@lobehub/chat 1.16.7 → 1.16.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of @lobehub/chat might be problematic. Click here for more details.
- package/CHANGELOG.md +50 -0
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/package.json +1 -1
- package/src/config/modelProviders/ai360.ts +34 -68
- package/src/config/modelProviders/anthropic.ts +57 -11
- package/src/config/modelProviders/azure.ts +12 -3
- package/src/config/modelProviders/baichuan.ts +33 -12
- package/src/config/modelProviders/bedrock.ts +88 -25
- package/src/config/modelProviders/deepseek.ts +14 -3
- package/src/config/modelProviders/fireworksai.ts +37 -5
- package/src/config/modelProviders/google.ts +69 -15
- package/src/config/modelProviders/groq.ts +55 -5
- package/src/config/modelProviders/minimax.ts +10 -6
- package/src/config/modelProviders/mistral.ts +19 -3
- package/src/config/modelProviders/moonshot.ts +11 -1
- package/src/config/modelProviders/novita.ts +24 -0
- package/src/config/modelProviders/ollama.ts +58 -1
- package/src/config/modelProviders/openai.ts +153 -18
- package/src/config/modelProviders/openrouter.ts +21 -1
- package/src/config/modelProviders/perplexity.ts +19 -3
- package/src/config/modelProviders/qwen.ts +11 -8
- package/src/config/modelProviders/siliconcloud.ts +34 -1
- package/src/config/modelProviders/spark.ts +16 -7
- package/src/config/modelProviders/stepfun.ts +13 -1
- package/src/config/modelProviders/taichu.ts +7 -2
- package/src/config/modelProviders/togetherai.ts +38 -2
- package/src/config/modelProviders/upstage.ts +11 -4
- package/src/config/modelProviders/zeroone.ts +5 -1
- package/src/config/modelProviders/zhipu.ts +20 -18
- package/src/const/discover.ts +1 -0
- package/src/libs/agent-runtime/openai/__snapshots__/index.test.ts.snap +69 -6
- package/src/migrations/FromV3ToV4/fixtures/ollama-output-v4.json +1 -0
- package/src/server/routers/edge/config/__snapshots__/index.test.ts.snap +56 -4
- package/src/server/routers/edge/config/index.test.ts +3 -7
- package/src/store/user/slices/modelList/__snapshots__/action.test.ts.snap +12 -0
- package/src/store/user/slices/modelList/action.test.ts +3 -7
- package/src/types/llm.ts +30 -1
- package/src/utils/__snapshots__/parseModels.test.ts.snap +32 -0
- package/src/utils/parseModels.test.ts +1 -20
@@ -1,123 +1,182 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref https://docs.aws.amazon.com/bedrock/latest/userguide/
|
4
|
-
// ref https://
|
5
|
-
// ref https://us-
|
6
|
-
// ref https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/models
|
3
|
+
// ref :https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html
|
4
|
+
// ref :https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/models
|
5
|
+
// ref :https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/models
|
7
6
|
const Bedrock: ModelProviderCard = {
|
8
7
|
chatModels: [
|
9
|
-
/*
|
8
|
+
/*
|
10
9
|
// TODO: Not support for now
|
11
10
|
{
|
12
|
-
description: '
|
11
|
+
description: '亚马逊 Titan Text Lite 是一款轻量级高效模型,非常适合对英语任务进行微调,包括总结和文案编写等,客户希望有一个更小、更经济的模型,同时也非常可定制。',
|
13
12
|
displayName: 'Titan Text G1 - Lite',
|
14
13
|
id: 'amazon.titan-text-lite-v1',
|
15
14
|
tokens: 4000,
|
16
15
|
},
|
17
16
|
{
|
18
|
-
description: '
|
17
|
+
description: '亚马逊 Titan Text Express 的上下文长度可达 8,000 个标记,非常适合广泛的高级通用语言任务,如开放式文本生成和对话聊天,以及在检索增强生成 (RAG) 中的支持。在推出时,该模型针对英语进行了优化,预览版还支持其他 100 多种语言。',
|
19
18
|
displayName: 'Titan Text G1 - Express',
|
20
19
|
id: 'amazon.titan-text-express-v1',
|
21
20
|
tokens: 8000,
|
22
21
|
},
|
23
22
|
{
|
24
|
-
description: 'Titan Text Premier
|
23
|
+
description: 'Titan Text Premier 是 Titan Text 系列中一款强大的先进模型,旨在为广泛的企业应用提供卓越的性能。凭借其尖端能力,它提供了更高的准确性和卓越的结果,是寻求一流文本处理解决方案的组织的绝佳选择。',
|
25
24
|
displayName: 'Titan Text G1 - Premier',
|
26
25
|
id: 'amazon.titan-text-premier-v1:0',
|
27
26
|
tokens: 32_000,
|
28
27
|
},
|
29
28
|
*/
|
30
29
|
{
|
31
|
-
description:
|
30
|
+
description:
|
31
|
+
'Claude 3.5 Sonnet 提升了行业标准,性能超过竞争对手模型和 Claude 3 Opus,在广泛的评估中表现出色,同时具有我们中等层级模型的速度和成本。',
|
32
32
|
displayName: 'Claude 3.5 Sonnet',
|
33
33
|
enabled: true,
|
34
34
|
functionCall: true,
|
35
35
|
id: 'anthropic.claude-3-5-sonnet-20240620-v1:0',
|
36
|
+
pricing: {
|
37
|
+
input: 3,
|
38
|
+
output: 15,
|
39
|
+
},
|
36
40
|
tokens: 200_000,
|
37
41
|
vision: true,
|
38
42
|
},
|
39
43
|
{
|
40
|
-
description:
|
44
|
+
description:
|
45
|
+
'Anthropic 的 Claude 3 Sonnet 在智能和速度之间达到了理想的平衡——特别适合企业工作负载。它以低于竞争对手的价格提供最大的效用,并被设计成为可靠的、高耐用的主力机,适用于规模化的 AI 部署。Claude 3 Sonnet 可以处理图像并返回文本输出,具有 200K 的上下文窗口。',
|
41
46
|
displayName: 'Claude 3 Sonnet',
|
42
47
|
enabled: true,
|
43
48
|
functionCall: true,
|
44
49
|
id: 'anthropic.claude-3-sonnet-20240229-v1:0',
|
50
|
+
pricing: {
|
51
|
+
input: 3,
|
52
|
+
output: 15,
|
53
|
+
},
|
45
54
|
tokens: 200_000,
|
46
55
|
vision: true,
|
47
56
|
},
|
48
57
|
{
|
49
|
-
description:
|
58
|
+
description:
|
59
|
+
'Claude 3 Opus 是 Anthropic 最强大的 AI 模型,具有在高度复杂任务上的最先进性能。它可以处理开放式提示和未见过的场景,具有出色的流畅性和类人的理解能力。Claude 3 Opus 展示了生成 AI 可能性的前沿。Claude 3 Opus 可以处理图像并返回文本输出,具有 200K 的上下文窗口。',
|
50
60
|
displayName: 'Claude 3 Opus',
|
51
61
|
enabled: true,
|
52
62
|
functionCall: true,
|
53
63
|
id: 'anthropic.claude-3-opus-20240229-v1:0',
|
64
|
+
pricing: {
|
65
|
+
input: 15,
|
66
|
+
output: 75,
|
67
|
+
},
|
54
68
|
tokens: 200_000,
|
55
69
|
vision: true,
|
56
70
|
},
|
57
71
|
{
|
58
|
-
description:
|
72
|
+
description:
|
73
|
+
'Claude 3 Haiku 是 Anthropic 最快、最紧凑的模型,提供近乎即时的响应速度。它可以快速回答简单的查询和请求。客户将能够构建模仿人类互动的无缝 AI 体验。Claude 3 Haiku 可以处理图像并返回文本输出,具有 200K 的上下文窗口。',
|
59
74
|
displayName: 'Claude 3 Haiku',
|
60
75
|
enabled: true,
|
61
76
|
functionCall: true,
|
62
77
|
id: 'anthropic.claude-3-haiku-20240307-v1:0',
|
78
|
+
pricing: {
|
79
|
+
input: 0.25,
|
80
|
+
output: 1.25,
|
81
|
+
},
|
63
82
|
tokens: 200_000,
|
64
83
|
vision: true,
|
65
84
|
},
|
66
85
|
{
|
67
|
-
description:
|
86
|
+
description:
|
87
|
+
'Claude 2 的更新版,具有双倍的上下文窗口,以及在长文档和 RAG 上下文中的可靠性、幻觉率和基于证据的准确性的改进。',
|
68
88
|
displayName: 'Claude 2.1',
|
69
89
|
id: 'anthropic.claude-v2:1',
|
90
|
+
pricing: {
|
91
|
+
input: 8,
|
92
|
+
output: 24,
|
93
|
+
},
|
70
94
|
tokens: 200_000,
|
71
95
|
},
|
72
96
|
{
|
73
|
-
description:
|
97
|
+
description:
|
98
|
+
'Anthropic 在从复杂对话和创意内容生成到详细指令跟随的广泛任务中都表现出高度能力的模型。',
|
74
99
|
displayName: 'Claude 2.0',
|
75
100
|
id: 'anthropic.claude-v2',
|
101
|
+
pricing: {
|
102
|
+
input: 8,
|
103
|
+
output: 24,
|
104
|
+
},
|
76
105
|
tokens: 100_000,
|
77
106
|
},
|
78
107
|
{
|
79
|
-
description:
|
108
|
+
description:
|
109
|
+
'一款快速、经济且仍然非常有能力的模型,可以处理包括日常对话、文本分析、总结和文档问答在内的一系列任务。',
|
80
110
|
displayName: 'Claude Instant',
|
81
111
|
id: 'anthropic.claude-instant-v1',
|
112
|
+
pricing: {
|
113
|
+
input: 0.8,
|
114
|
+
output: 2.4,
|
115
|
+
},
|
82
116
|
tokens: 100_000,
|
83
117
|
},
|
84
118
|
{
|
85
|
-
description:
|
119
|
+
description:
|
120
|
+
'Meta Llama 3.1 8B Instruct 的更新版,包括扩展的 128K 上下文长度、多语言性和改进的推理能力。Llama 3.1 提供的多语言大型语言模型 (LLMs) 是一组预训练的、指令调整的生成模型,包括 8B、70B 和 405B 大小 (文本输入/输出)。Llama 3.1 指令调整的文本模型 (8B、70B、405B) 专为多语言对话用例进行了优化,并在常见的行业基准测试中超过了许多可用的开源聊天模型。Llama 3.1 旨在用于多种语言的商业和研究用途。指令调整的文本模型适用于类似助手的聊天,而预训练模型可以适应各种自然语言生成任务。Llama 3.1 模型还支持利用其模型的输出来改进其他模型,包括合成数据生成和精炼。Llama 3.1 是使用优化的变压器架构的自回归语言模型。调整版本使用监督微调 (SFT) 和带有人类反馈的强化学习 (RLHF) 来符合人类对帮助性和安全性的偏好。',
|
86
121
|
displayName: 'Llama 3.1 8B Instruct',
|
87
122
|
enabled: true,
|
88
123
|
functionCall: true,
|
89
124
|
id: 'meta.llama3-1-8b-instruct-v1:0',
|
125
|
+
pricing: {
|
126
|
+
input: 0.22,
|
127
|
+
output: 0.22,
|
128
|
+
},
|
90
129
|
tokens: 128_000,
|
91
130
|
},
|
92
131
|
{
|
93
|
-
description:
|
132
|
+
description:
|
133
|
+
'Meta Llama 3.1 70B Instruct 的更新版,包括扩展的 128K 上下文长度、多语言性和改进的推理能力。Llama 3.1 提供的多语言大型语言模型 (LLMs) 是一组预训练的、指令调整的生成模型,包括 8B、70B 和 405B 大小 (文本输入/输出)。Llama 3.1 指令调整的文本模型 (8B、70B、405B) 专为多语言对话用例进行了优化,并在常见的行业基准测试中超过了许多可用的开源聊天模型。Llama 3.1 旨在用于多种语言的商业和研究用途。指令调整的文本模型适用于类似助手的聊天,而预训练模型可以适应各种自然语言生成任务。Llama 3.1 模型还支持利用其模型的输出来改进其他模型,包括合成数据生成和精炼。Llama 3.1 是使用优化的变压器架构的自回归语言模型。调整版本使用监督微调 (SFT) 和带有人类反馈的强化学习 (RLHF) 来符合人类对帮助性和安全性的偏好。',
|
94
134
|
displayName: 'Llama 3.1 70B Instruct',
|
95
135
|
enabled: true,
|
96
136
|
functionCall: true,
|
97
137
|
id: 'meta.llama3-1-70b-instruct-v1:0',
|
138
|
+
pricing: {
|
139
|
+
input: 0.99,
|
140
|
+
output: 0.99,
|
141
|
+
},
|
98
142
|
tokens: 128_000,
|
99
143
|
},
|
100
144
|
{
|
101
|
-
description:
|
145
|
+
description:
|
146
|
+
'Meta Llama 3.1 405B Instruct 是 Llama 3.1 Instruct 模型中最大、最强大的模型,是一款高度先进的对话推理和合成数据生成模型,也可以用作在特定领域进行专业持续预训练或微调的基础。Llama 3.1 提供的多语言大型语言模型 (LLMs) 是一组预训练的、指令调整的生成模型,包括 8B、70B 和 405B 大小 (文本输入/输出)。Llama 3.1 指令调整的文本模型 (8B、70B、405B) 专为多语言对话用例进行了优化,并在常见的行业基准测试中超过了许多可用的开源聊天模型。Llama 3.1 旨在用于多种语言的商业和研究用途。指令调整的文本模型适用于类似助手的聊天,而预训练模型可以适应各种自然语言生成任务。Llama 3.1 模型还支持利用其模型的输出来改进其他模型,包括合成数据生成和精炼。Llama 3.1 是使用优化的变压器架构的自回归语言模型。调整版本使用监督微调 (SFT) 和带有人类反馈的强化学习 (RLHF) 来符合人类对帮助性和安全性的偏好。',
|
102
147
|
displayName: 'Llama 3.1 405B Instruct',
|
103
148
|
enabled: true,
|
104
149
|
functionCall: true,
|
105
150
|
id: 'meta.llama3-1-405b-instruct-v1:0',
|
151
|
+
pricing: {
|
152
|
+
input: 5.32,
|
153
|
+
output: 16,
|
154
|
+
},
|
106
155
|
tokens: 128_000,
|
107
156
|
},
|
108
157
|
{
|
109
|
-
description:
|
158
|
+
description:
|
159
|
+
'Meta Llama 3 是一款面向开发者、研究人员和企业的开放大型语言模型 (LLM),旨在帮助他们构建、实验并负责任地扩展他们的生成 AI 想法。作为全球社区创新的基础系统的一部分,它非常适合计算能力和资源有限、边缘设备和更快的训练时间。',
|
110
160
|
displayName: 'Llama 3 8B Instruct',
|
111
161
|
id: 'meta.llama3-8b-instruct-v1:0',
|
162
|
+
pricing: {
|
163
|
+
input: 0.3,
|
164
|
+
output: 0.6,
|
165
|
+
},
|
112
166
|
tokens: 8000,
|
113
167
|
},
|
114
168
|
{
|
115
|
-
description:
|
169
|
+
description:
|
170
|
+
'Meta Llama 3 是一款面向开发者、研究人员和企业的开放大型语言模型 (LLM),旨在帮助他们构建、实验并负责任地扩展他们的生成 AI 想法。作为全球社区创新的基础系统的一部分,它非常适合内容创建、对话 AI、语言理解、研发和企业应用。',
|
116
171
|
displayName: 'Llama 3 70B Instruct',
|
117
172
|
id: 'meta.llama3-70b-instruct-v1:0',
|
173
|
+
pricing: {
|
174
|
+
input: 2.65,
|
175
|
+
output: 3.5,
|
176
|
+
},
|
118
177
|
tokens: 8000,
|
119
178
|
},
|
120
|
-
/*
|
179
|
+
/*
|
121
180
|
// TODO: Not support for now
|
122
181
|
{
|
123
182
|
description: 'A 7B dense Transformer, fast-deployed and easily customisable. Small, yet powerful for a variety of use cases. Supports English and code, and a 32k context window.',
|
@@ -157,7 +216,7 @@ const Bedrock: ModelProviderCard = {
|
|
157
216
|
tokens: 32_000,
|
158
217
|
},
|
159
218
|
*/
|
160
|
-
/*
|
219
|
+
/*
|
161
220
|
// TODO: Not support for now
|
162
221
|
{
|
163
222
|
description: 'Command R+ is a highly performant generative language model optimized for large scale production workloads.',
|
@@ -176,7 +235,7 @@ const Bedrock: ModelProviderCard = {
|
|
176
235
|
tokens: 128_000,
|
177
236
|
},
|
178
237
|
*/
|
179
|
-
/*
|
238
|
+
/*
|
180
239
|
// Cohere Command (Text) and AI21 Labs Jurassic-2 (Text) don't support chat with the Converse API
|
181
240
|
{
|
182
241
|
description: 'Command is Cohere flagship text generation model. It is trained to follow user commands and to be instantly useful in practical business applications.',
|
@@ -191,7 +250,7 @@ const Bedrock: ModelProviderCard = {
|
|
191
250
|
tokens: 4000,
|
192
251
|
},
|
193
252
|
*/
|
194
|
-
/*
|
253
|
+
/*
|
195
254
|
// TODO: Not support for now
|
196
255
|
{
|
197
256
|
description: 'The latest Foundation Model from AI21 Labs, Jamba-Instruct offers an impressive 256K context window and delivers the best value per price on core text generation, summarization, and question answering tasks for the enterprise.',
|
@@ -200,7 +259,7 @@ const Bedrock: ModelProviderCard = {
|
|
200
259
|
tokens: 256_000,
|
201
260
|
},
|
202
261
|
*/
|
203
|
-
/*
|
262
|
+
/*
|
204
263
|
// Cohere Command (Text) and AI21 Labs Jurassic-2 (Text) don't support chat with the Converse API
|
205
264
|
{
|
206
265
|
description: 'Jurassic-2 Mid is less powerful than Ultra, yet carefully designed to strike the right balance between exceptional quality and affordability. Jurassic-2 Mid can be applied to any language comprehension or generation task including question answering, summarization, long-form copy generation, advanced information extraction and many others.',
|
@@ -217,8 +276,12 @@ const Bedrock: ModelProviderCard = {
|
|
217
276
|
*/
|
218
277
|
],
|
219
278
|
checkModel: 'anthropic.claude-instant-v1',
|
279
|
+
description:
|
280
|
+
'Bedrock 是亚马逊 AWS 提供的一项服务,专注于为企业提供先进的 AI 语言模型和视觉模型。其模型家族包括 Anthropic 的 Claude 系列、Meta 的 Llama 3.1 系列等,涵盖从轻量级到高性能的多种选择,支持文本生成、对话、图像处理等多种任务,适用于不同规模和需求的企业应用。',
|
220
281
|
id: 'bedrock',
|
282
|
+
modelsUrl: 'https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html',
|
221
283
|
name: 'Bedrock',
|
284
|
+
url: 'https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html',
|
222
285
|
};
|
223
286
|
|
224
287
|
export default Bedrock;
|
@@ -1,21 +1,32 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref https://platform.deepseek.com/api-docs/pricing
|
3
|
+
// ref: https://platform.deepseek.com/api-docs/pricing
|
4
4
|
const DeepSeek: ModelProviderCard = {
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
|
-
description:
|
8
|
-
|
7
|
+
description:
|
8
|
+
'融合通用与代码能力的全新开源模型, 不仅保留了原有 Chat 模型的通用对话能力和 Coder 模型的强大代码处理能力,还更好地对齐了人类偏好。此外,DeepSeek-V2.5 在写作任务、指令跟随等多个方面也实现了大幅提升。',
|
9
|
+
displayName: 'DeepSeek-V2.5',
|
9
10
|
enabled: true,
|
10
11
|
functionCall: true,
|
11
12
|
id: 'deepseek-chat',
|
13
|
+
pricing: {
|
14
|
+
cachedInput: 0.014,
|
15
|
+
input: 0.14,
|
16
|
+
output: 0.28,
|
17
|
+
},
|
18
|
+
releasedAt: '2024-09-05',
|
12
19
|
tokens: 128_000,
|
13
20
|
},
|
14
21
|
],
|
15
22
|
checkModel: 'deepseek-chat',
|
23
|
+
description:
|
24
|
+
'DeepSeek 是一家专注于人工智能技术研究和应用的公司,其最新模型 DeepSeek-V2.5 融合了通用对话和代码处理能力,并在人类偏好对齐、写作任务和指令跟随等方面实现了显著提升。',
|
16
25
|
id: 'deepseek',
|
17
26
|
modelList: { showModelFetcher: true },
|
27
|
+
modelsUrl: 'https://platform.deepseek.com/api-docs/zh-cn/quick_start/pricing',
|
18
28
|
name: 'DeepSeek',
|
29
|
+
url: 'https://deepseek.com',
|
19
30
|
};
|
20
31
|
|
21
32
|
export default DeepSeek;
|
@@ -1,11 +1,12 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref https://fireworks.ai/models?show=Serverless
|
4
|
-
// ref https://fireworks.ai/pricing
|
3
|
+
// ref: https://fireworks.ai/models?show=Serverless
|
4
|
+
// ref: https://fireworks.ai/pricing
|
5
5
|
const FireworksAI: ModelProviderCard = {
|
6
6
|
chatModels: [
|
7
7
|
{
|
8
|
-
description:
|
8
|
+
description:
|
9
|
+
'Fireworks 公司最新推出的 Firefunction-v2 是一款性能卓越的函数调用模型,基于 Llama-3 开发,并通过大量优化,特别适用于函数调用、对话及指令跟随等场景。',
|
9
10
|
displayName: 'Firefunction V2',
|
10
11
|
enabled: true,
|
11
12
|
functionCall: true,
|
@@ -13,14 +14,15 @@ const FireworksAI: ModelProviderCard = {
|
|
13
14
|
tokens: 8192,
|
14
15
|
},
|
15
16
|
{
|
16
|
-
description: 'Fireworks
|
17
|
+
description: 'Fireworks 开源函数调用模型,提供卓越的指令执行能力和开放可定制的特性。',
|
17
18
|
displayName: 'Firefunction V1',
|
18
19
|
functionCall: true,
|
19
20
|
id: 'accounts/fireworks/models/firefunction-v1',
|
20
21
|
tokens: 32_768,
|
21
22
|
},
|
22
23
|
{
|
23
|
-
description:
|
24
|
+
description:
|
25
|
+
'fireworks-ai/FireLLaVA-13b 是一款视觉语言模型,可以同时接收图像和文本输入,经过高质量数据训练,适合多模态任务。',
|
24
26
|
displayName: 'FireLLaVA-13B',
|
25
27
|
enabled: true,
|
26
28
|
functionCall: false,
|
@@ -29,6 +31,8 @@ const FireworksAI: ModelProviderCard = {
|
|
29
31
|
vision: true,
|
30
32
|
},
|
31
33
|
{
|
34
|
+
description:
|
35
|
+
'Llama 3.1 8B 指令模型,专为多语言对话优化,能够在常见行业基准上超越多数开源及闭源模型。',
|
32
36
|
displayName: 'Llama 3.1 8B Instruct',
|
33
37
|
enabled: true,
|
34
38
|
functionCall: false,
|
@@ -36,6 +40,8 @@ const FireworksAI: ModelProviderCard = {
|
|
36
40
|
tokens: 131_072,
|
37
41
|
},
|
38
42
|
{
|
43
|
+
description:
|
44
|
+
'Llama 3.1 70B 指令模型,提供卓越的自然语言理解和生成能力,是对话及分析任务的理想选择。',
|
39
45
|
displayName: 'Llama 3.1 70B Instruct',
|
40
46
|
enabled: true,
|
41
47
|
functionCall: false,
|
@@ -43,6 +49,8 @@ const FireworksAI: ModelProviderCard = {
|
|
43
49
|
tokens: 131_072,
|
44
50
|
},
|
45
51
|
{
|
52
|
+
description:
|
53
|
+
'Llama 3.1 405B 指令模型,具备超大规模参数,适合复杂任务和高负载场景下的指令跟随。',
|
46
54
|
displayName: 'Llama 3.1 405B Instruct',
|
47
55
|
enabled: true,
|
48
56
|
functionCall: false,
|
@@ -50,30 +58,38 @@ const FireworksAI: ModelProviderCard = {
|
|
50
58
|
tokens: 131_072,
|
51
59
|
},
|
52
60
|
{
|
61
|
+
description: 'Llama 3 8B 指令模型,优化用于对话及多语言任务,表现卓越且高效。',
|
53
62
|
displayName: 'Llama 3 8B Instruct',
|
54
63
|
functionCall: false,
|
55
64
|
id: 'accounts/fireworks/models/llama-v3-8b-instruct',
|
56
65
|
tokens: 8192,
|
57
66
|
},
|
58
67
|
{
|
68
|
+
description: 'Llama 3 70B 指令模型,专为多语言对话和自然语言理解优化,性能优于多数竞争模型。',
|
59
69
|
displayName: 'Llama 3 70B Instruct',
|
60
70
|
functionCall: false,
|
61
71
|
id: 'accounts/fireworks/models/llama-v3-70b-instruct',
|
62
72
|
tokens: 8192,
|
63
73
|
},
|
64
74
|
{
|
75
|
+
description:
|
76
|
+
'Llama 3 8B 指令模型(HF 版本),与官方实现结果一致,具备高度一致性和跨平台兼容性。',
|
65
77
|
displayName: 'Llama 3 8B Instruct (HF version)',
|
66
78
|
functionCall: false,
|
67
79
|
id: 'accounts/fireworks/models/llama-v3-8b-instruct-hf',
|
68
80
|
tokens: 8192,
|
69
81
|
},
|
70
82
|
{
|
83
|
+
description:
|
84
|
+
'Llama 3 70B 指令模型(HF 版本),与官方实现结果保持一致,适合高质量的指令跟随任务。',
|
71
85
|
displayName: 'Llama 3 70B Instruct (HF version)',
|
72
86
|
functionCall: false,
|
73
87
|
id: 'accounts/fireworks/models/llama-v3-70b-instruct-hf',
|
74
88
|
tokens: 8192,
|
75
89
|
},
|
76
90
|
{
|
91
|
+
description:
|
92
|
+
'Gemma 2 9B 指令模型,基于之前的Google技术,适合回答问题、总结和推理等多种文本生成任务。',
|
77
93
|
displayName: 'Gemma 2 9B Instruct',
|
78
94
|
enabled: true,
|
79
95
|
functionCall: false,
|
@@ -81,6 +97,7 @@ const FireworksAI: ModelProviderCard = {
|
|
81
97
|
tokens: 8192,
|
82
98
|
},
|
83
99
|
{
|
100
|
+
description: 'Mixtral MoE 8x7B 指令模型,多专家架构提供高效的指令跟随及执行。',
|
84
101
|
displayName: 'Mixtral MoE 8x7B Instruct',
|
85
102
|
enabled: true,
|
86
103
|
functionCall: false,
|
@@ -88,6 +105,8 @@ const FireworksAI: ModelProviderCard = {
|
|
88
105
|
tokens: 32_768,
|
89
106
|
},
|
90
107
|
{
|
108
|
+
description:
|
109
|
+
'Mixtral MoE 8x22B 指令模型,大规模参数和多专家架构,全方位支持复杂任务的高效处理。',
|
91
110
|
displayName: 'Mixtral MoE 8x22B Instruct',
|
92
111
|
enabled: true,
|
93
112
|
functionCall: false,
|
@@ -95,12 +114,16 @@ const FireworksAI: ModelProviderCard = {
|
|
95
114
|
tokens: 65_536,
|
96
115
|
},
|
97
116
|
{
|
117
|
+
description:
|
118
|
+
'Mixtral MoE 8x7B 指令模型(HF 版本),性能与官方实现一致,适合多种高效任务场景。',
|
98
119
|
displayName: 'Mixtral MoE 8x7B Instruct (HF version)',
|
99
120
|
functionCall: false,
|
100
121
|
id: 'accounts/fireworks/models/mixtral-8x7b-instruct-hf',
|
101
122
|
tokens: 32_768,
|
102
123
|
},
|
103
124
|
{
|
125
|
+
description:
|
126
|
+
'Phi 3 Vision 指令模型,轻量级多模态模型,能够处理复杂的视觉和文本信息,具备较强的推理能力。',
|
104
127
|
displayName: 'Phi 3 Vision Instruct',
|
105
128
|
enabled: true,
|
106
129
|
functionCall: false,
|
@@ -109,6 +132,7 @@ const FireworksAI: ModelProviderCard = {
|
|
109
132
|
vision: true,
|
110
133
|
},
|
111
134
|
{
|
135
|
+
description: 'Yi-Large 模型,具备卓越的多语言处理能力,可用于各类语言生成和理解任务。',
|
112
136
|
displayName: 'Yi-Large',
|
113
137
|
enabled: true,
|
114
138
|
functionCall: false,
|
@@ -116,18 +140,22 @@ const FireworksAI: ModelProviderCard = {
|
|
116
140
|
tokens: 32_768,
|
117
141
|
},
|
118
142
|
{
|
143
|
+
description: 'StarCoder 7B 模型,针对80多种编程语言训练,拥有出色的编程填充能力和语境理解。',
|
119
144
|
displayName: 'StarCoder 7B',
|
120
145
|
functionCall: false,
|
121
146
|
id: 'accounts/fireworks/models/starcoder-7b',
|
122
147
|
tokens: 8192,
|
123
148
|
},
|
124
149
|
{
|
150
|
+
description:
|
151
|
+
'StarCoder 15.5B 模型,支持高级编程任务,多语言能力增强,适合复杂代码生成和理解。',
|
125
152
|
displayName: 'StarCoder 15.5B',
|
126
153
|
functionCall: false,
|
127
154
|
id: 'accounts/fireworks/models/starcoder-16b',
|
128
155
|
tokens: 8192,
|
129
156
|
},
|
130
157
|
{
|
158
|
+
description: 'MythoMax L2 13B 模型,结合新颖的合并技术,擅长叙事和角色扮演。',
|
131
159
|
displayName: 'MythoMax L2 13b',
|
132
160
|
functionCall: false,
|
133
161
|
id: 'accounts/fireworks/models/mythomax-l2-13b',
|
@@ -135,9 +163,13 @@ const FireworksAI: ModelProviderCard = {
|
|
135
163
|
},
|
136
164
|
],
|
137
165
|
checkModel: 'accounts/fireworks/models/firefunction-v2',
|
166
|
+
description:
|
167
|
+
'Fireworks AI 是一家领先的高级语言模型服务商,专注于功能调用和多模态处理。其最新模型 Firefunction V2 基于 Llama-3,优化用于函数调用、对话及指令跟随。视觉语言模型 FireLLaVA-13B 支持图像和文本混合输入。其他 notable 模型包括 Llama 系列和 Mixtral 系列,提供高效的多语言指令跟随与生成支持。',
|
138
168
|
id: 'fireworksai',
|
139
169
|
modelList: { showModelFetcher: true },
|
170
|
+
modelsUrl: 'https://fireworks.ai/models?show=Serverless',
|
140
171
|
name: 'Fireworks AI',
|
172
|
+
url: 'https://fireworks.ai',
|
141
173
|
};
|
142
174
|
|
143
175
|
export default FireworksAI;
|
@@ -1,40 +1,52 @@
|
|
1
1
|
import { ModelProviderCard } from '@/types/llm';
|
2
2
|
|
3
|
-
// ref https://ai.google.dev/models/gemini
|
4
|
-
// api https://ai.google.dev/api/rest/v1beta/models/list
|
3
|
+
// ref: https://ai.google.dev/gemini-api/docs/models/gemini
|
5
4
|
const Google: ModelProviderCard = {
|
6
5
|
chatModels: [
|
7
6
|
{
|
8
|
-
description:
|
7
|
+
description:
|
8
|
+
'Gemini 1.5 Flash 是Google最新的多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。',
|
9
9
|
displayName: 'Gemini 1.5 Flash',
|
10
10
|
enabled: true,
|
11
11
|
functionCall: true,
|
12
12
|
id: 'gemini-1.5-flash-latest',
|
13
13
|
maxOutput: 8192,
|
14
|
+
pricing: {
|
15
|
+
cachedInput: 0.018_75,
|
16
|
+
input: 0.075,
|
17
|
+
output: 0.3,
|
18
|
+
},
|
14
19
|
tokens: 1_048_576 + 8192,
|
15
20
|
vision: true,
|
16
21
|
},
|
17
22
|
{
|
18
|
-
description: '
|
23
|
+
description: 'Gemini 1.5 Flash 0827 提供了优化后的多模态处理能力,适用多种复杂任务场景。',
|
19
24
|
displayName: 'Gemini 1.5 Flash 0827',
|
20
25
|
enabled: true,
|
21
26
|
functionCall: true,
|
22
27
|
id: 'gemini-1.5-flash-exp-0827',
|
23
28
|
maxOutput: 8192,
|
29
|
+
pricing: {
|
30
|
+
cachedInput: 0.018_75,
|
31
|
+
input: 0.075,
|
32
|
+
output: 0.3,
|
33
|
+
},
|
34
|
+
releasedAt: '2024-08-27',
|
24
35
|
tokens: 1_048_576 + 8192,
|
25
36
|
vision: true,
|
26
37
|
},
|
27
38
|
{
|
28
|
-
description: '
|
39
|
+
description: 'Gemini 1.5 Flash 8B 0827 专为处理大规模任务场景设计,提供无与伦比的处理速度。',
|
29
40
|
displayName: 'Gemini 1.5 Flash 8B 0827',
|
30
41
|
functionCall: true,
|
31
42
|
id: 'gemini-1.5-flash-8b-exp-0827',
|
32
43
|
maxOutput: 8192,
|
44
|
+
releasedAt: '2024-08-27',
|
33
45
|
tokens: 1_048_576 + 8192,
|
34
46
|
vision: true,
|
35
47
|
},
|
36
48
|
{
|
37
|
-
description: '
|
49
|
+
description: 'Gemini 1.5 Flash 001 是一款高效的多模态模型,支持广泛应用的扩展。',
|
38
50
|
displayName: 'Gemini 1.5 Flash 001',
|
39
51
|
functionCall: true,
|
40
52
|
id: 'gemini-1.5-flash-001',
|
@@ -43,71 +55,112 @@ const Google: ModelProviderCard = {
|
|
43
55
|
vision: true,
|
44
56
|
},
|
45
57
|
{
|
46
|
-
description:
|
58
|
+
description:
|
59
|
+
'Gemini 1.5 Pro 支持高达200万个tokens,是中型多模态模型的理想选择,适用于复杂任务的多方面支持。',
|
47
60
|
displayName: 'Gemini 1.5 Pro',
|
48
61
|
enabled: true,
|
49
62
|
functionCall: true,
|
50
63
|
id: 'gemini-1.5-pro-latest',
|
51
64
|
maxOutput: 8192,
|
65
|
+
pricing: {
|
66
|
+
cachedInput: 0.875,
|
67
|
+
input: 3.5,
|
68
|
+
output: 10.5,
|
69
|
+
},
|
70
|
+
releasedAt: '2024-02-15',
|
52
71
|
tokens: 2_097_152 + 8192,
|
53
72
|
vision: true,
|
54
73
|
},
|
55
74
|
{
|
56
|
-
description: '
|
75
|
+
description: 'Gemini 1.5 Pro 0827 结合最新优化技术,带来更高效的多模态数据处理能力。',
|
57
76
|
displayName: 'Gemini 1.5 Pro 0827',
|
58
77
|
enabled: true,
|
59
78
|
functionCall: true,
|
60
79
|
id: 'gemini-1.5-pro-exp-0827',
|
61
80
|
maxOutput: 8192,
|
81
|
+
pricing: {
|
82
|
+
cachedInput: 0.875,
|
83
|
+
input: 3.5,
|
84
|
+
output: 10.5,
|
85
|
+
},
|
86
|
+
releasedAt: '2024-08-27',
|
62
87
|
tokens: 2_097_152 + 8192,
|
63
88
|
vision: true,
|
64
89
|
},
|
65
90
|
{
|
66
|
-
description: '
|
91
|
+
description: 'Gemini 1.5 Pro 0801 提供出色的多模态处理能力,为应用开发带来更大灵活性。',
|
67
92
|
displayName: 'Gemini 1.5 Pro 0801',
|
68
93
|
functionCall: true,
|
69
94
|
id: 'gemini-1.5-pro-exp-0801',
|
70
95
|
maxOutput: 8192,
|
96
|
+
pricing: {
|
97
|
+
cachedInput: 0.875,
|
98
|
+
input: 3.5,
|
99
|
+
output: 10.5,
|
100
|
+
},
|
101
|
+
releasedAt: '2024-08-01',
|
71
102
|
tokens: 2_097_152 + 8192,
|
72
103
|
vision: true,
|
73
104
|
},
|
74
105
|
{
|
75
|
-
description: '
|
106
|
+
description: 'Gemini 1.5 Pro 001 是可扩展的多模态AI解决方案,支持广泛的复杂任务。',
|
76
107
|
displayName: 'Gemini 1.5 Pro 001',
|
77
108
|
functionCall: true,
|
78
109
|
id: 'gemini-1.5-pro-001',
|
79
110
|
maxOutput: 8192,
|
111
|
+
pricing: {
|
112
|
+
cachedInput: 0.875,
|
113
|
+
input: 3.5,
|
114
|
+
output: 10.5,
|
115
|
+
},
|
116
|
+
releasedAt: '2024-02-15',
|
80
117
|
tokens: 2_097_152 + 8192,
|
81
118
|
vision: true,
|
82
119
|
},
|
83
120
|
{
|
84
|
-
description:
|
85
|
-
'The best model for scaling across a wide range of tasks. This is the latest model.',
|
121
|
+
description: 'Gemini 1.0 Pro 是Google的高性能AI模型,专为广泛任务扩展而设计。',
|
86
122
|
displayName: 'Gemini 1.0 Pro',
|
87
123
|
id: 'gemini-1.0-pro-latest',
|
88
124
|
maxOutput: 2048,
|
125
|
+
pricing: {
|
126
|
+
input: 0.5,
|
127
|
+
output: 1.5,
|
128
|
+
},
|
129
|
+
releasedAt: '2023-12-06',
|
89
130
|
tokens: 30_720 + 2048,
|
90
131
|
},
|
91
132
|
{
|
92
133
|
description:
|
93
|
-
'
|
134
|
+
'Gemini 1.0 Pro 001 (Tuning) 提供稳定并可调优的性能,是复杂任务解决方案的理想选择。',
|
94
135
|
displayName: 'Gemini 1.0 Pro 001 (Tuning)',
|
95
136
|
functionCall: true,
|
96
137
|
id: 'gemini-1.0-pro-001',
|
97
138
|
maxOutput: 2048,
|
139
|
+
pricing: {
|
140
|
+
input: 0.5,
|
141
|
+
output: 1.5,
|
142
|
+
},
|
143
|
+
releasedAt: '2023-12-06',
|
98
144
|
tokens: 30_720 + 2048,
|
99
145
|
},
|
100
146
|
{
|
101
|
-
description:
|
102
|
-
'The best model for scaling across a wide range of tasks. Released April 9, 2024.',
|
147
|
+
description: 'Gemini 1.0 Pro 002 (Tuning) 提供出色的多模态支持,专注于复杂任务的有效解决。',
|
103
148
|
displayName: 'Gemini 1.0 Pro 002 (Tuning)',
|
104
149
|
id: 'gemini-1.0-pro-002',
|
105
150
|
maxOutput: 2048,
|
151
|
+
pricing: {
|
152
|
+
input: 0.5,
|
153
|
+
output: 1.5,
|
154
|
+
},
|
155
|
+
releasedAt: '2023-12-06',
|
106
156
|
tokens: 30_720 + 2048,
|
107
157
|
},
|
108
158
|
],
|
109
159
|
checkModel: 'gemini-1.5-flash-latest',
|
160
|
+
description:
|
161
|
+
'Google 的 Gemini 系列是其最先进、通用的 A I模型,由 Google DeepMind 打造,专为多模态设计,支持文本、代码、图像、音频和视频的无缝理解与处理。适用于从数据中心到移动设备的多种环境,极大提升了AI模型的效率与应用广泛性。',
|
110
162
|
id: 'google',
|
163
|
+
modelsUrl: 'https://ai.google.dev/gemini-api/docs/models/gemini',
|
111
164
|
name: 'Google',
|
112
165
|
proxyUrl: {
|
113
166
|
placeholder: 'https://generativelanguage.googleapis.com',
|
@@ -116,6 +169,7 @@ const Google: ModelProviderCard = {
|
|
116
169
|
speed: 2,
|
117
170
|
text: true,
|
118
171
|
},
|
172
|
+
url: 'https://ai.google.dev',
|
119
173
|
};
|
120
174
|
|
121
175
|
export default Google;
|