12
14
|
},
|
13
15
|
{
|
16
|
+
description:
|
17
|
+
'Mixtral 8x7B是一个稀疏专家模型,利用多个参数提高推理速度,适合处理多语言和代码生成任务。',
|
14
18
|
displayName: 'Mixtral 8x7B',
|
15
19
|
enabled: true,
|
16
20
|
id: 'open-mixtral-8x7b',
|
17
21
|
tokens: 32_768,
|
18
22
|
},
|
19
23
|
{
|
24
|
+
description:
|
25
|
+
'Mixtral 8x22B是一个更大的专家模型,专注于复杂任务,提供出色的推理能力和更高的吞吐量。',
|
20
26
|
displayName: 'Mixtral 8x22B',
|
21
|
-
enabled: true,
|
22
27
|
functionCall: true,
|
23
28
|
id: 'open-mixtral-8x22b',
|
24
29
|
tokens: 65_536,
|
25
30
|
},
|
26
31
|
{
|
32
|
+
description:
|
33
|
+
'Mistral Nemo是一个与Nvidia合作开发的12B模型,提供出色的推理和编码性能,易于集成和替换。',
|
27
34
|
displayName: 'Mistral Nemo',
|
28
35
|
enabled: true,
|
29
36
|
functionCall: true,
|
@@ -31,6 +38,8 @@ const Mistral: ModelProviderCard = {
|
|
31
38
|
tokens: 128_000,
|
32
39
|
},
|
33
40
|
{
|
41
|
+
description:
|
42
|
+
'Mistral Large是旗舰大模型,擅长多语言任务、复杂推理和代码生成,是高端应用的理想选择。',
|
34
43
|
displayName: 'Mistral Large',
|
35
44
|
enabled: true,
|
36
45
|
functionCall: true,
|
@@ -38,12 +47,15 @@ const Mistral: ModelProviderCard = {
|
|
38
47
|
tokens: 128_000,
|
39
48
|
},
|
40
49
|
{
|
50
|
+
description: 'Codestral是专注于代码生成的尖端生成模型,优化了中间填充和代码补全任务。',
|
41
51
|
displayName: 'Codestral',
|
42
52
|
enabled: true,
|
43
53
|
id: 'codestral-latest',
|
44
54
|
tokens: 32_768,
|
45
55
|
},
|
46
56
|
{
|
57
|
+
description:
|
58
|
+
'Codestral Mamba是专注于代码生成的Mamba 2语言模型,为先进的代码和推理任务提供强力支持。',
|
47
59
|
displayName: 'Codestral Mamba',
|
48
60
|
enabled: true,
|
49
61
|
id: 'open-codestral-mamba',
|
@@ -51,8 +63,12 @@ const Mistral: ModelProviderCard = {
|
|
51
63
|
},
|
52
64
|
],
|
53
65
|
checkModel: 'open-mistral-7b',
|
66
|
+
description:
|
67
|
+
'Mistral 提供先进的通用、专业和研究型模型,广泛应用于复杂推理、多语言任务、代码生成等领域,通过功能调用接口,用户可以集成自定义功能,实现特定应用。',
|
54
68
|
id: 'mistral',
|
69
|
+
modelsUrl: 'https://docs.mistral.ai/getting-started/models',
|
55
70
|
name: 'Mistral',
|
71
|
+
url: 'https://mistral.ai',
|
56
72
|
};
|
57
73
|
|
58
74
|
export default Mistral;
|
@@ -1,9 +1,11 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref https://platform.moonshot.cn/docs/intro#模型列表
|
3
|
+
// ref: https://platform.moonshot.cn/docs/intro#模型列表
|
4
4
|
const Moonshot: ModelProviderCard = {
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
|
+
description:
|
8
|
+
'Moonshot V1 128K 是一款拥有超长上下文处理能力的模型,适用于生成超长文本,满足复杂的生成任务需求,能够处理多达128,000个tokens的内容,非常适合科研、学术和大型文档生成等应用场景。',
|
7
9
|
displayName: 'Moonshot V1 128K',
|
8
10
|
enabled: true,
|
9
11
|
functionCall: true,
|
@@ -11,6 +13,8 @@ const Moonshot: ModelProviderCard = {
|
|
11
13
|
tokens: 128_000,
|
12
14
|
},
|
13
15
|
{
|
16
|
+
description:
|
17
|
+
'Moonshot V1 32K 提供中等长度的上下文处理能力,能够处理32,768个tokens,特别适合生成各种长文档和复杂对话,应用于内容创作、报告生成和对话系统等领域。',
|
14
18
|
displayName: 'Moonshot V1 32K',
|
15
19
|
enabled: true,
|
16
20
|
functionCall: true,
|
@@ -18,6 +22,8 @@ const Moonshot: ModelProviderCard = {
|
|
18
22
|
tokens: 32_768,
|
19
23
|
},
|
20
24
|
{
|
25
|
+
description:
|
26
|
+
'Moonshot V1 8K 专为生成短文本任务设计,具有高效的处理性能,能够处理8,192个tokens,非常适合简短对话、速记和快速内容生成。',
|
21
27
|
displayName: 'Moonshot V1 8K',
|
22
28
|
enabled: true,
|
23
29
|
functionCall: true,
|
@@ -26,12 +32,16 @@ const Moonshot: ModelProviderCard = {
|
|
26
32
|
},
|
27
33
|
],
|
28
34
|
checkModel: 'moonshot-v1-8k',
|
35
|
+
description:
|
36
|
+
'Moonshot 是由北京月之暗面科技有限公司推出的开源平台,提供多种自然语言处理模型,应用领域广泛,包括但不限于内容创作、学术研究、智能推荐、医疗诊断等,支持长文本处理和复杂生成任务。',
|
29
37
|
id: 'moonshot',
|
38
|
+
modelsUrl: 'https://platform.moonshot.cn/docs/intro',
|
30
39
|
name: 'Moonshot',
|
31
40
|
smoothing: {
|
32
41
|
speed: 2,
|
33
42
|
text: true,
|
34
43
|
},
|
44
|
+
url: 'https://www.moonshot.cn',
|
35
45
|
};
|
36
46
|
|
37
47
|
export default Moonshot;
|
@@ -4,94 +4,118 @@ import { ModelProviderCard } from '@/types/llm';
|
|
4
4
|
const Novita: ModelProviderCard = {
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
|
+
description:
|
8
|
+
'Llama 3.1 8B Instruct 是 Meta 推出的最新版本,优化了高质量对话场景,表现优于许多领先的闭源模型。',
|
7
9
|
displayName: 'Llama 3.1 8B Instruct',
|
8
10
|
enabled: true,
|
9
11
|
id: 'meta-llama/llama-3.1-8b-instruct',
|
10
12
|
tokens: 8192,
|
11
13
|
},
|
12
14
|
{
|
15
|
+
description:
|
16
|
+
'Llama 3.1 70B Instruct 专为高质量对话而设计,在人类评估中表现突出,特别适合高交互场景。',
|
13
17
|
displayName: 'Llama 3.1 70B Instruct',
|
14
18
|
enabled: true,
|
15
19
|
id: 'meta-llama/llama-3.1-70b-instruct',
|
16
20
|
tokens: 131_072,
|
17
21
|
},
|
18
22
|
{
|
23
|
+
description:
|
24
|
+
'Llama 3.1 405B Instruct 是 Meta最新推出的版本,优化用于生成高质量对话,超越了许多领导闭源模型。',
|
19
25
|
displayName: 'Llama 3.1 405B Instruct',
|
20
26
|
enabled: true,
|
21
27
|
id: 'meta-llama/llama-3.1-405b-instruct',
|
22
28
|
tokens: 32_768,
|
23
29
|
},
|
24
30
|
{
|
31
|
+
description: 'Llama 3 8B Instruct 优化了高质量对话场景,性能优于许多闭源模型。',
|
25
32
|
displayName: 'Llama 3 8B Instruct',
|
26
33
|
id: 'meta-llama/llama-3-8b-instruct',
|
27
34
|
tokens: 8192,
|
28
35
|
},
|
29
36
|
{
|
37
|
+
description: 'Llama 3 70B Instruct 优化用于高质量对话场景,在各类人类评估中表现优异。',
|
30
38
|
displayName: 'Llama 3 70B Instruct',
|
31
39
|
id: 'meta-llama/llama-3-70b-instruct',
|
32
40
|
tokens: 8192,
|
33
41
|
},
|
34
42
|
{
|
43
|
+
description: 'Gemma 2 9B 是谷歌的一款开源语言模型,以其在效率和性能方面设立了新的标准。',
|
35
44
|
displayName: 'Gemma 2 9B',
|
36
45
|
enabled: true,
|
37
46
|
id: 'google/gemma-2-9b-it',
|
38
47
|
tokens: 8192,
|
39
48
|
},
|
40
49
|
{
|
50
|
+
description: 'Mistral Nemo 是多语言支持和高性能编程的7.3B参数模型。',
|
41
51
|
displayName: 'Mistral Nemo',
|
42
52
|
enabled: true,
|
43
53
|
id: 'mistralai/mistral-nemo',
|
44
54
|
tokens: 32_768,
|
45
55
|
},
|
46
56
|
{
|
57
|
+
description: 'Mistral 7B Instruct 是一款兼有速度优化和长上下文支持的高性能行业标准模型。',
|
47
58
|
displayName: 'Mistral 7B Instruct',
|
48
59
|
enabled: true,
|
49
60
|
id: 'mistralai/mistral-7b-instruct',
|
50
61
|
tokens: 32_768,
|
51
62
|
},
|
52
63
|
{
|
64
|
+
description: 'WizardLM 2 7B 是微软AI最新的快速轻量化模型,性能接近于现有开源领导模型的10倍。',
|
53
65
|
displayName: 'WizardLM 2 7B',
|
54
66
|
enabled: true,
|
55
67
|
id: 'microsoft/wizardlm 2-7b',
|
56
68
|
tokens: 32_768,
|
57
69
|
},
|
58
70
|
{
|
71
|
+
description: 'WizardLM-2 8x22B 是微软AI最先进的Wizard模型,显示出极其竞争力的表现。',
|
59
72
|
displayName: 'WizardLM-2 8x22B',
|
60
73
|
enabled: true,
|
61
74
|
id: 'microsoft/wizardlm-2-8x22b',
|
62
75
|
tokens: 65_535,
|
63
76
|
},
|
64
77
|
{
|
78
|
+
description: 'Dolphin Mixtral 8x22B 是一款为指令遵循、对话和编程设计的模型。',
|
65
79
|
displayName: 'Dolphin Mixtral 8x22B',
|
66
80
|
id: 'cognitivecomputations/dolphin-mixtral-8x22b',
|
67
81
|
tokens: 16_000,
|
68
82
|
},
|
69
83
|
{
|
84
|
+
description:
|
85
|
+
'Hermes 2 Pro Llama 3 8B 是 Nous Hermes 2的升级版本,包含最新的内部开发的数据集。',
|
70
86
|
displayName: 'Hermes 2 Pro Llama 3 8B',
|
71
87
|
id: 'nousresearch/hermes-2-pro-llama-3-8b',
|
72
88
|
tokens: 8192,
|
73
89
|
},
|
74
90
|
{
|
91
|
+
description:
|
92
|
+
'Hermes 2 Mixtral 8x7B DPO 是一款高度灵活的多模型合并,旨在提供卓越的创造性体验。',
|
75
93
|
displayName: 'Hermes 2 Mixtral 8x7B DPO',
|
76
94
|
id: 'Nous-Hermes-2-Mixtral-8x7B-DPO',
|
77
95
|
tokens: 32_768,
|
78
96
|
},
|
79
97
|
{
|
98
|
+
description: 'MythoMax l2 13B 是一款合并了多个顶尖模型的创意与智能相结合的语言模型。',
|
80
99
|
displayName: 'MythoMax l2 13B',
|
81
100
|
id: 'gryphe/mythomax-l2-13b',
|
82
101
|
tokens: 4096,
|
83
102
|
},
|
84
103
|
{
|
104
|
+
description: 'OpenChat 7B 是经过“C-RLFT(条件强化学习微调)”策略精调的开源语言模型库。',
|
85
105
|
displayName: 'OpenChat 7B',
|
86
106
|
id: 'openchat/openchat-7b',
|
87
107
|
tokens: 4096,
|
88
108
|
},
|
89
109
|
],
|
90
110
|
checkModel: 'meta-llama/llama-3.1-8b-instruct',
|
111
|
+
description:
|
112
|
+
'Novita AI 是一个提供多种大语言模型与 AI 图像生成的 API 服务的平台,灵活、可靠且具有成本效益。它支持 Llama3、Mistral 等最新的开源模型,并为生成式 AI 应用开发提供了全面、用户友好且自动扩展的 API 解决方案,适合 AI 初创公司的快速发展。',
|
91
113
|
disableBrowserRequest: true,
|
92
114
|
id: 'novita',
|
93
115
|
modelList: { showModelFetcher: true },
|
116
|
+
modelsUrl: 'https://novita.ai/model-api/product/llm-api',
|
94
117
|
name: 'Novita',
|
118
|
+
url: 'https://novita.ai',
|
95
119
|
};
|
96
120
|
|
97
121
|
export default Novita;
|
@@ -1,208 +1,259 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref https://ollama.com/library
|
3
|
+
// ref: https://ollama.com/library
|
4
4
|
const Ollama: ModelProviderCard = {
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
|
+
description:
|
8
|
+
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。',
|
7
9
|
displayName: 'Llama 3.1 8B',
|
8
10
|
enabled: true,
|
9
11
|
id: 'llama3.1',
|
10
12
|
tokens: 128_000,
|
11
13
|
},
|
12
14
|
{
|
15
|
+
description:
|
16
|
+
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。',
|
13
17
|
displayName: 'Llama 3.1 70B',
|
14
18
|
id: 'llama3.1:70b',
|
15
19
|
tokens: 128_000,
|
16
20
|
},
|
17
21
|
{
|
22
|
+
description:
|
23
|
+
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。',
|
18
24
|
displayName: 'Llama 3.1 405B',
|
19
25
|
id: 'llama3.1:405b',
|
20
26
|
tokens: 128_000,
|
21
27
|
},
|
22
28
|
{
|
29
|
+
description:
|
30
|
+
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
23
31
|
displayName: 'Code Llama 7B',
|
24
32
|
enabled: true,
|
25
33
|
id: 'codellama',
|
26
34
|
tokens: 16_384,
|
27
35
|
},
|
28
36
|
{
|
37
|
+
description:
|
38
|
+
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
29
39
|
displayName: 'Code Llama 13B',
|
30
40
|
id: 'codellama:13b',
|
31
41
|
tokens: 16_384,
|
32
42
|
},
|
33
43
|
{
|
44
|
+
description:
|
45
|
+
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
34
46
|
displayName: 'Code Llama 34B',
|
35
47
|
id: 'codellama:34b',
|
36
48
|
tokens: 16_384,
|
37
49
|
},
|
38
50
|
{
|
51
|
+
description:
|
52
|
+
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
39
53
|
displayName: 'Code Llama 70B',
|
40
54
|
id: 'codellama:70b',
|
41
55
|
tokens: 16_384,
|
42
56
|
},
|
43
57
|
{
|
58
|
+
description: 'Gemma 2 是 Google 推出的高效模型,涵盖从小型应用到复杂数据处理的多种应用场景。',
|
44
59
|
displayName: 'Gemma 2 2B',
|
45
60
|
id: 'gemma2:2b',
|
46
61
|
tokens: 8192,
|
47
62
|
},
|
48
63
|
{
|
64
|
+
description: 'Gemma 2 是 Google 推出的高效模型,涵盖从小型应用到复杂数据处理的多种应用场景。',
|
49
65
|
displayName: 'Gemma 2 9B',
|
50
66
|
enabled: true,
|
51
67
|
id: 'gemma2',
|
52
68
|
tokens: 8192,
|
53
69
|
},
|
54
70
|
{
|
71
|
+
description: 'Gemma 2 是 Google 推出的高效模型,涵盖从小型应用到复杂数据处理的多种应用场景。',
|
55
72
|
displayName: 'Gemma 2 27B',
|
56
73
|
id: 'gemma2:27b',
|
57
74
|
tokens: 8192,
|
58
75
|
},
|
59
76
|
{
|
77
|
+
description: 'CodeGemma 专用于不同编程任务的轻量级语言模型,支持快速迭代和集成。',
|
60
78
|
displayName: 'CodeGemma 2B',
|
61
79
|
id: 'codegemma:2b',
|
62
80
|
tokens: 8192,
|
63
81
|
},
|
64
82
|
{
|
83
|
+
description: 'CodeGemma 专用于不同编程任务的轻量级语言模型,支持快速迭代和集成。',
|
65
84
|
displayName: 'CodeGemma 7B',
|
66
85
|
enabled: true,
|
67
86
|
id: 'codegemma',
|
68
87
|
tokens: 8192,
|
69
88
|
},
|
70
89
|
{
|
90
|
+
description: 'Phi-3 是微软推出的轻量级开放模型,适用于高效集成和大规模知识推理。',
|
71
91
|
displayName: 'Phi-3 3.8B',
|
72
92
|
enabled: true,
|
73
93
|
id: 'phi3',
|
74
94
|
tokens: 128_000,
|
75
95
|
},
|
76
96
|
{
|
97
|
+
description: 'Phi-3 是微软推出的轻量级开放模型,适用于高效集成和大规模知识推理。',
|
77
98
|
displayName: 'Phi-3 14B',
|
78
99
|
id: 'phi3:14b',
|
79
100
|
tokens: 128_000,
|
80
101
|
},
|
81
102
|
{
|
103
|
+
description:
|
104
|
+
'WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。',
|
82
105
|
displayName: 'WizardLM 2 7B',
|
83
106
|
enabled: true,
|
84
107
|
id: 'wizardlm2',
|
85
108
|
tokens: 32_768,
|
86
109
|
},
|
87
110
|
{
|
111
|
+
description:
|
112
|
+
'WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。',
|
88
113
|
displayName: 'WizardLM 2 8x22B',
|
89
114
|
id: 'wizardlm2:8x22b',
|
90
115
|
tokens: 65_536,
|
91
116
|
},
|
92
117
|
{
|
118
|
+
description: 'MathΣtral 专为科学研究和数学推理设计,提供有效的计算能力和结果解释。',
|
93
119
|
displayName: 'MathΣtral 7B',
|
94
120
|
enabled: true,
|
95
121
|
id: 'mathstral',
|
96
122
|
tokens: 32_768,
|
97
123
|
},
|
98
124
|
{
|
125
|
+
description: 'Mistral 是 Mistral AI 发布的 7B 模型,适合多变的语言处理需求。',
|
99
126
|
displayName: 'Mistral 7B',
|
100
127
|
enabled: true,
|
101
128
|
id: 'mistral',
|
102
129
|
tokens: 32_768,
|
103
130
|
},
|
104
131
|
{
|
132
|
+
description:
|
133
|
+
'Mixtral 是 Mistral AI 的专家模型,具有开源权重,并在代码生成和语言理解方面提供支持。',
|
105
134
|
displayName: 'Mixtral 8x7B',
|
106
135
|
enabled: true,
|
107
136
|
id: 'mixtral',
|
108
137
|
tokens: 32_768,
|
109
138
|
},
|
110
139
|
{
|
140
|
+
description:
|
141
|
+
'Mixtral 是 Mistral AI 的专家模型,具有开源权重,并在代码生成和语言理解方面提供支持。',
|
111
142
|
displayName: 'Mixtral 8x22B',
|
112
143
|
id: 'mixtral:8x22b',
|
113
144
|
tokens: 65_536,
|
114
145
|
},
|
115
146
|
{
|
147
|
+
description:
|
148
|
+
'Mixtral Large 是 Mistral 的旗舰模型,结合代码生成、数学和推理的能力,支持 128k 上下文窗口。',
|
116
149
|
displayName: 'Mixtral Large 123B',
|
117
150
|
enabled: true,
|
118
151
|
id: 'mistral-large',
|
119
152
|
tokens: 128_000,
|
120
153
|
},
|
121
154
|
{
|
155
|
+
description: 'Mistral Nemo 由 Mistral AI 和 NVIDIA 合作推出,是高效性能的 12B 模型。',
|
122
156
|
displayName: 'Mixtral Nemo 12B',
|
123
157
|
enabled: true,
|
124
158
|
id: 'mistral-nemo',
|
125
159
|
tokens: 128_000,
|
126
160
|
},
|
127
161
|
{
|
162
|
+
description: 'Codestral 是 Mistral AI 的首款代码模型,为代码生成任务提供优异支持。',
|
128
163
|
displayName: 'Codestral 22B',
|
129
164
|
enabled: true,
|
130
165
|
id: 'codestral',
|
131
166
|
tokens: 32_768,
|
132
167
|
},
|
133
168
|
{
|
169
|
+
description: 'Aya 23 是 Cohere 推出的多语言模型,支持 23 种语言,为多元化语言应用提供便利。',
|
134
170
|
displayName: 'Aya 23 8B',
|
135
171
|
enabled: true,
|
136
172
|
id: 'aya',
|
137
173
|
tokens: 8192,
|
138
174
|
},
|
139
175
|
{
|
176
|
+
description: 'Aya 23 是 Cohere 推出的多语言模型,支持 23 种语言,为多元化语言应用提供便利。',
|
140
177
|
displayName: 'Aya 23 35B',
|
141
178
|
id: 'aya:35b',
|
142
179
|
tokens: 8192,
|
143
180
|
},
|
144
181
|
{
|
182
|
+
description: 'Command R 是优化用于对话和长上下文任务的LLM,特别适合动态交互与知识管理。',
|
145
183
|
displayName: 'Command R 35B',
|
146
184
|
enabled: true,
|
147
185
|
id: 'command-r',
|
148
186
|
tokens: 131_072,
|
149
187
|
},
|
150
188
|
{
|
189
|
+
description: 'Command R+ 是一款高性能的大型语言模型,专为真实企业场景和复杂应用而设计。',
|
151
190
|
displayName: 'Command R+ 104B',
|
152
191
|
enabled: true,
|
153
192
|
id: 'command-r-plus',
|
154
193
|
tokens: 131_072,
|
155
194
|
},
|
156
195
|
{
|
196
|
+
description: 'DeepSeek V2 是高效的 Mixture-of-Experts 语言模型,适用于经济高效的处理需求。',
|
157
197
|
displayName: 'DeepSeek V2 16B',
|
158
198
|
enabled: true,
|
159
199
|
id: 'deepseek-v2',
|
160
200
|
tokens: 32_768,
|
161
201
|
},
|
162
202
|
{
|
203
|
+
description: 'DeepSeek V2 236B 是 DeepSeek 的设计代码模型,提供强大的代码生成能力。',
|
163
204
|
displayName: 'DeepSeek V2 236B',
|
164
205
|
id: 'deepseek-v2:236b',
|
165
206
|
tokens: 128_000,
|
166
207
|
},
|
167
208
|
{
|
209
|
+
description:
|
210
|
+
'DeepSeek Coder V2 是开源的混合专家代码模型,在代码任务方面表现优异,与 GPT4-Turbo 相媲美。',
|
168
211
|
displayName: 'DeepSeek Coder V2 16B',
|
169
212
|
enabled: true,
|
170
213
|
id: 'deepseek-coder-v2',
|
171
214
|
tokens: 128_000,
|
172
215
|
},
|
173
216
|
{
|
217
|
+
description:
|
218
|
+
'DeepSeek Coder V2 是开源的混合专家代码模型,在代码任务方面表现优异,与 GPT4-Turbo 相媲美。',
|
174
219
|
displayName: 'DeepSeek Coder V2 236B',
|
175
220
|
id: 'deepseek-coder-v2:236b',
|
176
221
|
tokens: 128_000,
|
177
222
|
},
|
178
223
|
{
|
224
|
+
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
179
225
|
displayName: 'Qwen2 0.5B',
|
180
226
|
id: 'qwen2:0.5b',
|
181
227
|
tokens: 128_000,
|
182
228
|
},
|
183
229
|
{
|
230
|
+
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
184
231
|
displayName: 'Qwen2 1.5B',
|
185
232
|
id: 'qwen2:1.5b',
|
186
233
|
tokens: 128_000,
|
187
234
|
},
|
188
235
|
{
|
236
|
+
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
189
237
|
displayName: 'Qwen2 7B',
|
190
238
|
enabled: true,
|
191
239
|
id: 'qwen2',
|
192
240
|
tokens: 128_000,
|
193
241
|
},
|
194
242
|
{
|
243
|
+
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
195
244
|
displayName: 'Qwen2 72B',
|
196
245
|
id: 'qwen2:72b',
|
197
246
|
tokens: 128_000,
|
198
247
|
},
|
199
248
|
{
|
249
|
+
description: 'CodeQwen1.5 是基于大量代码数据训练的大型语言模型,专为解决复杂编程任务。',
|
200
250
|
displayName: 'CodeQwen1.5 7B',
|
201
251
|
enabled: true,
|
202
252
|
id: 'codeqwen',
|
203
253
|
tokens: 65_536,
|
204
254
|
},
|
205
255
|
{
|
256
|
+
description: 'LLaVA 是结合视觉编码器和 Vicuna 的多模态模型,用于强大的视觉和语言理解。',
|
206
257
|
displayName: 'LLaVA 7B',
|
207
258
|
enabled: true,
|
208
259
|
id: 'llava',
|
@@ -210,12 +261,14 @@ const Ollama: ModelProviderCard = {
|
|
210
261
|
vision: true,
|
211
262
|
},
|
212
263
|
{
|
264
|
+
description: 'LLaVA 是结合视觉编码器和 Vicuna 的多模态模型,用于强大的视觉和语言理解。',
|
213
265
|
displayName: 'LLaVA 13B',
|
214
266
|
id: 'llava:13b',
|
215
267
|
tokens: 4096,
|
216
268
|
vision: true,
|
217
269
|
},
|
218
270
|
{
|
271
|
+
description: 'LLaVA 是结合视觉编码器和 Vicuna 的多模态模型,用于强大的视觉和语言理解。',
|
219
272
|
displayName: 'LLaVA 34B',
|
220
273
|
id: 'llava:34b',
|
221
274
|
tokens: 4096,
|
@@ -223,10 +276,14 @@ const Ollama: ModelProviderCard = {
|
|
223
276
|
},
|
224
277
|
],
|
225
278
|
defaultShowBrowserRequest: true,
|
279
|
+
description:
|
280
|
+
'Ollama 提供的模型广泛涵盖代码生成、数学运算、多语种处理和对话互动等领域,支持企业级和本地化部署的多样化需求。',
|
226
281
|
id: 'ollama',
|
227
282
|
modelList: { showModelFetcher: true },
|
283
|
+
modelsUrl: 'https://ollama.com/library',
|
228
284
|
name: 'Ollama',
|
229
285
|
showApiKey: false,
|
286
|
+
url: 'https://ollama.com',
|
230
287
|
};
|
231
288
|
|
232
289
|
export default Ollama;
|