@lobehub/chat 1.136.12 → 1.136.13
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.github/workflows/claude-translator.yml +13 -1
- package/CHANGELOG.md +34 -0
- package/changelog/v1.json +12 -0
- package/locales/ar/modelProvider.json +12 -0
- package/locales/ar/models.json +39 -24
- package/locales/bg-BG/modelProvider.json +12 -0
- package/locales/bg-BG/models.json +39 -24
- package/locales/de-DE/modelProvider.json +12 -0
- package/locales/de-DE/models.json +39 -24
- package/locales/en-US/modelProvider.json +12 -0
- package/locales/en-US/models.json +39 -24
- package/locales/es-ES/modelProvider.json +12 -0
- package/locales/es-ES/models.json +39 -24
- package/locales/fa-IR/modelProvider.json +12 -0
- package/locales/fa-IR/models.json +39 -24
- package/locales/fr-FR/modelProvider.json +12 -0
- package/locales/fr-FR/models.json +39 -24
- package/locales/it-IT/modelProvider.json +12 -0
- package/locales/it-IT/models.json +39 -24
- package/locales/ja-JP/modelProvider.json +12 -0
- package/locales/ja-JP/models.json +39 -24
- package/locales/ko-KR/modelProvider.json +12 -0
- package/locales/ko-KR/models.json +39 -24
- package/locales/nl-NL/modelProvider.json +12 -0
- package/locales/nl-NL/models.json +39 -24
- package/locales/pl-PL/modelProvider.json +12 -0
- package/locales/pl-PL/models.json +39 -24
- package/locales/pt-BR/modelProvider.json +12 -0
- package/locales/pt-BR/models.json +39 -24
- package/locales/ru-RU/modelProvider.json +12 -0
- package/locales/ru-RU/models.json +39 -24
- package/locales/tr-TR/modelProvider.json +12 -0
- package/locales/tr-TR/models.json +39 -24
- package/locales/vi-VN/modelProvider.json +12 -0
- package/locales/vi-VN/models.json +39 -24
- package/locales/zh-CN/modelProvider.json +12 -0
- package/locales/zh-CN/models.json +39 -24
- package/locales/zh-TW/modelProvider.json +12 -0
- package/locales/zh-TW/models.json +39 -24
- package/package.json +3 -3
- package/packages/const/src/settings/index.ts +1 -0
- package/packages/database/package.json +7 -5
- package/packages/electron-client-ipc/src/events/index.ts +2 -2
- package/packages/electron-client-ipc/src/events/{localFile.ts → localSystem.ts} +25 -6
- package/packages/electron-client-ipc/src/types/index.ts +1 -1
- package/packages/electron-client-ipc/src/types/{localFile.ts → localSystem.ts} +89 -4
- package/packages/file-loaders/package.json +1 -2
- package/packages/file-loaders/src/loadFile.ts +4 -1
- package/packages/file-loaders/src/loaders/doc/__snapshots__/index.test.ts.snap +46 -0
- package/packages/file-loaders/src/loaders/doc/index.test.ts +38 -0
- package/packages/file-loaders/src/loaders/doc/index.ts +57 -0
- package/packages/file-loaders/src/loaders/docx/index.ts +36 -45
- package/packages/file-loaders/src/loaders/index.ts +2 -0
- package/packages/file-loaders/src/types/word-extractor.d.ts +9 -0
- package/packages/file-loaders/src/types.ts +1 -1
- package/packages/model-runtime/src/core/openaiCompatibleFactory/index.test.ts +267 -38
- package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +45 -0
- package/packages/model-runtime/src/providerTestUtils.ts +0 -5
- package/packages/model-runtime/src/providers/anthropic/generateObject.test.ts +57 -44
- package/packages/model-runtime/src/providers/anthropic/generateObject.ts +28 -20
- package/packages/model-runtime/src/providers/deepseek/index.ts +5 -0
- package/packages/model-runtime/src/providers/openai/index.test.ts +0 -5
- package/packages/model-runtime/src/providers/openrouter/index.test.ts +3 -3
- package/packages/model-runtime/src/providers/openrouter/index.ts +32 -20
- package/packages/model-runtime/src/providers/openrouter/type.ts +25 -24
- package/packages/model-runtime/src/providers/zhipu/index.test.ts +0 -1
- package/packages/model-runtime/src/types/structureOutput.ts +13 -1
- package/packages/model-runtime/src/utils/handleOpenAIError.test.ts +0 -5
- package/packages/model-runtime/src/utils/handleOpenAIError.ts +2 -2
- package/packages/types/src/aiChat.ts +13 -1
- package/packages/types/src/index.ts +1 -0
- package/src/features/ChatInput/InputEditor/index.tsx +39 -26
- package/src/features/Conversation/Messages/Assistant/Tool/Render/LoadingPlaceholder/index.tsx +1 -1
- package/src/server/routers/lambda/agent.ts +2 -3
- package/src/server/routers/lambda/aiChat.ts +33 -1
- package/src/server/routers/lambda/chunk.ts +2 -2
- package/src/services/electron/file.ts +1 -2
- package/src/services/electron/localFileService.ts +40 -0
- package/src/tools/local-system/Placeholder/ListFiles.tsx +23 -0
- package/src/tools/local-system/Placeholder/ReadLocalFile.tsx +9 -0
- package/src/tools/local-system/Placeholder/SearchFiles.tsx +55 -0
- package/src/tools/local-system/Placeholder/index.tsx +25 -0
- package/src/tools/placeholders.ts +3 -0
|
@@ -86,7 +86,19 @@ jobs:
|
|
|
86
86
|
[Original content]
|
|
87
87
|
</details>
|
|
88
88
|
|
|
89
|
-
4.
|
|
89
|
+
4. CRITICAL RULES to prevent hallucination and ensure accuracy:
|
|
90
|
+
|
|
91
|
+
- The "Original Content" section MUST contain the EXACT, UNMODIFIED original text byte-for-byte. NEVER add, remove, modify, or hallucinate ANY content in this section.
|
|
92
|
+
- Code blocks, error logs, JSON structures, and other technical content MUST appear in BOTH the translated section AND the original content section WITHOUT ANY MODIFICATION.
|
|
93
|
+
- When translating content with code/logs/JSON:
|
|
94
|
+
* Copy the code/logs/JSON blocks identically to both sections
|
|
95
|
+
* Only translate the natural language text (e.g., Chinese, Japanese) surrounding the code blocks
|
|
96
|
+
* Keep all technical content (URLs, variable names, error messages in English) unchanged
|
|
97
|
+
- ALWAYS verify the "Original Content" section matches the source text exactly before updating
|
|
98
|
+
- If you detect any discrepancy, retrieve the original content again to ensure accuracy
|
|
99
|
+
- Pay special attention to the end of comments - do not drop or hallucinate the last sentences
|
|
100
|
+
|
|
101
|
+
5. Update using gh tool:
|
|
90
102
|
|
|
91
103
|
- Choose the correct command based on the Event type in environment information:
|
|
92
104
|
- If Event is 'issues': gh issue edit [ISSUE_NUMBER] --title "[English title]" --body "[Translated content + Original content]"
|
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,40 @@
|
|
|
2
2
|
|
|
3
3
|
# Changelog
|
|
4
4
|
|
|
5
|
+
### [Version 1.136.13](https://github.com/lobehub/lobe-chat/compare/v1.136.12...v1.136.13)
|
|
6
|
+
|
|
7
|
+
<sup>Released on **2025-10-12**</sup>
|
|
8
|
+
|
|
9
|
+
#### 🐛 Bug Fixes
|
|
10
|
+
|
|
11
|
+
- **misc**: Fix input cannot send markdown.
|
|
12
|
+
|
|
13
|
+
#### 💄 Styles
|
|
14
|
+
|
|
15
|
+
- **misc**: Optimize OpenRouter modelFetch endpoint, update i18n.
|
|
16
|
+
|
|
17
|
+
<br/>
|
|
18
|
+
|
|
19
|
+
<details>
|
|
20
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
|
21
|
+
|
|
22
|
+
#### What's fixed
|
|
23
|
+
|
|
24
|
+
- **misc**: Fix input cannot send markdown, closes [#9674](https://github.com/lobehub/lobe-chat/issues/9674) ([2518d7e](https://github.com/lobehub/lobe-chat/commit/2518d7e))
|
|
25
|
+
|
|
26
|
+
#### Styles
|
|
27
|
+
|
|
28
|
+
- **misc**: Optimize OpenRouter modelFetch endpoint, closes [#9671](https://github.com/lobehub/lobe-chat/issues/9671) ([0038a64](https://github.com/lobehub/lobe-chat/commit/0038a64))
|
|
29
|
+
- **misc**: Update i18n, closes [#9665](https://github.com/lobehub/lobe-chat/issues/9665) ([02096ea](https://github.com/lobehub/lobe-chat/commit/02096ea))
|
|
30
|
+
|
|
31
|
+
</details>
|
|
32
|
+
|
|
33
|
+
<div align="right">
|
|
34
|
+
|
|
35
|
+
[](#readme-top)
|
|
36
|
+
|
|
37
|
+
</div>
|
|
38
|
+
|
|
5
39
|
### [Version 1.136.12](https://github.com/lobehub/lobe-chat/compare/v1.136.11...v1.136.12)
|
|
6
40
|
|
|
7
41
|
<sup>Released on **2025-10-11**</sup>
|
package/changelog/v1.json
CHANGED
|
@@ -1,4 +1,16 @@
|
|
|
1
1
|
[
|
|
2
|
+
{
|
|
3
|
+
"children": {
|
|
4
|
+
"fixes": [
|
|
5
|
+
"Fix input cannot send markdown."
|
|
6
|
+
],
|
|
7
|
+
"improvements": [
|
|
8
|
+
"Optimize OpenRouter modelFetch endpoint, update i18n."
|
|
9
|
+
]
|
|
10
|
+
},
|
|
11
|
+
"date": "2025-10-12",
|
|
12
|
+
"version": "1.136.13"
|
|
13
|
+
},
|
|
2
14
|
{
|
|
3
15
|
"children": {
|
|
4
16
|
"improvements": [
|
|
@@ -284,11 +284,19 @@
|
|
|
284
284
|
"placeholder": "يرجى إدخال معرف النموذج، مثل gpt-4o أو claude-3.5-sonnet",
|
|
285
285
|
"title": "معرف النموذج"
|
|
286
286
|
},
|
|
287
|
+
"imageOutput": {
|
|
288
|
+
"extra": "سيؤدي هذا الإعداد فقط إلى تفعيل قدرة النموذج على توليد الصور، وتعتمد النتيجة بالكامل على قدرات النموذج نفسه. يُرجى اختبار ما إذا كان النموذج يدعم توليد الصور بشكل فعّال.",
|
|
289
|
+
"title": "يدعم توليد الصور"
|
|
290
|
+
},
|
|
287
291
|
"modalTitle": "تكوين النموذج المخصص",
|
|
288
292
|
"reasoning": {
|
|
289
293
|
"extra": "هذا الإعداد سيفتح فقط قدرة النموذج على التفكير العميق، التأثير الفعلي يعتمد بالكامل على النموذج نفسه، يرجى اختبار ما إذا كان هذا النموذج يمتلك القدرة على التفكير العميق القابل للاستخدام",
|
|
290
294
|
"title": "يدعم التفكير العميق"
|
|
291
295
|
},
|
|
296
|
+
"search": {
|
|
297
|
+
"extra": "سيؤدي هذا الإعداد فقط إلى تفعيل قدرة محرك البحث المدمج في النموذج على الاتصال بالإنترنت. تعتمد إمكانية استخدام محرك البحث المدمج على قدرات النموذج نفسه. يُرجى اختبار ما إذا كان محرك البحث المدمج في النموذج يعمل بشكل فعّال.",
|
|
298
|
+
"title": "يدعم البحث عبر الإنترنت"
|
|
299
|
+
},
|
|
292
300
|
"tokens": {
|
|
293
301
|
"extra": "تعيين الحد الأقصى لعدد الرموز المدعومة من قبل النموذج",
|
|
294
302
|
"title": "أقصى نافذة سياق",
|
|
@@ -309,6 +317,10 @@
|
|
|
309
317
|
"placeholder": "يرجى اختيار نوع النموذج",
|
|
310
318
|
"title": "نوع النموذج"
|
|
311
319
|
},
|
|
320
|
+
"video": {
|
|
321
|
+
"extra": "سيؤدي هذا الإعداد فقط إلى تفعيل إعدادات التعرف على الفيديو داخل التطبيق. وتعتمد إمكانية التعرف على الفيديو بالكامل على قدرات النموذج نفسه. يُرجى اختبار ما إذا كان النموذج يدعم التعرف على الفيديو بشكل فعّال.",
|
|
322
|
+
"title": "يدعم التعرف على الفيديو"
|
|
323
|
+
},
|
|
312
324
|
"vision": {
|
|
313
325
|
"extra": "سيؤدي هذا التكوين إلى فتح إعدادات تحميل الصور في التطبيق، ما إذا كان يدعم التعرف يعتمد بالكامل على النموذج نفسه، يرجى اختبار قابلية استخدام التعرف البصري لهذا النموذج بنفسك",
|
|
314
326
|
"title": "دعم التعرف البصري"
|
package/locales/ar/models.json
CHANGED
|
@@ -704,6 +704,9 @@
|
|
|
704
704
|
"azure-DeepSeek-R1-0528": {
|
|
705
705
|
"description": "مقدم من مايكروسوفت؛ تم ترقية نموذج DeepSeek R1 بإصدار فرعي، الإصدار الحالي هو DeepSeek-R1-0528. في التحديث الأخير، حسّن DeepSeek R1 بشكل كبير عمق الاستدلال وقدرات التنبؤ من خلال زيادة موارد الحوسبة وإدخال آليات تحسين الخوارزميات في مرحلة ما بعد التدريب. النموذج يحقق أداءً ممتازًا في اختبارات معيارية متعددة مثل الرياضيات والبرمجة والمنطق العام، وأداؤه الكلي يقترب من النماذج الرائدة مثل O3 و Gemini 2.5 Pro."
|
|
706
706
|
},
|
|
707
|
+
"baichuan-m2-32b": {
|
|
708
|
+
"description": "Baichuan M2 32B هو نموذج خبراء هجين أطلقته شركة Baichuan Intelligence، يتمتع بقدرات استدلال قوية."
|
|
709
|
+
},
|
|
707
710
|
"baichuan/baichuan2-13b-chat": {
|
|
708
711
|
"description": "Baichuan-13B هو نموذج لغوي كبير مفتوح المصدر قابل للاستخدام التجاري تم تطويره بواسطة Baichuan Intelligence، ويحتوي على 13 مليار معلمة، وقد حقق أفضل النتائج في المعايير الصينية والإنجليزية."
|
|
709
712
|
},
|
|
@@ -728,12 +731,6 @@
|
|
|
728
731
|
"charglm-4": {
|
|
729
732
|
"description": "CharGLM-4 مصمم خصيصًا للأدوار والشعور بالرفقة، يدعم الذاكرة متعددة الجولات الطويلة والحوار المخصص، ويستخدم على نطاق واسع."
|
|
730
733
|
},
|
|
731
|
-
"chatglm3": {
|
|
732
|
-
"description": "ChatGLM3 هو نموذج مغلق المصدر تم إصداره بواسطة مختبر KEG في جامعة تسينغهوا وشركة Zhizhu AI، وقد تم تدريبه مسبقًا على كميات هائلة من المعرفة المعرفية باللغتين الصينية والإنجليزية، وتم تحسينه وفقًا للاختيارات البشرية. مقارنة بالنموذج الأول، حقق تحسينات بنسبة 16٪ و 36٪ و 280٪ في MMLU و C-Eval و GSM8K على التوالي، وتصدر قائمة المهام الصينية C-Eval. يناسب هذا النموذج السيناريوهات التي تتطلب كميات كبيرة من المعرفة وقدرات الاستدلال والإبداع، مثل كتابة النصوص الإعلانية وكتابة الروايات وكتابة المحتوى المعرفي وتكوين الكود."
|
|
733
|
-
},
|
|
734
|
-
"chatglm3-6b-base": {
|
|
735
|
-
"description": "ChatGLM3-6b-base هو النموذج الأساسي المفتوح المصدر الأحدث من سلسلة ChatGLM التي طورتها شركة Zhìpǔ، ويحتوي على 6 مليارات معلمة."
|
|
736
|
-
},
|
|
737
734
|
"chatgpt-4o-latest": {
|
|
738
735
|
"description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الحقيقي للحفاظ على أحدث إصدار. يجمع بين فهم اللغة القوي وقدرات التوليد، مما يجعله مناسبًا لمجموعة واسعة من التطبيقات، بما في ذلك خدمة العملاء والتعليم والدعم الفني."
|
|
739
736
|
},
|
|
@@ -938,6 +935,9 @@
|
|
|
938
935
|
"deepseek-ai/DeepSeek-V3.1-Terminus": {
|
|
939
936
|
"description": "DeepSeek-V3.1-Terminus هو نسخة محدثة من نموذج V3.1 الذي أصدرته DeepSeek، ويصنف كنموذج لغة كبير لوكيل هجين. يركز هذا التحديث على إصلاح المشكلات التي أبلغ عنها المستخدمون وتحسين الاستقرار مع الحفاظ على القدرات الأصلية للنموذج. لقد حسّن بشكل ملحوظ اتساق اللغة، وقلل من الاستخدام المختلط للغة الصينية والإنجليزية والرموز غير الطبيعية. يدمج النموذج \"وضع التفكير\" و\"الوضع غير التفكيري\"، حيث يمكن للمستخدمين التبديل بينهما بسهولة عبر قوالب الدردشة لتناسب مهام مختلفة. كتحسين مهم، عزز V3.1-Terminus أداء وكيل الكود ووكيل البحث، مما يجعله أكثر موثوقية في استدعاء الأدوات وتنفيذ المهام المعقدة متعددة الخطوات."
|
|
940
937
|
},
|
|
938
|
+
"deepseek-ai/DeepSeek-V3.2-Exp": {
|
|
939
|
+
"description": "نموذج DeepSeek V3.2 Exp هو نموذج بهيكلية استدلال هجينة، يدعم وضعي التفكير وغير التفكير."
|
|
940
|
+
},
|
|
941
941
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
|
942
942
|
"description": "DeepSeek 67B هو نموذج متقدم تم تدريبه للحوار المعقد."
|
|
943
943
|
},
|
|
@@ -1031,6 +1031,9 @@
|
|
|
1031
1031
|
"deepseek-v3.1": {
|
|
1032
1032
|
"description": "DeepSeek-V3.1 هو نموذج استدلال هجين جديد أطلقته DeepSeek، يدعم وضعين للاستدلال: التفكير وعدم التفكير، مع كفاءة تفكير أعلى مقارنة بـ DeepSeek-R1-0528. بعد تحسين ما بعد التدريب، تم تعزيز استخدام أدوات الوكيل وأداء مهام الوكيل بشكل كبير. يدعم نافذة سياق تصل إلى 128 ألف، وطول إخراج يصل إلى 64 ألف رمز."
|
|
1033
1033
|
},
|
|
1034
|
+
"deepseek-v3.1-terminus": {
|
|
1035
|
+
"description": "DeepSeek-V3.1-Terminus هو إصدار محسن من نموذج اللغة الكبير أطلقته DeepSeek، ومُصمم خصيصًا للأجهزة الطرفية."
|
|
1036
|
+
},
|
|
1034
1037
|
"deepseek-v3.1:671b": {
|
|
1035
1038
|
"description": "DeepSeek V3.1: نموذج استدلال من الجيل التالي يعزز القدرات على الاستدلال المعقد والتفكير التسلسلي، مناسب للمهام التي تتطلب تحليلاً عميقًا."
|
|
1036
1039
|
},
|
|
@@ -1193,6 +1196,12 @@
|
|
|
1193
1196
|
"ernie-4.0-turbo-8k-preview": {
|
|
1194
1197
|
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي يظهر أداءً ممتازًا بشكل شامل، ويستخدم على نطاق واسع في مشاهد المهام المعقدة في مختلف المجالات؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة. مقارنةً بـ ERNIE 4.0، يظهر أداءً أفضل."
|
|
1195
1198
|
},
|
|
1199
|
+
"ernie-4.5-21b-a3b": {
|
|
1200
|
+
"description": "ERNIE 4.5 21B A3B هو نموذج خبراء هجين أطلقته Baidu Wenxin، يتمتع بقدرات قوية في الاستدلال ودعم متعدد اللغات."
|
|
1201
|
+
},
|
|
1202
|
+
"ernie-4.5-300b-a47b": {
|
|
1203
|
+
"description": "ERNIE 4.5 300B A47B هو نموذج خبراء هجين فائق الحجم أطلقته Baidu Wenxin، يتميز بقدرات استدلال فائقة."
|
|
1204
|
+
},
|
|
1196
1205
|
"ernie-4.5-8k-preview": {
|
|
1197
1206
|
"description": "نموذج ونسين 4.5 هو نموذج أساسي جديد متعدد الوسائط تم تطويره ذاتيًا بواسطة بايدو، من خلال نمذجة متعددة الوسائط لتحقيق تحسين متزامن، ويظهر قدرة ممتازة على الفهم متعدد الوسائط؛ يتمتع بقدرات لغوية متقدمة، مع تحسين شامل في الفهم، والتوليد، والمنطق، والذاكرة، مع تحسين كبير في إزالة الأوهام، والاستدلال المنطقي، وقدرات البرمجة."
|
|
1198
1207
|
},
|
|
@@ -1449,7 +1458,7 @@
|
|
|
1449
1458
|
"description": "GLM-4-0520 هو أحدث إصدار من النموذج، مصمم للمهام المعقدة والمتنوعة، ويظهر أداءً ممتازًا."
|
|
1450
1459
|
},
|
|
1451
1460
|
"glm-4-9b-chat": {
|
|
1452
|
-
"description": "
|
|
1461
|
+
"description": "يُظهر GLM-4-9B-Chat أداءً عاليًا في مجالات الدلالة، والرياضيات، والاستدلال، والبرمجة، والمعرفة. كما يدعم تصفح الويب، وتنفيذ الأكواد، واستدعاء الأدوات المخصصة، والاستدلال على النصوص الطويلة. يدعم 26 لغة من بينها اليابانية والكورية والألمانية."
|
|
1453
1462
|
},
|
|
1454
1463
|
"glm-4-air": {
|
|
1455
1464
|
"description": "GLM-4-Air هو إصدار ذو قيمة عالية، يتمتع بأداء قريب من GLM-4، ويقدم سرعة عالية وسعرًا معقولًا."
|
|
@@ -1749,7 +1758,10 @@
|
|
|
1749
1758
|
"description": "نسخة منخفضة التكلفة من GPT Image 1، تدعم إدخال النصوص والصور بشكل أصلي وتوليد مخرجات على شكل صور."
|
|
1750
1759
|
},
|
|
1751
1760
|
"gpt-oss-120b": {
|
|
1752
|
-
"description": "GPT-OSS-120B
|
|
1761
|
+
"description": "يتطلب هذا النموذج تقديم طلب للتجربة. GPT-OSS-120B هو نموذج لغة مفتوح المصدر واسع النطاق أطلقته OpenAI، يتمتع بقدرات قوية في توليد النصوص."
|
|
1762
|
+
},
|
|
1763
|
+
"gpt-oss-20b": {
|
|
1764
|
+
"description": "يتطلب هذا النموذج تقديم طلب للتجربة. GPT-OSS-20B هو نموذج لغة مفتوح المصدر متوسط الحجم أطلقته OpenAI، يتميز بكفاءة عالية في توليد النصوص."
|
|
1753
1765
|
},
|
|
1754
1766
|
"gpt-oss:120b": {
|
|
1755
1767
|
"description": "GPT-OSS 120B هو نموذج لغة كبير مفتوح المصدر أصدرته OpenAI، يستخدم تقنية التكميم MXFP4، ويعتبر نموذجًا رائدًا. يتطلب تشغيله بيئة متعددة وحدات معالجة الرسومات أو محطة عمل عالية الأداء، ويتميز بأداء متفوق في الاستدلال المعقد، وتوليد الأكواد، ومعالجة اللغات المتعددة، ويدعم استدعاء الدوال المتقدمة وتكامل الأدوات."
|
|
@@ -1967,6 +1979,9 @@
|
|
|
1967
1979
|
"kimi-k2-0905-preview": {
|
|
1968
1980
|
"description": "نموذج kimi-k2-0905-preview يدعم طول سياق 256k، يتمتع بقدرات ترميز وكيل أقوى، وجمالية وعملية أفضل في الشيفرة الأمامية، وفهم سياق محسن."
|
|
1969
1981
|
},
|
|
1982
|
+
"kimi-k2-instruct": {
|
|
1983
|
+
"description": "Kimi K2 Instruct هو نموذج لغة كبير أطلقته Moonshot AI، يتمتع بقدرة فائقة على معالجة السياقات الطويلة."
|
|
1984
|
+
},
|
|
1970
1985
|
"kimi-k2-turbo-preview": {
|
|
1971
1986
|
"description": "kimi-k2 هو نموذج أساسي بمعمارية MoE يتمتع بقدرات قوية للغاية في البرمجة وقدرات الوكيل (Agent)، بإجمالي معلمات يبلغ 1 تريليون والمعلمات المُفعَّلة 32 مليار. في اختبارات الأداء المعيارية للفئات الرئيسية مثل الاستدلال المعرفي العام والبرمجة والرياضيات والوكلاء (Agent)، تفوق أداء نموذج K2 على النماذج المفتوحة المصدر السائدة الأخرى."
|
|
1972
1987
|
},
|
|
@@ -1988,9 +2003,6 @@
|
|
|
1988
2003
|
"lite": {
|
|
1989
2004
|
"description": "سبارك لايت هو نموذج لغوي كبير خفيف الوزن، يتميز بتأخير منخفض للغاية وكفاءة عالية في المعالجة، وهو مجاني تمامًا ومفتوح، ويدعم وظيفة البحث عبر الإنترنت في الوقت الحقيقي. تجعل خصائص استجابته السريعة منه مثاليًا لتطبيقات الاستدلال على الأجهزة ذات القدرة الحاسوبية المنخفضة وضبط النماذج، مما يوفر للمستخدمين قيمة ممتازة من حيث التكلفة وتجربة ذكية، خاصة في مجالات الأسئلة والأجوبة المعرفية، وتوليد المحتوى، وسيناريوهات البحث."
|
|
1990
2005
|
},
|
|
1991
|
-
"llama-2-7b-chat": {
|
|
1992
|
-
"description": "Llama2 هو سلسلة من النماذج اللغوية الكبيرة (LLM) التي طورتها Meta وأطلقتها كمصدر مفتوح، وهي تتكون من نماذج توليد نص مسبقة التدريب ومتخصصة بحجم يتراوح من 7 مليارات إلى 70 مليار معلمة. على مستوى العمارة، Llama2 هو نموذج لغوي تراجعي تلقائي يستخدم معمارية محول محسنة. الإصدارات المعدلة تستخدم التدريب الدقيق تحت الإشراف (SFT) والتعلم التقويمي مع تعزيزات من البشر (RLHF) لتوافق تفضيلات البشر فيما يتعلق بالفائدة والأمان. أظهر Llama2 أداءً أفضل بكثير من سلسلة Llama في العديد من المجموعات الأكاديمية، مما قدم إلهامًا لتصميم وتطوير العديد من النماذج الأخرى."
|
|
1993
|
-
},
|
|
1994
2006
|
"llama-3.1-70b-versatile": {
|
|
1995
2007
|
"description": "Llama 3.1 70B يوفر قدرة استدلال ذكائي أقوى، مناسب للتطبيقات المعقدة، يدعم معالجة حسابية ضخمة ويضمن الكفاءة والدقة."
|
|
1996
2008
|
},
|
|
@@ -2018,9 +2030,6 @@
|
|
|
2018
2030
|
"llama-3.3-70b": {
|
|
2019
2031
|
"description": "Llama 3.3 70B: نموذج Llama متوسط إلى كبير الحجم، يوازن بين قدرات الاستدلال والكفاءة الإنتاجية."
|
|
2020
2032
|
},
|
|
2021
|
-
"llama-3.3-70b-instruct": {
|
|
2022
|
-
"description": "Llama 3.3 هو النموذج الأكثر تقدمًا في سلسلة Llama، وهو نموذج لغوي مفتوح المصدر متعدد اللغات، يوفر تجربة أداء تنافس نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسين فائدته وأمانه من خلال التعديل الدقيق تحت الإشراف (SFT) والتعلم المعزز من خلال التغذية الراجعة البشرية (RLHF). تم تحسين نسخة التعديل الخاصة به لتكون مثالية للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
|
2023
|
-
},
|
|
2024
2033
|
"llama-3.3-70b-versatile": {
|
|
2025
2034
|
"description": "ميتّا لاما 3.3 هو نموذج لغة كبير متعدد اللغات (LLM) يضم 70 مليار (إدخال نص/إخراج نص) من النموذج المدرب مسبقًا والمعدل وفقًا للتعليمات. تم تحسين نموذج لاما 3.3 المعدل وفقًا للتعليمات للاستخدامات الحوارية متعددة اللغات ويتفوق على العديد من النماذج المتاحة مفتوحة المصدر والمغلقة في المعايير الصناعية الشائعة."
|
|
2026
2035
|
},
|
|
@@ -2082,7 +2091,7 @@
|
|
|
2082
2091
|
"description": "سبارك ماكس 32K مزود بقدرة معالجة سياق كبيرة، مع فهم أقوى للسياق وقدرة على الاستدلال المنطقي، يدعم إدخال نصوص تصل إلى 32K توكن، مما يجعله مناسبًا لقراءة الوثائق الطويلة، والأسئلة والأجوبة المعرفية الخاصة، وغيرها من السيناريوهات."
|
|
2083
2092
|
},
|
|
2084
2093
|
"megrez-3b-instruct": {
|
|
2085
|
-
"description": "Megrez
|
|
2094
|
+
"description": "Megrez 3B Instruct هو نموذج صغير الحجم وعالي الكفاءة أطلقته شركة Wuwen Xinqiong."
|
|
2086
2095
|
},
|
|
2087
2096
|
"meta-llama-3-70b-instruct": {
|
|
2088
2097
|
"description": "نموذج قوي بحجم 70 مليار معلمة يتفوق في التفكير، والترميز، وتطبيقات اللغة الواسعة."
|
|
@@ -2639,6 +2648,12 @@
|
|
|
2639
2648
|
"pro-128k": {
|
|
2640
2649
|
"description": "سبارك برو 128K مزود بقدرة معالجة سياق كبيرة جدًا، قادر على معالجة ما يصل إلى 128K من معلومات السياق، مما يجعله مناسبًا بشكل خاص للتحليل الشامل ومعالجة الروابط المنطقية طويلة الأمد في المحتوى الطويل، ويمكنه تقديم منطق سلس ومتسق ودعم متنوع للاقتباسات في الاتصالات النصية المعقدة."
|
|
2641
2650
|
},
|
|
2651
|
+
"pro-deepseek-r1": {
|
|
2652
|
+
"description": "نموذج مخصص لخدمات المؤسسات، يشمل خدمات متزامنة."
|
|
2653
|
+
},
|
|
2654
|
+
"pro-deepseek-v3": {
|
|
2655
|
+
"description": "نموذج مخصص لخدمات المؤسسات، يشمل خدمات متزامنة."
|
|
2656
|
+
},
|
|
2642
2657
|
"qvq-72b-preview": {
|
|
2643
2658
|
"description": "نموذج QVQ هو نموذج بحث تجريبي تم تطويره بواسطة فريق Qwen، يركز على تعزيز قدرات الاستدلال البصري، خاصة في مجال الاستدلال الرياضي."
|
|
2644
2659
|
},
|
|
@@ -2774,12 +2789,6 @@
|
|
|
2774
2789
|
"qwen2": {
|
|
2775
2790
|
"description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
|
|
2776
2791
|
},
|
|
2777
|
-
"qwen2-72b-instruct": {
|
|
2778
|
-
"description": "Qwen2 هو سلسلة نماذج لغوية كبيرة جديدة تم إطلاقها من قبل فريق Qwen. تعتمد هذه النماذج على هندسة Transformer وتستخدم دالة التنشيط SwiGLU، وتحيز الانتباه QKV (attention QKV bias)، وانتباه الاستفسار الجماعي (group query attention)، وخلط انتباه النافذة المتزحلقة والانتباه الكامل (mixture of sliding window attention and full attention). بالإضافة إلى ذلك، قام فريق Qwen بتحسين مجزئ يتكيف مع العديد من اللغات الطبيعية والأكواد."
|
|
2779
|
-
},
|
|
2780
|
-
"qwen2-7b-instruct": {
|
|
2781
|
-
"description": "Qwen2 هو سلسلة نماذج لغوية كبيرة جديدة تم طرحها من قبل فريق Qwen. يعتمد هذا النموذج على هندسة Transformer، ويستخدم دالة التنشيط SwiGLU، وتحيز QKV للانتباه (attention QKV bias)، وانتباه الاستفسار الجماعي (group query attention)، وخلط انتباه النافذة المتزحلقة والانتباه الكامل. بالإضافة إلى ذلك، قام فريق Qwen بتحسين المقطّع الذي يتكيف مع العديد من اللغات الطبيعية والأكواد."
|
|
2782
|
-
},
|
|
2783
2792
|
"qwen2.5": {
|
|
2784
2793
|
"description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
|
|
2785
2794
|
},
|
|
@@ -2918,6 +2927,12 @@
|
|
|
2918
2927
|
"qwen3-next-80b-a3b-thinking": {
|
|
2919
2928
|
"description": "نموذج مفتوح المصدر من الجيل الجديد لوضع التفكير مبني على Qwen3، يتميز بتحسين في الالتزام بالتعليمات مقارنة بالإصدار السابق (Tongyi Qianwen 3-235B-A22B-Thinking-2507)، مع ردود ملخصة وأكثر إيجازًا من النموذج."
|
|
2920
2929
|
},
|
|
2930
|
+
"qwen3-vl-235b-a22b-instruct": {
|
|
2931
|
+
"description": "Qwen3 VL 235B A22B Instruct هو نموذج متعدد الوسائط أطلقته Tongyi Qianwen، يدعم الفهم البصري والاستدلال."
|
|
2932
|
+
},
|
|
2933
|
+
"qwen3-vl-235b-a22b-thinking": {
|
|
2934
|
+
"description": "Qwen3 VL 235B A22B Thinking هو نموذج استدلال متعدد الوسائط أطلقته Tongyi Qianwen، يدعم الفهم البصري والاستدلال."
|
|
2935
|
+
},
|
|
2921
2936
|
"qwen3-vl-plus": {
|
|
2922
2937
|
"description": "Tongyi Qianwen VL هو نموذج توليد نصوص يمتلك قدرات فهم بصرية (صور)، لا يقتصر على التعرف الضوئي على الحروف (OCR)، بل يمكنه أيضًا التلخيص والاستدلال، مثل استخراج خصائص من صور المنتجات، وحل المسائل بناءً على صور التمارين."
|
|
2923
2938
|
},
|
|
@@ -3035,6 +3050,9 @@
|
|
|
3035
3050
|
"step-r1-v-mini": {
|
|
3036
3051
|
"description": "هذا النموذج هو نموذج استدلال كبير يتمتع بقدرة قوية على فهم الصور، يمكنه معالجة المعلومات النصية والصورية، ويخرج نصوصًا بعد تفكير عميق. يظهر هذا النموذج أداءً بارزًا في مجال الاستدلال البصري، كما يمتلك قدرات رياضية، برمجية، ونصية من الدرجة الأولى. طول السياق هو 100k."
|
|
3037
3052
|
},
|
|
3053
|
+
"step3": {
|
|
3054
|
+
"description": "Step3 هو نموذج متعدد الوسائط أطلقته Jiexue Xingchen، يتمتع بقدرات قوية في الفهم البصري."
|
|
3055
|
+
},
|
|
3038
3056
|
"stepfun-ai/step3": {
|
|
3039
3057
|
"description": "Step3 هو نموذج استدلال متعدد الوسائط متقدم أصدرته شركة 阶跃星辰 (StepFun). بُني على بنية مزيج الخبراء (MoE) التي تضم 321 مليار معلمة إجمالية و38 مليار معلمة تنشيط. صُمم النموذج بنهج من الطرف إلى الطرف ليقلل تكلفة فك الترميز، مع تقديم أداء رائد في الاستدلال البصري-اللغوي. من خلال التصميم التعاوني لآلية انتباه تفكيك متعدد المصفوفات (MFA) وفصل الانتباه عن شبكة التغذية الأمامية (AFD)، يحافظ Step3 على كفاءة ممتازة على كل من المسرعات الرائدة والمسرعات منخفضة التكلفة. في مرحلة ما قبل التدريب عالج Step3 أكثر من 20 تريليون توكن نصي و4 تريليون توكن مختلط نص-صورة، مغطياً أكثر من عشر لغات. حقق النموذج أداءً متقدماً بين نماذج المصدر المفتوح في عدة معايير قياسية تشمل الرياضيات والبرمجة والمهام متعددة الوسائط."
|
|
3040
3058
|
},
|
|
@@ -3158,9 +3176,6 @@
|
|
|
3158
3176
|
"xai/grok-4": {
|
|
3159
3177
|
"description": "أحدث وأعظم نموذج رائد من xAI، يقدم أداءً لا مثيل له في اللغة الطبيعية، الرياضيات، والاستدلال — الخيار المثالي متعدد الاستخدامات."
|
|
3160
3178
|
},
|
|
3161
|
-
"yi-1.5-34b-chat": {
|
|
3162
|
-
"description": "يي-1.5 هو إصدار مُحدّث من يي. تم تدريبه بشكل مُسبق باستخدام مكتبة بيانات عالية الجودة تحتوي على 500 مليار علامة (Token) على يي، وتم تحسينه أيضًا باستخدام 3 ملايين مثال متنوع للتدريب الدقيق."
|
|
3163
|
-
},
|
|
3164
3179
|
"yi-large": {
|
|
3165
3180
|
"description": "نموذج جديد بمليارات المعلمات، يوفر قدرة قوية على الإجابة وتوليد النصوص."
|
|
3166
3181
|
},
|
|
@@ -284,11 +284,19 @@
|
|
|
284
284
|
"placeholder": "Моля, въведете идентификатор на модела, например gpt-4o или claude-3.5-sonnet",
|
|
285
285
|
"title": "ID на модела"
|
|
286
286
|
},
|
|
287
|
+
"imageOutput": {
|
|
288
|
+
"extra": "Тази конфигурация ще активира само способността на модела да генерира изображения. Конкретният резултат зависи изцяло от самия модел. Моля, тествайте сами дали моделът има способност за генериране на изображения.",
|
|
289
|
+
"title": "Поддържа генериране на изображения"
|
|
290
|
+
},
|
|
287
291
|
"modalTitle": "Конфигурация на персонализиран модел",
|
|
288
292
|
"reasoning": {
|
|
289
293
|
"extra": "Тази конфигурация ще активира само способността на модела за дълбоко мислене, конкретният ефект зависи изцяло от самия модел, моля, тествайте сами дали моделът притежава налична способност за дълбоко мислене",
|
|
290
294
|
"title": "Поддръжка на дълбоко мислене"
|
|
291
295
|
},
|
|
296
|
+
"search": {
|
|
297
|
+
"extra": "Тази конфигурация ще активира само възможността за онлайн търсене чрез вградения търсач на модела. Дали се поддържа вграден търсач зависи от самия модел. Моля, тествайте сами дали тази функция е налична.",
|
|
298
|
+
"title": "Поддържа онлайн търсене"
|
|
299
|
+
},
|
|
292
300
|
"tokens": {
|
|
293
301
|
"extra": "Настройте максималния брой токени, поддържани от модела",
|
|
294
302
|
"title": "Максимален контекстуален прозорец",
|
|
@@ -309,6 +317,10 @@
|
|
|
309
317
|
"placeholder": "Моля, изберете тип модел",
|
|
310
318
|
"title": "Тип модел"
|
|
311
319
|
},
|
|
320
|
+
"video": {
|
|
321
|
+
"extra": "Тази конфигурация ще активира само настройките за разпознаване на видео в приложението. Дали се поддържа разпознаване зависи изцяло от самия модел. Моля, тествайте сами дали моделът поддържа разпознаване на видео.",
|
|
322
|
+
"title": "Поддържа разпознаване на видео"
|
|
323
|
+
},
|
|
312
324
|
"vision": {
|
|
313
325
|
"extra": "Тази конфигурация ще активира само конфигурацията за качване на изображения в приложението, дали поддържа разпознаване зависи изцяло от самия модел, моля, тествайте наличността на визуалната разпознаваемост на този модел.",
|
|
314
326
|
"title": "Поддръжка на визуално разпознаване"
|
|
@@ -704,6 +704,9 @@
|
|
|
704
704
|
"azure-DeepSeek-R1-0528": {
|
|
705
705
|
"description": "Доставен от Microsoft; моделът DeepSeek R1 е получил малка версия ъпгрейд, текущата версия е DeepSeek-R1-0528. В най-новата актуализация DeepSeek R1 значително подобрява дълбочината на разсъждение и способността за извод чрез увеличаване на изчислителните ресурси и въвеждане на алгоритмична оптимизация в следтренировъчния етап. Този модел се представя отлично в множество бенчмаркове като математика, програмиране и обща логика, като общата му производителност вече е близка до водещи модели като O3 и Gemini 2.5 Pro."
|
|
706
706
|
},
|
|
707
|
+
"baichuan-m2-32b": {
|
|
708
|
+
"description": "Baichuan M2 32B е хибриден експертен модел, разработен от Baichuan Intelligence, с мощни способности за извеждане на заключения."
|
|
709
|
+
},
|
|
707
710
|
"baichuan/baichuan2-13b-chat": {
|
|
708
711
|
"description": "Baichuan-13B е отворен, комерсиален голям езиков модел, разработен от Baichuan Intelligence, с 13 милиарда параметри, който постига най-добрите резултати в своя размер на авторитетни бенчмаркове на китайски и английски."
|
|
709
712
|
},
|
|
@@ -728,12 +731,6 @@
|
|
|
728
731
|
"charglm-4": {
|
|
729
732
|
"description": "CharGLM-4 е проектиран за ролеви игри и емоционално придружаване, поддържащ дългосрочна памет и персонализирани диалози, с широко приложение."
|
|
730
733
|
},
|
|
731
|
-
"chatglm3": {
|
|
732
|
-
"description": "ChatGLM3 е закритоизточен модел, обявен от интелигентната платформа AI и лабораторията KEG на Университета в Тайхуа. Той е претрениран с голям обем на китайски и английски идентификатори и е подложен на тренировка за съответствие с хуманите предпочитания. Сравнено с първата версия на модела, ChatGLM3 постига подобрения от 16%, 36% и 280% в MMLU, C-Eval и GSM8K съответно, и е класифициран на първо място в китайския рейтинг C-Eval. Този модел е подходящ за сценарии, които изискват високи стандарти за знания, умения за разсъждаване и креативност, като например създаване на рекламни текстове, писане на романи, научно-популярно писане и генериране на код."
|
|
733
|
-
},
|
|
734
|
-
"chatglm3-6b-base": {
|
|
735
|
-
"description": "ChatGLM3-6b-base е последната генерация на редицата ChatGLM, разработена от компанията Zhipu, с 6 милиарда параметри и е открит източник."
|
|
736
|
-
},
|
|
737
734
|
"chatgpt-4o-latest": {
|
|
738
735
|
"description": "ChatGPT-4o е динамичен модел, който се актуализира в реално време, за да поддържа най-новата версия. Той комбинира мощно разбиране на езика и генериране на текст, подходящ за мащабни приложения, включително обслужване на клиенти, образование и техническа поддръжка."
|
|
739
736
|
},
|
|
@@ -938,6 +935,9 @@
|
|
|
938
935
|
"deepseek-ai/DeepSeek-V3.1-Terminus": {
|
|
939
936
|
"description": "DeepSeek-V3.1-Terminus е обновена версия на модела V3.1, пусната от DeepSeek, позиционирана като хибриден интелигентен голям езиков модел. Тази актуализация запазва оригиналните възможности на модела, като се фокусира върху отстраняване на проблеми, посочени от потребителите, и подобряване на стабилността. Значително е подобрена езиковата последователност, намалено е смесването на китайски и английски и появата на аномални символи. Моделът интегрира „режим на мислене“ и „режим без мислене“, като потребителите могат гъвкаво да превключват между тях чрез чат шаблони за различни задачи. Като важна оптимизация, V3.1-Terminus подобрява производителността на кодовия агент и търсещия агент, което ги прави по-надеждни при извикване на инструменти и изпълнение на многократни сложни задачи."
|
|
940
937
|
},
|
|
938
|
+
"deepseek-ai/DeepSeek-V3.2-Exp": {
|
|
939
|
+
"description": "Моделът DeepSeek V3.2 Exp е с хибридна архитектура за извеждане на заключения и поддържа както мисловен, така и немисловен режим."
|
|
940
|
+
},
|
|
941
941
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
|
942
942
|
"description": "DeepSeek 67B е напреднал модел, обучен за диалози с висока сложност."
|
|
943
943
|
},
|
|
@@ -1031,6 +1031,9 @@
|
|
|
1031
1031
|
"deepseek-v3.1": {
|
|
1032
1032
|
"description": "DeepSeek-V3.1 е новият хибриден модел за разсъждение на DeepSeek, който поддържа два режима на разсъждение: мислене и немислене, с по-висока ефективност на мислене в сравнение с DeepSeek-R1-0528. След оптимизация чрез пост-тренировка, използването на агентски инструменти и изпълнението на задачи от интелигентни агенти са значително подобрени. Поддържа контекстен прозорец до 128k и максимална дължина на изхода до 64k токена."
|
|
1033
1033
|
},
|
|
1034
|
+
"deepseek-v3.1-terminus": {
|
|
1035
|
+
"description": "DeepSeek-V3.1-Terminus е оптимизирана версия на голям езиков модел от DeepSeek, създаден специално за крайни устройства."
|
|
1036
|
+
},
|
|
1034
1037
|
"deepseek-v3.1:671b": {
|
|
1035
1038
|
"description": "DeepSeek V3.1: следващо поколение модел за разсъждение, подобряващ способностите за сложни разсъждения и свързано мислене, подходящ за задачи, изискващи задълбочен анализ."
|
|
1036
1039
|
},
|
|
@@ -1193,6 +1196,12 @@
|
|
|
1193
1196
|
"ernie-4.0-turbo-8k-preview": {
|
|
1194
1197
|
"description": "Флагманският голям езиков модел, разработен от Baidu, с отлични общи резултати, широко приложим в сложни задачи в различни области; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията. В сравнение с ERNIE 4.0, показва по-добри резултати."
|
|
1195
1198
|
},
|
|
1199
|
+
"ernie-4.5-21b-a3b": {
|
|
1200
|
+
"description": "ERNIE 4.5 21B A3B е хибриден експертен модел, разработен от Baidu Wenxin, с мощни способности за извеждане на заключения и поддръжка на множество езици."
|
|
1201
|
+
},
|
|
1202
|
+
"ernie-4.5-300b-a47b": {
|
|
1203
|
+
"description": "ERNIE 4.5 300B A47B е мащабен хибриден експертен модел от Baidu Wenxin, отличаващ се с изключителни способности за извеждане на заключения."
|
|
1204
|
+
},
|
|
1196
1205
|
"ernie-4.5-8k-preview": {
|
|
1197
1206
|
"description": "Моделът Ernie 4.5 е ново поколение оригинален много модален основен модел, разработен от Baidu, който постига съвместна оптимизация чрез многомодално моделиране, с отлични способности за разбиране на много модалности; предлага усъвършенствани езикови способности, с подобрено разбиране, генериране, логика и памет, значително подобрени способности за избягване на халюцинации, логическо разсъждение и код."
|
|
1198
1207
|
},
|
|
@@ -1449,7 +1458,7 @@
|
|
|
1449
1458
|
"description": "GLM-4-0520 е най-новата версия на модела, проектирана за високо сложни и разнообразни задачи, с отлични резултати."
|
|
1450
1459
|
},
|
|
1451
1460
|
"glm-4-9b-chat": {
|
|
1452
|
-
"description": "GLM-4-9B-Chat показва висока производителност в
|
|
1461
|
+
"description": "GLM-4-9B-Chat показва висока производителност в области като семантика, математика, логическо мислене, програмиране и общи знания. Поддържа също така уеб браузване, изпълнение на код, извикване на персонализирани инструменти и извеждане на заключения от дълги текстове. Поддържа 26 езика, включително японски, корейски и немски."
|
|
1453
1462
|
},
|
|
1454
1463
|
"glm-4-air": {
|
|
1455
1464
|
"description": "GLM-4-Air е икономичен вариант, с производителност близка до GLM-4, предлагаща бързина и достъпна цена."
|
|
@@ -1749,7 +1758,10 @@
|
|
|
1749
1758
|
"description": "По-икономична версия на GPT Image 1, с вградена поддръжка за вход от текст и изображение и генериране на изходно изображение."
|
|
1750
1759
|
},
|
|
1751
1760
|
"gpt-oss-120b": {
|
|
1752
|
-
"description": "GPT-OSS-120B
|
|
1761
|
+
"description": "Този модел изисква заявка за достъп. GPT-OSS-120B е отворен голям езиков модел, разработен от OpenAI, с мощни способности за генериране на текст."
|
|
1762
|
+
},
|
|
1763
|
+
"gpt-oss-20b": {
|
|
1764
|
+
"description": "Този модел изисква заявка за достъп. GPT-OSS-20B е отворен среден езиков модел, разработен от OpenAI, с ефективни способности за генериране на текст."
|
|
1753
1765
|
},
|
|
1754
1766
|
"gpt-oss:120b": {
|
|
1755
1767
|
"description": "GPT-OSS 120B е голям отворен езиков модел, публикуван от OpenAI, използващ технологията за квантуване MXFP4, предназначен за флагмански клас модели. Изисква многократни GPU или високопроизводителна работна станция за работа, с изключителни възможности в сложни разсъждения, генериране на код и многоезична обработка, поддържайки усъвършенствано извикване на функции и интеграция на инструменти."
|
|
@@ -1967,6 +1979,9 @@
|
|
|
1967
1979
|
"kimi-k2-0905-preview": {
|
|
1968
1980
|
"description": "Моделът kimi-k2-0905-preview има контекстна дължина от 256k, с по-силни способности за агентно кодиране, по-изразителна естетика и практичност на фронтенд кода, както и по-добро разбиране на контекста."
|
|
1969
1981
|
},
|
|
1982
|
+
"kimi-k2-instruct": {
|
|
1983
|
+
"description": "Kimi K2 Instruct е голям езиков модел, разработен от Moonshot AI, с изключителна способност за обработка на дълъг контекст."
|
|
1984
|
+
},
|
|
1970
1985
|
"kimi-k2-turbo-preview": {
|
|
1971
1986
|
"description": "Kimi-k2 е базов модел с MoE архитектура, който притежава изключителни възможности за работа с код и агентни функции. Общият брой параметри е 1T, а активните параметри са 32B. В бенчмарковете за основни категории като общо знание и разсъждение, програмиране, математика и агентни задачи, моделът K2 превъзхожда другите водещи отворени модели."
|
|
1972
1987
|
},
|
|
@@ -1988,9 +2003,6 @@
|
|
|
1988
2003
|
"lite": {
|
|
1989
2004
|
"description": "Spark Lite е лек модел на голям език, с изключително ниска латентност и ефективна обработка, напълно безплатен и отворен, поддържащ функции за онлайн търсене в реално време. Неговите бързи отговори го правят отличен за приложения на нискомощни устройства и фина настройка на модели, предоставяйки на потребителите отлична рентабилност и интелигентно изживяване, особено в контекста на въпроси и отговори, генериране на съдържание и търсене."
|
|
1990
2005
|
},
|
|
1991
|
-
"llama-2-7b-chat": {
|
|
1992
|
-
"description": "Llama2 е серия от големи модели за език (LLM), разработени и с отворен код от Meta. Това е набор от генеративни текстови модели с различен размер, от 7 милиарда до 70 милиарда параметри, които са претренирани и майсторски оптимизирани. Архитектурно, Llama2 е автоматично регресивен езиков модел, използващ оптимизирана трансформаторна архитектура. Подобренията включват супервизирано майсторско трениране (SFT) и подкрепено с учене с награди (RLHF) за подреждане на предпочтенията на хората за полезност и безопасност. Llama2 демонстрира значително подобрени резултати върху множество академични набори от данни, което предоставя възможности за дизайн и развитие на много други модели."
|
|
1993
|
-
},
|
|
1994
2006
|
"llama-3.1-70b-versatile": {
|
|
1995
2007
|
"description": "Llama 3.1 70B предлага по-мощни способности за разсъждение на AI, подходящи за сложни приложения, поддържащи множество изчислителни обработки и осигуряващи ефективност и точност."
|
|
1996
2008
|
},
|
|
@@ -2018,9 +2030,6 @@
|
|
|
2018
2030
|
"llama-3.3-70b": {
|
|
2019
2031
|
"description": "Llama 3.3 70B: средно до голямо Llama решение, съчетаващо логическо разсъждение и висока производителност."
|
|
2020
2032
|
},
|
|
2021
|
-
"llama-3.3-70b-instruct": {
|
|
2022
|
-
"description": "Llama 3.3 е най-напредналият многоезичен отворен езиков модел от серията Llama, който предлага производителност, сравнима с 405B моделите, на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия, оптимизирана за инструкции, е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023."
|
|
2023
|
-
},
|
|
2024
2033
|
"llama-3.3-70b-versatile": {
|
|
2025
2034
|
"description": "Meta Llama 3.3 е многоезичен модел за генерация на език (LLM) с 70B (вход/изход на текст), който е предварително обучен и е пригоден за указания. Чистият текстов модел на Llama 3.3 е оптимизиран за многоезични диалогови случаи и надминава много налични отворени и затворени чат модели на стандартни индустриални тестове."
|
|
2026
2035
|
},
|
|
@@ -2082,7 +2091,7 @@
|
|
|
2082
2091
|
"description": "Spark Max 32K е конфигуриран с голяма способност за обработка на контекст, с по-силно разбиране на контекста и логическо разсъждение, поддържащ текстови входове до 32K токена, подходящ за четене на дълги документи, частни въпроси и отговори и други сценарии."
|
|
2083
2092
|
},
|
|
2084
2093
|
"megrez-3b-instruct": {
|
|
2085
|
-
"description": "Megrez
|
|
2094
|
+
"description": "Megrez 3B Instruct е ефективен модел с малък брой параметри, разработен от Wuwen Xinqiong."
|
|
2086
2095
|
},
|
|
2087
2096
|
"meta-llama-3-70b-instruct": {
|
|
2088
2097
|
"description": "Мощен модел с 70 милиарда параметри, отличаващ се в разсъждения, кодиране и широки езикови приложения."
|
|
@@ -2639,6 +2648,12 @@
|
|
|
2639
2648
|
"pro-128k": {
|
|
2640
2649
|
"description": "Spark Pro 128K е конфигуриран с изключителна способност за обработка на контекст, способен да обработва до 128K контекстна информация, особено подходящ за дълги текстове, изискващи цялостен анализ и дългосрочна логическа свързаност, предоставяйки гладка и последователна логика и разнообразна поддръжка на цитати в сложни текстови комуникации."
|
|
2641
2650
|
},
|
|
2651
|
+
"pro-deepseek-r1": {
|
|
2652
|
+
"description": "Специализиран модел за корпоративни услуги, включващ паралелна обработка."
|
|
2653
|
+
},
|
|
2654
|
+
"pro-deepseek-v3": {
|
|
2655
|
+
"description": "Специализиран модел за корпоративни услуги, включващ паралелна обработка."
|
|
2656
|
+
},
|
|
2642
2657
|
"qvq-72b-preview": {
|
|
2643
2658
|
"description": "QVQ моделът е експериментален изследователски модел, разработен от екипа на Qwen, фокусиран върху повишаване на визуалните способности за разсъждение, особено в областта на математическото разсъждение."
|
|
2644
2659
|
},
|
|
@@ -2774,12 +2789,6 @@
|
|
|
2774
2789
|
"qwen2": {
|
|
2775
2790
|
"description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
|
|
2776
2791
|
},
|
|
2777
|
-
"qwen2-72b-instruct": {
|
|
2778
|
-
"description": "Qwen2 е новият серий на големи модели за език, предложен от екипа Qwen. Той се основава на архитектурата Transformer и използва SwiGLU активационна функция, внимание QKV смещение (attention QKV bias), групово запитване на внимание (group query attention), смесени техники за внимание с превъртващи се прозорци (mixture of sliding window attention) и пълно внимание. Освен това, екипът Qwen също е подобрал токенизатора, който поддържа множество езици и код."
|
|
2779
|
-
},
|
|
2780
|
-
"qwen2-7b-instruct": {
|
|
2781
|
-
"description": "Qwen2 е новият серийен модел за големи езици, представен от екипа Qwen. Той се основава на архитектурата Transformer и използва SwiGLU активационна функция, внимание с QKV смещение (attention QKV bias), групово внимание за заявки (group query attention), смесени техники за обръщане на внимание с превъртващи се прозорци (mixture of sliding window attention) и пълно внимание. Освен това, екипът Qwen е подобрил токенизатора, който поддържа множество езици и код."
|
|
2782
|
-
},
|
|
2783
2792
|
"qwen2.5": {
|
|
2784
2793
|
"description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
|
|
2785
2794
|
},
|
|
@@ -2918,6 +2927,12 @@
|
|
|
2918
2927
|
"qwen3-next-80b-a3b-thinking": {
|
|
2919
2928
|
"description": "Базирано на Qwen3, ново поколение отворен модел с мисловен режим, който подобрява спазването на инструкции и предоставя по-кратки и точни обобщения в сравнение с предишната версия (Tongyi Qianwen 3-235B-A22B-Thinking-2507)."
|
|
2920
2929
|
},
|
|
2930
|
+
"qwen3-vl-235b-a22b-instruct": {
|
|
2931
|
+
"description": "Qwen3 VL 235B A22B Instruct е мултимодален модел, разработен от Tongyi Qianwen, който поддържа визуално разбиране и извеждане на заключения."
|
|
2932
|
+
},
|
|
2933
|
+
"qwen3-vl-235b-a22b-thinking": {
|
|
2934
|
+
"description": "Qwen3 VL 235B A22B Thinking е мултимодален модел за извеждане на заключения, разработен от Tongyi Qianwen, с поддръжка на визуално разбиране и логическо мислене."
|
|
2935
|
+
},
|
|
2921
2936
|
"qwen3-vl-plus": {
|
|
2922
2937
|
"description": "Tongyi Qianwen VL е текстов генеративен модел с визуални (изображения) разбирания, който не само може да извършва OCR (разпознаване на текст в изображения), но и да обобщава и прави изводи, например извличане на атрибути от снимки на продукти или решаване на задачи по математика от изображения."
|
|
2923
2938
|
},
|
|
@@ -3035,6 +3050,9 @@
|
|
|
3035
3050
|
"step-r1-v-mini": {
|
|
3036
3051
|
"description": "Този модел е мощен модел за разсъждение с отлични способности за разбиране на изображения, способен да обработва информация от изображения и текст, и след дълбочинно разсъждение да генерира текстово съдържание. Моделът показва изключителни резултати в областта на визуалните разсъждения, като същевременно притежава първокласни способности в математиката, кода и текстовите разсъждения. Дължината на контекста е 100k."
|
|
3037
3052
|
},
|
|
3053
|
+
"step3": {
|
|
3054
|
+
"description": "Step3 е мултимодален модел, разработен от StepStar, с мощни способности за визуално разбиране."
|
|
3055
|
+
},
|
|
3038
3056
|
"stepfun-ai/step3": {
|
|
3039
3057
|
"description": "Step3 е авангарден мултимодален модел за разсъждение, публикуван от StepFun (阶跃星辰). Той е изграден върху архитектура на смес от експерти (MoE) с общо 321 милиарда параметъра и 38 милиарда активни параметъра. Моделът е с енд-ту-енд дизайн, целящ минимизиране на разходите за декодиране, като същевременно предоставя водещи резултати във визуално-лингвистичното разсъждение. Чрез кооперативния дизайн на многоматрично факторизирано внимание (MFA) и декуплиране на внимание и FFN (AFD), Step3 поддържа отлична ефективност както на флагмански, така и на по-бюджетни ускорители. По време на предварителното обучение Step3 е обработил над 20 трилиона текстови токена и 4 трилиона смесени текстово-изображенчески токена, обхващайки повече от десет езика. Моделът постига водещи резултати сред отворените модели в множество бенчмаркове, включително математика, код и мултимодални задачи."
|
|
3040
3058
|
},
|
|
@@ -3158,9 +3176,6 @@
|
|
|
3158
3176
|
"xai/grok-4": {
|
|
3159
3177
|
"description": "Най-новият и най-велик флагмански модел на xAI, предоставящ ненадмината производителност в естествен език, математика и разсъждения — перфектният универсален играч."
|
|
3160
3178
|
},
|
|
3161
|
-
"yi-1.5-34b-chat": {
|
|
3162
|
-
"description": "Yi-1.5 е обновена версия на Yi. Тя използва висококачествен корпус от 500B токена за продължителна предварителна обучение на Yi и е майсторски подобрявана с 3M разнообразни примера за fino-tuning."
|
|
3163
|
-
},
|
|
3164
3179
|
"yi-large": {
|
|
3165
3180
|
"description": "Новият модел с хиляда милиарда параметри предлага изключителни способности за отговори и генериране на текст."
|
|
3166
3181
|
},
|
|
@@ -284,11 +284,19 @@
|
|
|
284
284
|
"placeholder": "Bitte Modell-ID eingeben, z. B. gpt-4o oder claude-3.5-sonnet",
|
|
285
285
|
"title": "Modell-ID"
|
|
286
286
|
},
|
|
287
|
+
"imageOutput": {
|
|
288
|
+
"extra": "Diese Einstellung aktiviert lediglich die Fähigkeit des Modells zur Bildgenerierung. Die tatsächliche Leistung hängt vollständig vom Modell selbst ab. Bitte testen Sie selbst, ob das Modell über eine nutzbare Bildgenerierungsfunktion verfügt.",
|
|
289
|
+
"title": "Bildgenerierung unterstützen"
|
|
290
|
+
},
|
|
287
291
|
"modalTitle": "Benutzerdefinierte Modellkonfiguration",
|
|
288
292
|
"reasoning": {
|
|
289
293
|
"extra": "Diese Konfiguration aktiviert nur die Fähigkeit des Modells zu tiefem Denken. Die tatsächlichen Ergebnisse hängen vollständig vom Modell selbst ab. Bitte testen Sie selbst, ob das Modell über die Fähigkeit zum tiefen Denken verfügt.",
|
|
290
294
|
"title": "Unterstützung für tiefes Denken"
|
|
291
295
|
},
|
|
296
|
+
"search": {
|
|
297
|
+
"extra": "Diese Einstellung aktiviert lediglich die integrierte Internetsuchfunktion des Modells. Ob eine integrierte Suchmaschine unterstützt wird, hängt vom Modell selbst ab. Bitte testen Sie selbst, ob die Suchfunktion des Modells verfügbar ist.",
|
|
298
|
+
"title": "Internetsuche unterstützen"
|
|
299
|
+
},
|
|
292
300
|
"tokens": {
|
|
293
301
|
"extra": "Maximale Token-Anzahl für das Modell festlegen",
|
|
294
302
|
"title": "Maximales Kontextfenster",
|
|
@@ -309,6 +317,10 @@
|
|
|
309
317
|
"placeholder": "Bitte Modelltyp auswählen",
|
|
310
318
|
"title": "Modelltyp"
|
|
311
319
|
},
|
|
320
|
+
"video": {
|
|
321
|
+
"extra": "Diese Einstellung aktiviert lediglich die Videorekognition innerhalb der Anwendung. Ob die Erkennung unterstützt wird, hängt vollständig vom Modell selbst ab. Bitte testen Sie selbst, ob das Modell über eine nutzbare Videorekognitionsfunktion verfügt.",
|
|
322
|
+
"title": "Videoerkennung unterstützen"
|
|
323
|
+
},
|
|
312
324
|
"vision": {
|
|
313
325
|
"extra": "Diese Konfiguration aktiviert nur die Bild-Upload-Funktionalität in der Anwendung. Ob die Erkennung unterstützt wird, hängt vollständig vom Modell selbst ab. Bitte testen Sie die Verwendbarkeit der visuellen Erkennungsfähigkeit des Modells selbst.",
|
|
314
326
|
"title": "Visuelle Erkennung unterstützen"
|