@lobehub/chat 1.129.1 → 1.129.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. package/CHANGELOG.md +33 -0
  2. package/changelog/v1.json +12 -0
  3. package/locales/ar/models.json +248 -23
  4. package/locales/ar/providers.json +3 -0
  5. package/locales/bg-BG/models.json +248 -23
  6. package/locales/bg-BG/providers.json +3 -0
  7. package/locales/de-DE/models.json +248 -23
  8. package/locales/de-DE/providers.json +3 -0
  9. package/locales/en-US/models.json +248 -23
  10. package/locales/en-US/providers.json +3 -0
  11. package/locales/es-ES/models.json +248 -23
  12. package/locales/es-ES/providers.json +3 -0
  13. package/locales/fa-IR/models.json +248 -23
  14. package/locales/fa-IR/providers.json +3 -0
  15. package/locales/fr-FR/models.json +248 -23
  16. package/locales/fr-FR/providers.json +3 -0
  17. package/locales/it-IT/models.json +248 -23
  18. package/locales/it-IT/providers.json +3 -0
  19. package/locales/ja-JP/models.json +248 -23
  20. package/locales/ja-JP/providers.json +3 -0
  21. package/locales/ko-KR/models.json +248 -23
  22. package/locales/ko-KR/providers.json +3 -0
  23. package/locales/nl-NL/models.json +248 -23
  24. package/locales/nl-NL/providers.json +3 -0
  25. package/locales/pl-PL/models.json +248 -23
  26. package/locales/pl-PL/providers.json +3 -0
  27. package/locales/pt-BR/models.json +248 -23
  28. package/locales/pt-BR/providers.json +3 -0
  29. package/locales/ru-RU/models.json +248 -23
  30. package/locales/ru-RU/providers.json +3 -0
  31. package/locales/tr-TR/models.json +248 -23
  32. package/locales/tr-TR/providers.json +3 -0
  33. package/locales/vi-VN/models.json +248 -23
  34. package/locales/vi-VN/providers.json +3 -0
  35. package/locales/zh-CN/models.json +248 -23
  36. package/locales/zh-CN/providers.json +3 -0
  37. package/locales/zh-TW/models.json +248 -23
  38. package/locales/zh-TW/providers.json +3 -0
  39. package/package.json +1 -1
  40. package/packages/database/migrations/0031_add_agent_index.sql +6 -6
  41. package/packages/database/src/core/migrations.json +3 -3
package/CHANGELOG.md CHANGED
@@ -2,6 +2,39 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 1.129.2](https://github.com/lobehub/lobe-chat/compare/v1.129.1...v1.129.2)
6
+
7
+ <sup>Released on **2025-09-17**</sup>
8
+
9
+ #### 🐛 Bug Fixes
10
+
11
+ - **misc**: Improve db migrations sql.
12
+
13
+ #### 💄 Styles
14
+
15
+ - **misc**: Update i18n.
16
+
17
+ <br/>
18
+
19
+ <details>
20
+ <summary><kbd>Improvements and Fixes</kbd></summary>
21
+
22
+ #### What's fixed
23
+
24
+ - **misc**: Improve db migrations sql, closes [#9295](https://github.com/lobehub/lobe-chat/issues/9295) ([96ff5aa](https://github.com/lobehub/lobe-chat/commit/96ff5aa))
25
+
26
+ #### Styles
27
+
28
+ - **misc**: Update i18n, closes [#9294](https://github.com/lobehub/lobe-chat/issues/9294) ([c018f3d](https://github.com/lobehub/lobe-chat/commit/c018f3d))
29
+
30
+ </details>
31
+
32
+ <div align="right">
33
+
34
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
35
+
36
+ </div>
37
+
5
38
  ### [Version 1.129.1](https://github.com/lobehub/lobe-chat/compare/v1.129.0...v1.129.1)
6
39
 
7
40
  <sup>Released on **2025-09-16**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,16 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "fixes": [
5
+ "Improve db migrations sql."
6
+ ],
7
+ "improvements": [
8
+ "Update i18n."
9
+ ]
10
+ },
11
+ "date": "2025-09-17",
12
+ "version": "1.129.2"
13
+ },
2
14
  {
3
15
  "children": {
4
16
  "improvements": [
@@ -602,6 +602,33 @@
602
602
  "ai21-labs/AI21-Jamba-1.5-Mini": {
603
603
  "description": "نموذج متعدد اللغات يحتوي على 52 مليار معلمة (12 مليار نشطة)، يوفر نافذة سياق طويلة تصل إلى 256 ألف كلمة، استدعاء دوال، إخراج منظم وتوليد قائم على الحقائق."
604
604
  },
605
+ "alibaba/qwen-3-14b": {
606
+ "description": "Qwen3 هو الجيل الأحدث من سلسلة Qwen لنماذج اللغة الكبيرة، ويقدم مجموعة شاملة من النماذج الكثيفة ونماذج الخبراء المختلطة (MoE). مبني على تدريب واسع النطاق، يحقق Qwen3 تقدمًا ثوريًا في الاستدلال، والامتثال للتعليمات، وقدرات الوكيل، ودعم اللغات المتعددة."
607
+ },
608
+ "alibaba/qwen-3-235b": {
609
+ "description": "Qwen3 هو الجيل الأحدث من سلسلة Qwen لنماذج اللغة الكبيرة، ويقدم مجموعة شاملة من النماذج الكثيفة ونماذج الخبراء المختلطة (MoE). مبني على تدريب واسع النطاق، يحقق Qwen3 تقدمًا ثوريًا في الاستدلال، والامتثال للتعليمات، وقدرات الوكيل، ودعم اللغات المتعددة."
610
+ },
611
+ "alibaba/qwen-3-30b": {
612
+ "description": "Qwen3 هو الجيل الأحدث من سلسلة Qwen لنماذج اللغة الكبيرة، ويقدم مجموعة شاملة من النماذج الكثيفة ونماذج الخبراء المختلطة (MoE). مبني على تدريب واسع النطاق، يحقق Qwen3 تقدمًا ثوريًا في الاستدلال، والامتثال للتعليمات، وقدرات الوكيل، ودعم اللغات المتعددة."
613
+ },
614
+ "alibaba/qwen-3-32b": {
615
+ "description": "Qwen3 هو الجيل الأحدث من سلسلة Qwen لنماذج اللغة الكبيرة، ويقدم مجموعة شاملة من النماذج الكثيفة ونماذج الخبراء المختلطة (MoE). مبني على تدريب واسع النطاق، يحقق Qwen3 تقدمًا ثوريًا في الاستدلال، والامتثال للتعليمات، وقدرات الوكيل، ودعم اللغات المتعددة."
616
+ },
617
+ "alibaba/qwen3-coder": {
618
+ "description": "Qwen3-Coder-480B-A35B-Instruct هو نموذج الكود الأكثر قدرة على الوكيل في Qwen، يتميز بأداء بارز في ترميز الوكيل، واستخدام متصفح الوكيل، ومهام الترميز الأساسية الأخرى، محققًا نتائج مماثلة لـ Claude Sonnet."
619
+ },
620
+ "amazon/nova-lite": {
621
+ "description": "نموذج متعدد الوسائط منخفض التكلفة للغاية، يعالج الصور والفيديو والنصوص بسرعة فائقة."
622
+ },
623
+ "amazon/nova-micro": {
624
+ "description": "نموذج نصي فقط يقدم استجابات بأدنى تأخير وبتكلفة منخفضة جدًا."
625
+ },
626
+ "amazon/nova-pro": {
627
+ "description": "نموذج متعدد الوسائط عالي الكفاءة يجمع بين الدقة والسرعة والتكلفة المثلى، مناسب لمجموعة واسعة من المهام."
628
+ },
629
+ "amazon/titan-embed-text-v2": {
630
+ "description": "Amazon Titan Text Embeddings V2 هو نموذج تضمين متعدد اللغات خفيف الوزن وفعال، يدعم أبعاد 1024 و512 و256."
631
+ },
605
632
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
606
633
  "description": "Claude 3.5 Sonnet يرفع المعايير في الصناعة، حيث يتفوق على نماذج المنافسين وClaude 3 Opus، ويظهر أداءً ممتازًا في تقييمات واسعة، مع سرعة وتكلفة تتناسب مع نماذجنا المتوسطة."
607
634
  },
@@ -627,25 +654,28 @@
627
654
  "description": "الإصدار المحدث من Claude 2، مع نافذة سياقية مضاعفة، وتحسينات في الاعتمادية ومعدل الهلوسة والدقة المستندة إلى الأدلة في الوثائق الطويلة وسياقات RAG."
628
655
  },
629
656
  "anthropic/claude-3-haiku": {
630
- "description": "Claude 3 Haiku هو أسرع وأصغر نموذج من Anthropic، مصمم لتحقيق استجابة شبه فورية. يتمتع بأداء توجيهي سريع ودقيق."
657
+ "description": "Claude 3 Haiku هو أسرع نموذج حتى الآن من Anthropic، مصمم خصيصًا لأعباء العمل المؤسسية التي تتطلب عادةً مطالبات طويلة. يمكن لـ Haiku تحليل كميات كبيرة من الوثائق بسرعة، مثل التقارير الفصلية والعقود والقضايا القانونية، بتكلفة نصف تكلفة النماذج الأخرى في فئته."
631
658
  },
632
659
  "anthropic/claude-3-opus": {
633
- "description": "Claude 3 Opus هو أقوى نموذج من Anthropic لمعالجة المهام المعقدة للغاية. يتميز بأداء ممتاز وذكاء وسلاسة وفهم."
660
+ "description": "Claude 3 Opus هو أذكى نموذج من Anthropic، يقدم أداءً رائدًا في السوق للمهام المعقدة للغاية. يتميز بسلاسة استثنائية وفهم شبيه بالبشر للتعامل مع المطالبات المفتوحة والسيناريوهات غير المسبوقة."
634
661
  },
635
662
  "anthropic/claude-3.5-haiku": {
636
- "description": "Claude 3.5 Haiku هو أسرع نموذج من الجيل التالي من Anthropic. مقارنةً بـ Claude 3 Haiku، تم تحسين Claude 3.5 Haiku في جميع المهارات، وتفوق في العديد من اختبارات الذكاء على النموذج الأكبر من الجيل السابق Claude 3 Opus."
663
+ "description": "Claude 3.5 Haiku هو الجيل التالي من أسرع نماذجنا. يتمتع بسرعة مماثلة لـ Claude 3 Haiku، مع تحسينات في كل مجموعة مهارات، وتفوق في العديد من اختبارات الذكاء على أكبر نموذج لدينا من الجيل السابق Claude 3 Opus."
637
664
  },
638
665
  "anthropic/claude-3.5-sonnet": {
639
- "description": "Claude 3.5 Sonnet يقدم قدرات تتجاوز Opus وسرعة أكبر من Sonnet، مع الحفاظ على نفس السعر. يتميز Sonnet بمهارات خاصة في البرمجة وعلوم البيانات ومعالجة الصور والمهام الوكيلة."
666
+ "description": "Claude 3.5 Sonnet يحقق توازنًا مثاليًا بين الذكاء والسرعة، خاصة لأعباء العمل المؤسسية. يقدم أداءً قويًا بتكلفة أقل مقارنة بالمنافسين، ومصمم لتحمل عالي في نشرات الذكاء الاصطناعي على نطاق واسع."
640
667
  },
641
668
  "anthropic/claude-3.7-sonnet": {
642
- "description": "Claude 3.7 Sonnet هو أكثر النماذج ذكاءً من Anthropic حتى الآن، وهو أيضًا أول نموذج مختلط للتفكير في السوق. يمكن لـ Claude 3.7 Sonnet إنتاج استجابات شبه فورية أو تفكير تدريجي ممتد، حيث يمكن للمستخدمين رؤية هذه العمليات بوضوح. يتميز Sonnet بشكل خاص في البرمجة، وعلوم البيانات، ومعالجة الصور، والمهام الوكيلة."
669
+ "description": "Claude 3.7 Sonnet هو أول نموذج استدلال مختلط، وأذكى نموذج حتى الآن من Anthropic. يقدم أداءً متقدمًا في الترميز، وتوليد المحتوى، وتحليل البيانات، ومهام التخطيط، مبنيًا على قدرات الهندسة البرمجية واستخدام الحاسوب في سلفه Claude 3.5 Sonnet."
643
670
  },
644
671
  "anthropic/claude-opus-4": {
645
- "description": "كلود أوبوس 4 هو أقوى نموذج من أنثروبيك لمعالجة المهام المعقدة للغاية. يتميز بأداء ممتاز وذكاء وسلاسة وفهم عميق."
672
+ "description": "Claude Opus 4 هو أقوى نموذج حتى الآن من Anthropic، وأفضل نموذج ترميز في العالم، متصدرًا في اختبارات SWE-bench (72.5%) وTerminal-bench (43.2%). يوفر أداءً مستمرًا للمهام الطويلة التي تتطلب تركيزًا وجهدًا وآلاف الخطوات، قادرًا على العمل لساعات متواصلة، مما يوسع بشكل كبير قدرات وكلاء الذكاء الاصطناعي."
673
+ },
674
+ "anthropic/claude-opus-4.1": {
675
+ "description": "Claude Opus 4.1 هو بديل جاهز للاستخدام لـ Opus 4، يقدم أداءً ودقة ممتازة في مهام الترميز والوكالة العملية. يرفع أداء الترميز المتقدم إلى 74.5% في SWE-bench Verified، ويتعامل مع المشكلات المعقدة متعددة الخطوات بدقة واهتمام أكبر بالتفاصيل."
646
676
  },
647
677
  "anthropic/claude-sonnet-4": {
648
- "description": "كلود سونيت 4 يمكنه إنتاج استجابات شبه فورية أو تفكير تدريجي مطول، حيث يمكن للمستخدمين رؤية هذه العمليات بوضوح. كما يمكن لمستخدمي API التحكم بدقة في مدة تفكير النموذج."
678
+ "description": "Claude Sonnet 4 يحسن بشكل كبير على قدرات Sonnet 3.7 الرائدة في الصناعة، ويظهر أداءً ممتازًا في الترميز، محققًا 72.7% في SWE-bench. يوازن النموذج بين الأداء والكفاءة، مناسب للحالات الداخلية والخارجية، ويحقق تحكمًا أكبر في التنفيذ من خلال قابلية تحكم محسنة."
649
679
  },
650
680
  "ascend-tribe/pangu-pro-moe": {
651
681
  "description": "Pangu-Pro-MoE 72B-A16B هو نموذج لغة ضخم نادر التنشيط يحتوي على 72 مليار معلمة و16 مليار معلمة نشطة، يعتمد على بنية الخبراء المختلطين المجمعة (MoGE). في مرحلة اختيار الخبراء، يتم تجميع الخبراء وتقيد تنشيط عدد متساوٍ من الخبراء داخل كل مجموعة لكل رمز، مما يحقق توازنًا في تحميل الخبراء ويعزز بشكل كبير كفاءة نشر النموذج على منصة Ascend."
@@ -797,6 +827,18 @@
797
827
  "cohere/Cohere-command-r-plus": {
798
828
  "description": "Command R+ هو نموذج متقدم محسّن لـ RAG، مصمم للتعامل مع أعباء العمل على مستوى المؤسسات."
799
829
  },
830
+ "cohere/command-a": {
831
+ "description": "Command A هو أقوى نموذج أداءً حتى الآن من Cohere، يتفوق في استخدام الأدوات، والوكالة، والتوليد المعزز بالاسترجاع (RAG)، وحالات الاستخدام متعددة اللغات. طول السياق يصل إلى 256K، ويعمل على اثنين من وحدات معالجة الرسومات فقط، مع زيادة في الإنتاجية بنسبة 150% مقارنة بـ Command R+ 08-2024."
832
+ },
833
+ "cohere/command-r": {
834
+ "description": "Command R هو نموذج لغة كبير مُحسّن للتفاعل الحواري والمهام ذات السياق الطويل. يصنف ضمن فئة \"القابل للتوسع\"، ويوازن بين الأداء العالي والدقة القوية، مما يمكّن الشركات من تجاوز إثبات المفهوم والدخول في الإنتاج."
835
+ },
836
+ "cohere/command-r-plus": {
837
+ "description": "Command R+ هو أحدث نموذج لغة كبير من Cohere، مُحسّن للتفاعل الحواري والمهام ذات السياق الطويل. يهدف إلى تقديم أداء استثنائي يمكّن الشركات من تجاوز إثبات المفهوم والدخول في الإنتاج."
838
+ },
839
+ "cohere/embed-v4.0": {
840
+ "description": "نموذج يسمح بتصنيف النصوص أو الصور أو المحتوى المختلط أو تحويلها إلى تمثيلات مضمنة."
841
+ },
800
842
  "command": {
801
843
  "description": "نموذج حواري يتبع التعليمات، يظهر جودة عالية وموثوقية أكبر في المهام اللغوية، ويتميز بطول سياق أطول مقارنة بنموذجنا الأساسي للتوليد."
802
844
  },
@@ -975,7 +1017,7 @@
975
1017
  "description": "DeepSeek-V3.1 هو نموذج استدلال هجين كبير يدعم سياق طويل يصل إلى 128K وتبديل أوضاع فعال، ويحقق أداءً وسرعة ممتازة في استدعاء الأدوات، وتوليد الأكواد، والمهام الاستدلالية المعقدة."
976
1018
  },
977
1019
  "deepseek/deepseek-r1": {
978
- "description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
1020
+ "description": "تم ترقية نموذج DeepSeek R1 إلى إصدار صغير جديد، الإصدار الحالي هو DeepSeek-R1-0528. في التحديث الأخير، حسّن DeepSeek R1 عمق الاستدلال وقدرته بشكل ملحوظ من خلال استغلال موارد حسابية متزايدة وإدخال آليات تحسين خوارزمية بعد التدريب. النموذج يحقق أداءً ممتازًا في تقييمات معيارية متعددة مثل الرياضيات، والبرمجة، والمنطق العام، وأداؤه العام يقترب الآن من النماذج الرائدة مثل O3 وGemini 2.5 Pro."
979
1021
  },
980
1022
  "deepseek/deepseek-r1-0528": {
981
1023
  "description": "DeepSeek-R1 يعزز بشكل كبير قدرة الاستدلال للنموذج حتى مع وجود بيانات تعليمية قليلة جدًا. قبل إخراج الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
@@ -984,7 +1026,7 @@
984
1026
  "description": "DeepSeek-R1 يعزز بشكل كبير قدرة الاستدلال للنموذج حتى مع وجود بيانات تعليمية قليلة جدًا. قبل إخراج الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
985
1027
  },
986
1028
  "deepseek/deepseek-r1-distill-llama-70b": {
987
- "description": "DeepSeek R1 Distill Llama 70B هو نموذج لغوي كبير يعتمد على Llama3.3 70B، حيث يحقق أداءً تنافسيًا مماثلاً للنماذج الرائدة الكبيرة من خلال استخدام التعديلات المستندة إلى مخرجات DeepSeek R1."
1029
+ "description": "DeepSeek-R1-Distill-Llama-70B هو نسخة مكثفة وأكثر كفاءة من نموذج Llama 70B. يحافظ على أداء قوي في مهام توليد النصوص مع تقليل استهلاك الحوسبة لتسهيل النشر والبحث. يتم تشغيله بواسطة Groq باستخدام وحدة معالجة اللغة المخصصة (LPU) لتوفير استدلال سريع وفعال."
988
1030
  },
989
1031
  "deepseek/deepseek-r1-distill-llama-8b": {
990
1032
  "description": "DeepSeek R1 Distill Llama 8B هو نموذج لغوي كبير مكرر يعتمد على Llama-3.1-8B-Instruct، تم تدريبه باستخدام مخرجات DeepSeek R1."
@@ -1002,7 +1044,10 @@
1002
1044
  "description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
1003
1045
  },
1004
1046
  "deepseek/deepseek-v3": {
1005
- "description": "حقق DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج المفتوحة المصدر، ويمكن مقارنته بأحدث النماذج المغلقة على مستوى العالم. يعتمد DeepSeek-V3 على بنية الانتباه المتعدد الرؤوس (MLA) وبنية DeepSeekMoE، والتي تم التحقق منها بشكل شامل في DeepSeek-V2. بالإضافة إلى ذلك، قدم DeepSeek-V3 استراتيجية مساعدة غير مدمرة للتوازن في الحمل، وحدد أهداف تدريب متعددة التسمية لتحقيق أداء أقوى."
1047
+ "description": "نموذج لغة كبير عام سريع مع قدرات استدلال محسنة."
1048
+ },
1049
+ "deepseek/deepseek-v3.1-base": {
1050
+ "description": "DeepSeek V3.1 Base هو نسخة محسنة من نموذج DeepSeek V3."
1006
1051
  },
1007
1052
  "deepseek/deepseek-v3/community": {
1008
1053
  "description": "حقق DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج المفتوحة المصدر، ويمكن مقارنته بأحدث النماذج المغلقة على مستوى العالم. يعتمد DeepSeek-V3 على بنية الانتباه المتعدد الرؤوس (MLA) وبنية DeepSeekMoE، والتي تم التحقق منها بشكل شامل في DeepSeek-V2. بالإضافة إلى ذلك، قدم DeepSeek-V3 استراتيجية مساعدة غير مدمرة للتوازن في الحمل، وحدد أهداف تدريب متعددة التسمية لتحقيق أداء أقوى."
@@ -1430,18 +1475,27 @@
1430
1475
  "glm-zero-preview": {
1431
1476
  "description": "يمتلك GLM-Zero-Preview قدرة قوية على الاستدلال المعقد، ويظهر أداءً ممتازًا في مجالات الاستدلال المنطقي، والرياضيات، والبرمجة."
1432
1477
  },
1478
+ "google/gemini-2.0-flash": {
1479
+ "description": "Gemini 2.0 Flash يقدم ميزات الجيل التالي وتحسينات تشمل سرعة فائقة، استخدام أدوات مدمجة، توليد متعدد الوسائط، ونافذة سياق تصل إلى مليون رمز."
1480
+ },
1433
1481
  "google/gemini-2.0-flash-001": {
1434
1482
  "description": "Gemini 2.0 Flash يقدم ميزات وتحسينات من الجيل التالي، بما في ذلك سرعة فائقة، واستخدام أدوات أصلية، وتوليد متعدد الوسائط، ونافذة سياق تصل إلى 1M توكن."
1435
1483
  },
1436
1484
  "google/gemini-2.0-flash-exp:free": {
1437
1485
  "description": "Gemini 2.0 Flash Experimental هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط من Google، مع تحسينات ملحوظة في الجودة مقارنة بالإصدارات السابقة، خاصة في المعرفة العالمية، الشيفرات، والسياقات الطويلة."
1438
1486
  },
1487
+ "google/gemini-2.0-flash-lite": {
1488
+ "description": "Gemini 2.0 Flash Lite يقدم ميزات الجيل التالي وتحسينات تشمل سرعة فائقة، استخدام أدوات مدمجة، توليد متعدد الوسائط، ونافذة سياق تصل إلى مليون رمز."
1489
+ },
1439
1490
  "google/gemini-2.5-flash": {
1440
- "description": "Gemini 2.5 Flash هو النموذج الرئيسي الأكثر تقدمًا من Google، مصمم خصيصًا للمهام المتقدمة في الاستدلال، الترميز، الرياضيات والعلوم. يحتوي على قدرة مدمجة على \"التفكير\"، مما يمكنه من تقديم استجابات بدقة أعلى ومعالجة سياقية أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نسختين: نسخة التفكير ونسخة غير التفكير. تختلف تكلفة الإخراج بشكل ملحوظ بناءً على تفعيل قدرة التفكير. إذا اخترت النسخة القياسية (بدون لاحقة \":thinking\"), سيتجنب النموذج بوضوح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستلام رموز التفكير، يجب عليك اختيار النسخة \":thinking\"، والتي ستؤدي إلى تكلفة إخراج أعلى للتفكير.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\" كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1491
+ "description": "Gemini 2.5 Flash هو نموذج تفكيري يقدم قدرات شاملة ممتازة. مصمم لتحقيق توازن بين السعر والأداء، ويدعم متعدد الوسائط ونافذة سياق تصل إلى مليون رمز."
1441
1492
  },
1442
1493
  "google/gemini-2.5-flash-image-preview": {
1443
1494
  "description": "نموذج تجريبي Gemini 2.5 Flash، يدعم توليد الصور."
1444
1495
  },
1496
+ "google/gemini-2.5-flash-lite": {
1497
+ "description": "Gemini 2.5 Flash-Lite هو نموذج متوازن ومنخفض التأخير مع ميزانية تفكير قابلة للتكوين واتصال بالأدوات (مثل البحث في Google والتنفيذ البرمجي). يدعم مدخلات متعددة الوسائط ويوفر نافذة سياق تصل إلى مليون رمز."
1498
+ },
1445
1499
  "google/gemini-2.5-flash-preview": {
1446
1500
  "description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1447
1501
  },
@@ -1449,11 +1503,14 @@
1449
1503
  "description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1450
1504
  },
1451
1505
  "google/gemini-2.5-pro": {
1452
- "description": "Gemini 2.5 Pro هو نموذج التفكير الأكثر تقدمًا من Google، قادر على الاستدلال في مسائل معقدة في البرمجة، الرياضيات ومجالات العلوم والتكنولوجيا والهندسة والرياضيات (STEM)، بالإضافة إلى استخدام السياق الطويل لتحليل مجموعات بيانات كبيرة، قواعد الشيفرة والمستندات."
1506
+ "description": "Gemini 2.5 Pro هو نموذج Gemini المتقدم للاستدلال، قادر على حل المشكلات المعقدة. يحتوي على نافذة سياق تصل إلى مليوني رمز، ويدعم مدخلات متعددة الوسائط تشمل النصوص، الصور، الصوت، الفيديو، ومستندات PDF."
1453
1507
  },
1454
1508
  "google/gemini-2.5-pro-preview": {
1455
1509
  "description": "معاينة Gemini 2.5 Pro هي أحدث نموذج تفكيري من Google، قادر على استنتاج المشكلات المعقدة في مجالات البرمجة والرياضيات والعلوم والتكنولوجيا والهندسة والرياضيات (STEM)، بالإضافة إلى استخدام سياق طويل لتحليل مجموعات البيانات الكبيرة، وقواعد الشيفرة، والوثائق."
1456
1510
  },
1511
+ "google/gemini-embedding-001": {
1512
+ "description": "نموذج تضمين متقدم يقدم أداءً ممتازًا في مهام اللغة الإنجليزية، متعددة اللغات، والبرمجة."
1513
+ },
1457
1514
  "google/gemini-flash-1.5": {
1458
1515
  "description": "يقدم Gemini 1.5 Flash قدرات معالجة متعددة الوسائط محسّنة، مناسبة لمجموعة متنوعة من سيناريوهات المهام المعقدة."
1459
1516
  },
@@ -1490,6 +1547,12 @@
1490
1547
  "google/gemma-3-27b-it": {
1491
1548
  "description": "جيمّا 3 27B هو نموذج لغوي مفتوح المصدر من جوجل، وقد وضع معايير جديدة من حيث الكفاءة والأداء."
1492
1549
  },
1550
+ "google/text-embedding-005": {
1551
+ "description": "نموذج تضمين نصي مركز على اللغة الإنجليزية ومحسن لمهام البرمجة واللغة الإنجليزية."
1552
+ },
1553
+ "google/text-multilingual-embedding-002": {
1554
+ "description": "نموذج تضمين نص متعدد اللغات محسن لمهام عبر اللغات، يدعم عدة لغات."
1555
+ },
1493
1556
  "gpt-3.5-turbo": {
1494
1557
  "description": "نموذج GPT 3.5 Turbo، مناسب لمجموعة متنوعة من مهام توليد وفهم النصوص، يشير حاليًا إلى gpt-3.5-turbo-0125."
1495
1558
  },
@@ -1781,6 +1844,9 @@
1781
1844
  "imagen-4.0-ultra-generate-preview-06-06": {
1782
1845
  "description": "نسخة ألترا من سلسلة نموذج Imagen للجيل الرابع لتحويل النص إلى صورة"
1783
1846
  },
1847
+ "inception/mercury-coder-small": {
1848
+ "description": "Mercury Coder Small هو الخيار المثالي لمهام توليد الكود، وتصحيح الأخطاء، وإعادة الهيكلة، مع أدنى تأخير."
1849
+ },
1784
1850
  "inclusionAI/Ling-mini-2.0": {
1785
1851
  "description": "Ling-mini-2.0 هو نموذج لغوي كبير عالي الأداء بحجم صغير يعتمد على بنية MoE. يحتوي على 16 مليار معلمة إجمالية، لكن يتم تفعيل 1.4 مليار فقط لكل رمز (789 مليون غير مضمن)، مما يحقق سرعة توليد عالية جداً. بفضل تصميم MoE الفعال وبيانات التدريب عالية الجودة وعلى نطاق واسع، بالرغم من أن المعلمات المفعلة تبلغ فقط 1.4 مليار، إلا أن Ling-mini-2.0 يظهر أداءً رفيع المستوى في المهام اللاحقة يمكن مقارنته بنماذج LLM الكثيفة التي تقل عن 10 مليارات والمع نماذج MoE الأكبر حجماً."
1786
1852
  },
@@ -2057,30 +2123,63 @@
2057
2123
  "meta/Meta-Llama-3.1-8B-Instruct": {
2058
2124
  "description": "نموذج نصي معدل للتعليمات من Llama 3.1، محسن لحالات استخدام الحوار متعدد اللغات، ويحقق أداءً ممتازًا في العديد من معايير الصناعة مقارنة بالعديد من نماذج الدردشة المفتوحة والمغلقة."
2059
2125
  },
2126
+ "meta/llama-3-70b": {
2127
+ "description": "نموذج مفتوح المصدر مكون من 70 مليار معلمة، تم ضبطه بعناية من قبل Meta لأغراض الامتثال للتعليمات. يتم تشغيله بواسطة Groq باستخدام وحدة معالجة اللغة المخصصة (LPU) لتوفير استدلال سريع وفعال."
2128
+ },
2129
+ "meta/llama-3-8b": {
2130
+ "description": "نموذج مفتوح المصدر مكون من 8 مليارات معلمة، تم ضبطه بعناية من قبل Meta لأغراض الامتثال للتعليمات. يتم تشغيله بواسطة Groq باستخدام وحدة معالجة اللغة المخصصة (LPU) لتوفير استدلال سريع وفعال."
2131
+ },
2060
2132
  "meta/llama-3.1-405b-instruct": {
2061
2133
  "description": "نموذج لغوي متقدم، يدعم توليد البيانات الاصطناعية، وتقطير المعرفة، والاستدلال، مناسب للدردشة، والبرمجة، والمهام الخاصة."
2062
2134
  },
2135
+ "meta/llama-3.1-70b": {
2136
+ "description": "نسخة محدثة من Meta Llama 3 70B Instruct، تشمل طول سياق موسع 128K، ودعم متعدد اللغات، وقدرات استدلال محسنة."
2137
+ },
2063
2138
  "meta/llama-3.1-70b-instruct": {
2064
2139
  "description": "يمكنه تمكين المحادثات المعقدة، ويتميز بفهم سياقي ممتاز، وقدرات استدلال، وقدرة على توليد النصوص."
2065
2140
  },
2141
+ "meta/llama-3.1-8b": {
2142
+ "description": "Llama 3.1 8B يدعم نافذة سياق 128K، مما يجعله خيارًا مثاليًا لواجهات المحادثة الحية وتحليل البيانات، مع توفير توفير كبير في التكلفة مقارنة بالنماذج الأكبر. يتم تشغيله بواسطة Groq باستخدام وحدة معالجة اللغة المخصصة (LPU) لتوفير استدلال سريع وفعال."
2143
+ },
2066
2144
  "meta/llama-3.1-8b-instruct": {
2067
2145
  "description": "نموذج متقدم من الطراز الأول، يتمتع بفهم اللغة، وقدرات استدلال ممتازة، وقدرة على توليد النصوص."
2068
2146
  },
2147
+ "meta/llama-3.2-11b": {
2148
+ "description": "نموذج توليد استدلال الصور مضبوط بالتعليمات (نص + إدخال صورة / إخراج نص)، محسن للتعرف البصري، استدلال الصور، توليد العناوين، والإجابة على الأسئلة العامة المتعلقة بالصور."
2149
+ },
2069
2150
  "meta/llama-3.2-11b-vision-instruct": {
2070
2151
  "description": "نموذج متقدم للرؤية واللغة، بارع في إجراء استدلال عالي الجودة من الصور."
2071
2152
  },
2153
+ "meta/llama-3.2-1b": {
2154
+ "description": "نموذج نصي فقط، يدعم حالات الاستخدام على الجهاز مثل استرجاع المعرفة المحلية متعددة اللغات، التلخيص، وإعادة الصياغة."
2155
+ },
2072
2156
  "meta/llama-3.2-1b-instruct": {
2073
2157
  "description": "نموذج لغوي صغير متقدم، يتمتع بفهم اللغة، وقدرات استدلال ممتازة، وقدرة على توليد النصوص."
2074
2158
  },
2159
+ "meta/llama-3.2-3b": {
2160
+ "description": "نموذج نصي فقط، مضبوط بعناية لدعم حالات الاستخدام على الجهاز مثل استرجاع المعرفة المحلية متعددة اللغات، التلخيص، وإعادة الصياغة."
2161
+ },
2075
2162
  "meta/llama-3.2-3b-instruct": {
2076
2163
  "description": "نموذج لغوي صغير متقدم، يتمتع بفهم اللغة، وقدرات استدلال ممتازة، وقدرة على توليد النصوص."
2077
2164
  },
2165
+ "meta/llama-3.2-90b": {
2166
+ "description": "نموذج توليد استدلال الصور مضبوط بالتعليمات (نص + إدخال صورة / إخراج نص)، محسن للتعرف البصري، استدلال الصور، توليد العناوين، والإجابة على الأسئلة العامة المتعلقة بالصور."
2167
+ },
2078
2168
  "meta/llama-3.2-90b-vision-instruct": {
2079
2169
  "description": "نموذج متقدم للرؤية واللغة، بارع في إجراء استدلال عالي الجودة من الصور."
2080
2170
  },
2171
+ "meta/llama-3.3-70b": {
2172
+ "description": "مزيج مثالي من الأداء والكفاءة. يدعم النموذج ذكاءً اصطناعيًا حواريًا عالي الأداء، مصممًا لإنشاء المحتوى، التطبيقات المؤسسية، والبحث، ويقدم قدرات متقدمة في فهم اللغة تشمل التلخيص النصي، التصنيف، تحليل المشاعر، وتوليد الكود."
2173
+ },
2081
2174
  "meta/llama-3.3-70b-instruct": {
2082
2175
  "description": "نموذج لغوي متقدم، بارع في الاستدلال، والرياضيات، والمعرفة العامة، واستدعاء الدوال."
2083
2176
  },
2177
+ "meta/llama-4-maverick": {
2178
+ "description": "مجموعة نماذج Llama 4 هي نماذج ذكاء اصطناعي متعددة الوسائط أصلية تدعم النص والتجارب متعددة الوسائط. تستفيد هذه النماذج من بنية الخبراء المختلطة لتقديم أداء رائد في الصناعة في فهم النصوص والصور. Llama 4 Maverick، نموذج مكون من 17 مليار معلمة مع 128 خبيرًا. مقدم الخدمة DeepInfra."
2179
+ },
2180
+ "meta/llama-4-scout": {
2181
+ "description": "مجموعة نماذج Llama 4 هي نماذج ذكاء اصطناعي متعددة الوسائط أصلية تدعم النص والتجارب متعددة الوسائط. تستفيد هذه النماذج من بنية الخبراء المختلطة لتقديم أداء رائد في الصناعة في فهم النصوص والصور. Llama 4 Scout، نموذج مكون من 17 مليار معلمة مع 16 خبيرًا. مقدم الخدمة DeepInfra."
2182
+ },
2084
2183
  "microsoft/Phi-3-medium-128k-instruct": {
2085
2184
  "description": "نفس نموذج Phi-3-medium ولكن مع حجم سياق أكبر، مناسب لـ RAG أو القليل من التلميحات."
2086
2185
  },
@@ -2156,6 +2255,48 @@
2156
2255
  "mistral-small-latest": {
2157
2256
  "description": "Mistral Small هو خيار فعال من حيث التكلفة وسريع وموثوق، مناسب لمهام الترجمة، والتلخيص، وتحليل المشاعر."
2158
2257
  },
2258
+ "mistral/codestral": {
2259
+ "description": "Mistral Codestral 25.01 هو نموذج ترميز متقدم، مُحسّن للحالات التي تتطلب تأخيرًا منخفضًا وترددًا عاليًا. يتقن أكثر من 80 لغة برمجة، ويبرع في مهام الملء الوسيط (FIM)، تصحيح الكود، وتوليد الاختبارات."
2260
+ },
2261
+ "mistral/codestral-embed": {
2262
+ "description": "نموذج تضمين الكود يمكن دمجه في قواعد بيانات ومستودعات الكود لدعم مساعدي الترميز."
2263
+ },
2264
+ "mistral/devstral-small": {
2265
+ "description": "Devstral هو نموذج لغة كبير وكيل مخصص لمهام هندسة البرمجيات، مما يجعله خيارًا ممتازًا كوكلاء هندسة البرمجيات."
2266
+ },
2267
+ "mistral/magistral-medium": {
2268
+ "description": "تفكير معقد مدعوم بفهم عميق، مع استدلال شفاف يمكنك متابعته والتحقق منه. يحافظ النموذج على استدلال عالي الدقة عبر لغات متعددة حتى عند التبديل بين اللغات أثناء المهمة."
2269
+ },
2270
+ "mistral/magistral-small": {
2271
+ "description": "تفكير معقد مدعوم بفهم عميق، مع استدلال شفاف يمكنك متابعته والتحقق منه. يحافظ النموذج على استدلال عالي الدقة عبر لغات متعددة حتى عند التبديل بين اللغات أثناء المهمة."
2272
+ },
2273
+ "mistral/ministral-3b": {
2274
+ "description": "نموذج مضغوط وفعال للمهام على الأجهزة مثل المساعدات الذكية والتحليل المحلي، يقدم أداء منخفض التأخير."
2275
+ },
2276
+ "mistral/ministral-8b": {
2277
+ "description": "نموذج أقوى مع استدلال أسرع وأكثر كفاءة في الذاكرة، مثالي لسير العمل المعقد وتطبيقات الحافة ذات المتطلبات العالية."
2278
+ },
2279
+ "mistral/mistral-embed": {
2280
+ "description": "نموذج تضمين نص عام للبحث الدلالي، التشابه، التجميع، وسير عمل RAG."
2281
+ },
2282
+ "mistral/mistral-large": {
2283
+ "description": "Mistral Large هو الخيار المثالي للمهام المعقدة التي تتطلب قدرات استدلال كبيرة أو تخصص عالي مثل توليد النصوص المركبة، توليد الكود، RAG أو الوكالة."
2284
+ },
2285
+ "mistral/mistral-saba-24b": {
2286
+ "description": "Mistral Saba 24B هو نموذج مفتوح المصدر مكون من 24 مليار معلمة طورته Mistral.ai. Saba هو نموذج متخصص مدرب لأداء متميز في اللغات العربية، الفارسية، الأردية، العبرية، واللغات الهندية. يتم تشغيله بواسطة Groq باستخدام وحدة معالجة اللغة المخصصة (LPU) لتوفير استدلال سريع وفعال."
2287
+ },
2288
+ "mistral/mistral-small": {
2289
+ "description": "Mistral Small هو الخيار المثالي للمهام البسيطة التي يمكن تنفيذها دفعة واحدة مثل التصنيف، دعم العملاء، أو توليد النصوص. يقدم أداءً ممتازًا بسعر معقول."
2290
+ },
2291
+ "mistral/mixtral-8x22b-instruct": {
2292
+ "description": "نموذج 8x22b Instruct. 8x22b هو نموذج مفتوح المصدر من خبراء مختلطين مقدم من Mistral."
2293
+ },
2294
+ "mistral/pixtral-12b": {
2295
+ "description": "نموذج 12B مع قدرات فهم الصور بالإضافة إلى النص."
2296
+ },
2297
+ "mistral/pixtral-large": {
2298
+ "description": "Pixtral Large هو النموذج الثاني في عائلة النماذج متعددة الوسائط لدينا، ويظهر مستوى متقدمًا في فهم الصور. بشكل خاص، يمكن للنموذج فهم المستندات، المخططات، والصور الطبيعية، مع الحفاظ على قدرات فهم النص الرائدة في Mistral Large 2."
2299
+ },
2159
2300
  "mistralai/Mistral-7B-Instruct-v0.1": {
2160
2301
  "description": "Mistral (7B) Instruct معروف بأدائه العالي، مناسب لمهام لغوية متعددة."
2161
2302
  },
@@ -2222,12 +2363,21 @@
2222
2363
  "moonshotai/Kimi-K2-Instruct-0905": {
2223
2364
  "description": "Kimi K2-Instruct-0905 هو أحدث وأقوى إصدار من Kimi K2. إنه نموذج لغوي من نوع الخبراء المختلطين (MoE) من الطراز الأول، يحتوي على تريليون معلمة إجمالية و32 مليار معلمة مفعلة. تشمل الميزات الرئيسية للنموذج: تعزيز ذكاء التكويد للوكيل، مع تحسينات ملحوظة في الأداء في اختبارات المعيار المفتوحة ومهام التكويد الواقعية للوكيل؛ تحسين تجربة التكويد في الواجهة الأمامية، مع تقدم في الجمالية والعملية في برمجة الواجهة الأمامية."
2224
2365
  },
2366
+ "moonshotai/kimi-k2": {
2367
+ "description": "Kimi K2 هو نموذج لغة كبير مختلط الخبراء (MoE) ضخم طورته Moonshot AI، يحتوي على تريليون معلمة إجمالية و32 مليار معلمة نشطة في كل تمرير أمامي. مُحسّن لقدرات الوكيل، بما في ذلك استخدام الأدوات المتقدمة، الاستدلال، وتركيب الكود."
2368
+ },
2225
2369
  "moonshotai/kimi-k2-0905": {
2226
2370
  "description": "نموذج kimi-k2-0905-preview يدعم طول سياق 256k، يتمتع بقدرات ترميز وكيل أقوى، وجمالية وعملية أفضل في الشيفرة الأمامية، وفهم سياق محسن."
2227
2371
  },
2228
2372
  "moonshotai/kimi-k2-instruct-0905": {
2229
2373
  "description": "نموذج kimi-k2-0905-preview يدعم طول سياق 256k، يتمتع بقدرات ترميز وكيل أقوى، وجمالية وعملية أفضل في الشيفرة الأمامية، وفهم سياق محسن."
2230
2374
  },
2375
+ "morph/morph-v3-fast": {
2376
+ "description": "Morph يقدم نموذج ذكاء اصطناعي مخصص يطبق تغييرات الكود المقترحة من نماذج متقدمة مثل Claude أو GPT-4o على ملفات الكود الحالية بسرعة فائقة - أكثر من 4500 رمز في الثانية. يعمل كخطوة نهائية في سير عمل الترميز بالذكاء الاصطناعي. يدعم 16k رمز إدخال و16k رمز إخراج."
2377
+ },
2378
+ "morph/morph-v3-large": {
2379
+ "description": "Morph يقدم نموذج ذكاء اصطناعي مخصص يطبق تغييرات الكود المقترحة من نماذج متقدمة مثل Claude أو GPT-4o على ملفات الكود الحالية بسرعة - أكثر من 2500 رمز في الثانية. يعمل كخطوة نهائية في سير عمل الترميز بالذكاء الاصطناعي. يدعم 16k رمز إدخال و16k رمز إخراج."
2380
+ },
2231
2381
  "nousresearch/hermes-2-pro-llama-3-8b": {
2232
2382
  "description": "Hermes 2 Pro Llama 3 8B هو إصدار مطور من Nous Hermes 2، ويحتوي على أحدث مجموعات البيانات المطورة داخليًا."
2233
2383
  },
@@ -2294,29 +2444,47 @@
2294
2444
  "open-mixtral-8x7b": {
2295
2445
  "description": "Mixtral 8x7B هو نموذج خبير نادر، يستخدم عدة معلمات لزيادة سرعة الاستدلال، مناسب لمعالجة المهام متعددة اللغات وتوليد الشيفرة."
2296
2446
  },
2447
+ "openai/gpt-3.5-turbo": {
2448
+ "description": "أكثر نماذج GPT-3.5 كفاءة من حيث الأداء والتكلفة من OpenAI، مُحسّن للدردشة، لكنه يؤدي جيدًا أيضًا في مهام الإكمال التقليدية."
2449
+ },
2450
+ "openai/gpt-3.5-turbo-instruct": {
2451
+ "description": "قدرات مشابهة لنماذج عصر GPT-3. متوافق مع نقاط نهاية الإكمال التقليدية بدلاً من نقاط نهاية إكمال الدردشة."
2452
+ },
2453
+ "openai/gpt-4-turbo": {
2454
+ "description": "gpt-4-turbo من OpenAI يمتلك معرفة عامة واسعة وخبرة ميدانية، مما يمكنه من اتباع تعليمات اللغة الطبيعية المعقدة وحل المشكلات بدقة. تاريخ المعرفة حتى أبريل 2023، ونافذة سياق تصل إلى 128,000 رمز."
2455
+ },
2297
2456
  "openai/gpt-4.1": {
2298
- "description": "GPT-4.1 هو نموذجنا الرائد للمهام المعقدة. إنه مثالي لحل المشكلات عبر مجالات متعددة."
2457
+ "description": "GPT 4.1 هو النموذج الرائد من OpenAI، مناسب للمهام المعقدة. مثالي لحل المشكلات متعددة المجالات."
2299
2458
  },
2300
2459
  "openai/gpt-4.1-mini": {
2301
- "description": "يوفر GPT-4.1 mini توازنًا بين الذكاء والسرعة والتكلفة، مما يجعله نموذجًا جذابًا للعديد من الاستخدامات."
2460
+ "description": "GPT 4.1 mini يوازن بين الذكاء والسرعة والتكلفة، مما يجعله نموذجًا جذابًا للعديد من حالات الاستخدام."
2302
2461
  },
2303
2462
  "openai/gpt-4.1-nano": {
2304
- "description": "GPT-4.1 nano هو أسرع وأقل تكلفة من نماذج GPT-4.1."
2463
+ "description": "GPT-4.1 nano هو أسرع وأكفأ نموذج GPT 4.1 من حيث التكلفة."
2305
2464
  },
2306
2465
  "openai/gpt-4o": {
2307
- "description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الحقيقي للحفاظ على أحدث إصدار. يجمع بين فهم اللغة القوي وقدرة التوليد، مما يجعله مناسبًا لمجموعة واسعة من التطبيقات، بما في ذلك خدمة العملاء والتعليم والدعم الفني."
2466
+ "description": "GPT-4o من OpenAI يمتلك معرفة عامة واسعة وخبرة ميدانية، قادر على اتباع تعليمات اللغة الطبيعية المعقدة وحل المشكلات بدقة. يقدم أداءً مماثلًا لـ GPT-4 Turbo عبر API أسرع وأرخص."
2308
2467
  },
2309
2468
  "openai/gpt-4o-mini": {
2310
- "description": "GPT-4o mini هو أحدث نموذج من OpenAI تم إطلاقه بعد GPT-4 Omni، ويدعم إدخال النصوص والصور وإخراج النصوص. كأحد نماذجهم المتقدمة الصغيرة، فهو أرخص بكثير من النماذج الرائدة الأخرى في الآونة الأخيرة، وأرخص بأكثر من 60% من GPT-3.5 Turbo. يحتفظ بذكاء متقدم مع قيمة ممتازة. حصل GPT-4o mini على 82% في اختبار MMLU، وهو حاليًا يتفوق على GPT-4 في تفضيلات الدردشة."
2469
+ "description": "GPT-4o mini من OpenAI هو أصغر نموذج متقدم وأكثر كفاءة من حيث التكلفة. متعدد الوسائط (يقبل نصوصًا أو صورًا ويخرج نصًا)، وأكثر ذكاءً من gpt-3.5-turbo، مع سرعة مماثلة."
2470
+ },
2471
+ "openai/gpt-5": {
2472
+ "description": "GPT-5 هو النموذج الرائد من OpenAI، يتفوق في الاستدلال المعقد، المعرفة الواقعية الواسعة، المهام المكثفة للكود، والوكالة متعددة الخطوات."
2473
+ },
2474
+ "openai/gpt-5-mini": {
2475
+ "description": "GPT-5 mini هو نموذج محسّن من حيث التكلفة، يقدم أداءً ممتازًا في مهام الاستدلال والدردشة. يوفر توازنًا مثاليًا بين السرعة والتكلفة والقدرة."
2476
+ },
2477
+ "openai/gpt-5-nano": {
2478
+ "description": "GPT-5 nano هو نموذج عالي الإنتاجية، يتفوق في المهام البسيطة مثل التعليمات أو التصنيف."
2311
2479
  },
2312
2480
  "openai/gpt-oss-120b": {
2313
- "description": "OpenAI GPT-OSS 120B هو نموذج لغوي رائد يحتوي على 120 مليار معلمة، مزود بميزات تصفح الإنترنت وتنفيذ الأكواد، ويتميز بقدرات استدلالية."
2481
+ "description": "نموذج لغة كبير عام عالي الكفاءة، يتمتع بقدرات استدلال قوية وقابلة للتحكم."
2314
2482
  },
2315
2483
  "openai/gpt-oss-20b": {
2316
- "description": "OpenAI GPT-OSS 20B هو نموذج لغوي رائد يحتوي على 20 مليار معلمة، مزود بميزات تصفح الإنترنت وتنفيذ الأكواد، ويتميز بقدرات استدلالية."
2484
+ "description": "نموذج لغة مضغوط مفتوح المصدر، مُحسّن للتأخير المنخفض والبيئات ذات الموارد المحدودة، بما في ذلك النشر المحلي وعلى الحافة."
2317
2485
  },
2318
2486
  "openai/o1": {
2319
- "description": "o1 هو نموذج الاستدلال الجديد من OpenAI، يدعم إدخال الصور والنصوص ويخرج نصًا، مناسب للمهام المعقدة التي تتطلب معرفة عامة واسعة. يتميز هذا النموذج بسياق يصل إلى 200 ألف كلمة وتاريخ معرفة حتى أكتوبر 2023."
2487
+ "description": "o1 من OpenAI هو نموذج استدلال رائد، مصمم للمشكلات المعقدة التي تتطلب تفكيرًا عميقًا. يوفر قدرات استدلال قوية ودقة أعلى للمهام متعددة الخطوات."
2320
2488
  },
2321
2489
  "openai/o1-mini": {
2322
2490
  "description": "o1-mini هو نموذج استدلال سريع وفعال من حيث التكلفة مصمم لتطبيقات البرمجة والرياضيات والعلوم. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
@@ -2325,23 +2493,44 @@
2325
2493
  "description": "o1 هو نموذج استدلال جديد من OpenAI، مناسب للمهام المعقدة التي تتطلب معرفة عامة واسعة. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
2326
2494
  },
2327
2495
  "openai/o3": {
2328
- "description": "o3 هو نموذج قوي شامل، يظهر أداءً ممتازًا في مجالات متعددة. إنه يضع معيارًا جديدًا لمهام الرياضيات والعلوم والبرمجة والتفكير البصري. كما أنه بارع في الكتابة التقنية واتباع التعليمات. يمكن للمستخدمين الاستفادة منه في تحليل النصوص والرموز والصور، وحل المشكلات المعقدة متعددة الخطوات."
2496
+ "description": "o3 من OpenAI هو أقوى نموذج استدلال، يضع معايير جديدة في الترميز، الرياضيات، العلوم، والإدراك البصري. يتفوق في الاستعلامات المعقدة التي تتطلب تحليلات متعددة الجوانب، وله ميزة خاصة في تحليل الصور، المخططات، والرسوم البيانية."
2329
2497
  },
2330
2498
  "openai/o3-mini": {
2331
- "description": "o3-mini يقدم ذكاءً عاليًا بنفس تكلفة وأهداف التأخير مثل o1-mini."
2499
+ "description": "o3-mini هو أحدث نموذج استدلال صغير من OpenAI، يقدم ذكاءً عاليًا بنفس تكلفة وتأخير o1-mini."
2332
2500
  },
2333
2501
  "openai/o3-mini-high": {
2334
2502
  "description": "o3-mini عالي المستوى من حيث الاستدلال، يقدم ذكاءً عاليًا بنفس تكلفة وأهداف التأخير مثل o1-mini."
2335
2503
  },
2336
2504
  "openai/o4-mini": {
2337
- "description": "o4-mini تم تحسينه للاستدلال السريع والفعال، ويظهر كفاءة وأداء عاليين في المهام البرمجية والرؤية."
2505
+ "description": "o4-mini من OpenAI يقدم استدلالًا سريعًا وفعالًا من حيث التكلفة، مع أداء ممتاز بالنسبة لحجمه، خاصة في الرياضيات (الأفضل في اختبار AIME)، الترميز، والمهام البصرية."
2338
2506
  },
2339
2507
  "openai/o4-mini-high": {
2340
2508
  "description": "o4-mini إصدار عالي من حيث مستوى الاستدلال، تم تحسينه للاستدلال السريع والفعال، ويظهر كفاءة وأداء عاليين في المهام البرمجية والرؤية."
2341
2509
  },
2510
+ "openai/text-embedding-3-large": {
2511
+ "description": "أكثر نماذج التضمين كفاءة من OpenAI، مناسب للمهام الإنجليزية وغير الإنجليزية."
2512
+ },
2513
+ "openai/text-embedding-3-small": {
2514
+ "description": "نسخة محسنة وأعلى أداء من نموذج تضمين ada من OpenAI."
2515
+ },
2516
+ "openai/text-embedding-ada-002": {
2517
+ "description": "نموذج تضمين نصي تقليدي من OpenAI."
2518
+ },
2342
2519
  "openrouter/auto": {
2343
2520
  "description": "استنادًا إلى طول السياق، والموضوع، والتعقيد، سيتم إرسال طلبك إلى Llama 3 70B Instruct، أو Claude 3.5 Sonnet (التعديل الذاتي) أو GPT-4o."
2344
2521
  },
2522
+ "perplexity/sonar": {
2523
+ "description": "منتج خفيف الوزن من Perplexity مع قدرة البحث الموجه، أسرع وأرخص من Sonar Pro."
2524
+ },
2525
+ "perplexity/sonar-pro": {
2526
+ "description": "المنتج الرائد من Perplexity مع قدرة البحث الموجه، يدعم الاستعلامات المتقدمة والمتابعات."
2527
+ },
2528
+ "perplexity/sonar-reasoning": {
2529
+ "description": "نموذج يركز على الاستدلال، ينتج سلاسل تفكير (CoT) في الردود، ويقدم تفسيرات مفصلة مع بحث موجه."
2530
+ },
2531
+ "perplexity/sonar-reasoning-pro": {
2532
+ "description": "نموذج استدلال متقدم يركز على إنتاج سلاسل تفكير (CoT) في الردود، مع قدرات بحث معززة واستعلامات بحث متعددة لكل طلب لتقديم تفسيرات شاملة."
2533
+ },
2345
2534
  "phi3": {
2346
2535
  "description": "Phi-3 هو نموذج مفتوح خفيف الوزن أطلقته Microsoft، مناسب للتكامل الفعال واستدلال المعرفة على نطاق واسع."
2347
2536
  },
@@ -2804,6 +2993,12 @@
2804
2993
  "v0-1.5-md": {
2805
2994
  "description": "نموذج v0-1.5-md مناسب للمهام اليومية وتوليد واجهات المستخدم (UI)"
2806
2995
  },
2996
+ "vercel/v0-1.0-md": {
2997
+ "description": "الوصول إلى النموذج خلف v0 لتوليد، إصلاح، وتحسين تطبيقات الويب الحديثة، مع استدلال مخصص للأطر المعينة ومعرفة حديثة."
2998
+ },
2999
+ "vercel/v0-1.5-md": {
3000
+ "description": "الوصول إلى النموذج خلف v0 لتوليد، إصلاح، وتحسين تطبيقات الويب الحديثة، مع استدلال مخصص للأطر المعينة ومعرفة حديثة."
3001
+ },
2807
3002
  "wan2.2-t2i-flash": {
2808
3003
  "description": "نسخة Wanxiang 2.2 فائقة السرعة، أحدث نموذج حاليًا. تم تحسين الإبداع، الاستقرار، والواقعية بشكل شامل، مع سرعة توليد عالية وقيمة ممتازة مقابل التكلفة."
2809
3004
  },
@@ -2834,6 +3029,27 @@
2834
3029
  "x1": {
2835
3030
  "description": "سيتم ترقية نموذج Spark X1 بشكل أكبر، حيث ستحقق المهام العامة مثل الاستدلال، وتوليد النصوص، وفهم اللغة نتائج تتماشى مع OpenAI o1 و DeepSeek R1."
2836
3031
  },
3032
+ "xai/grok-2": {
3033
+ "description": "Grok 2 هو نموذج لغة متقدم بقدرات استدلال رائدة. يتميز بقدرات متقدمة في الدردشة، الترميز، والاستدلال، ويتفوق على Claude 3.5 Sonnet وGPT-4-Turbo في تصنيف LMSYS."
3034
+ },
3035
+ "xai/grok-2-vision": {
3036
+ "description": "نموذج Grok 2 البصري يتفوق في المهام المعتمدة على الرؤية، ويقدم أداءً رائدًا في الاستدلال الرياضي البصري (MathVista) والأسئلة المعتمدة على الوثائق (DocVQA). قادر على معالجة معلومات بصرية متنوعة تشمل الوثائق، المخططات، الرسوم البيانية، لقطات الشاشة، والصور."
3037
+ },
3038
+ "xai/grok-3": {
3039
+ "description": "النموذج الرائد من xAI، يتفوق في حالات الاستخدام المؤسسية مثل استخراج البيانات، الترميز، وتلخيص النصوص. يمتلك معرفة عميقة في مجالات المالية، الرعاية الصحية، القانون، والعلوم."
3040
+ },
3041
+ "xai/grok-3-fast": {
3042
+ "description": "النموذج الرائد من xAI، يتفوق في حالات الاستخدام المؤسسية مثل استخراج البيانات، الترميز، وتلخيص النصوص. النسخة السريعة تقدم استجابات أسرع بكثير على بنية تحتية أسرع، مع تكلفة أعلى لكل رمز مخرج."
3043
+ },
3044
+ "xai/grok-3-mini": {
3045
+ "description": "نموذج خفيف الوزن من xAI، يفكر قبل الاستجابة. مثالي للمهام البسيطة أو المنطقية التي لا تتطلب معرفة مجال عميقة. مسار التفكير الخام متاح."
3046
+ },
3047
+ "xai/grok-3-mini-fast": {
3048
+ "description": "نموذج خفيف الوزن من xAI، يفكر قبل الاستجابة. مثالي للمهام البسيطة أو المنطقية التي لا تتطلب معرفة مجال عميقة. مسار التفكير الخام متاح. النسخة السريعة تقدم استجابات أسرع بكثير على بنية تحتية أسرع، مع تكلفة أعلى لكل رمز مخرج."
3049
+ },
3050
+ "xai/grok-4": {
3051
+ "description": "أحدث وأعظم نموذج رائد من xAI، يقدم أداءً لا مثيل له في اللغة الطبيعية، الرياضيات، والاستدلال — الخيار المثالي متعدد الاستخدامات."
3052
+ },
2837
3053
  "yi-1.5-34b-chat": {
2838
3054
  "description": "يي-1.5 هو إصدار مُحدّث من يي. تم تدريبه بشكل مُسبق باستخدام مكتبة بيانات عالية الجودة تحتوي على 500 مليار علامة (Token) على يي، وتم تحسينه أيضًا باستخدام 3 ملايين مثال متنوع للتدريب الدقيق."
2839
3055
  },
@@ -2881,5 +3097,14 @@
2881
3097
  },
2882
3098
  "zai-org/GLM-4.5V": {
2883
3099
  "description": "GLM-4.5V هو نموذج لغوي بصري (VLM) من الجيل الأحدث صدر عن Zhipu AI (智谱 AI). بُني النموذج على نموذج النص الرائد GLM-4.5-Air الذي يحتوي على 106B من المعاملات الإجمالية و12B من معاملات التنشيط، ويعتمد على بنية الخبراء المختلطين (MoE) بهدف تحقيق أداء متميز بتكلفة استدلال أقل. من الناحية التقنية، يواصل GLM-4.5V نهج GLM-4.1V-Thinking ويقدّم ابتكارات مثل ترميز المواقع الدوراني ثلاثي الأبعاد (3D-RoPE)، مما عزّز بشكل ملحوظ قدرته على إدراك واستنتاج العلاقات المكانية ثلاثية الأبعاد. وبفضل تحسينات في مراحل ما قبل التدريب، والتعديل بالإشراف، والتعلّم المعزّز، أصبح النموذج قادراً على معالجة محتوى بصري متنوّع مثل الصور والفيديوهات والمستندات الطويلة، وقد حقق مستوى متقدماً ضمن أفضل نماذج المصدر المفتوح في 41 معياراً متعدد الوسائط منشوراً. بالإضافة إلى ذلك، أضاف النموذج مفتاح \"وضع التفكير\" الذي يتيح للمستخدمين التبديل بين الاستجابة السريعة والاستدلال العميق بحرية لتوازن أفضل بين الكفاءة والفعالية."
3100
+ },
3101
+ "zai/glm-4.5": {
3102
+ "description": "سلسلة نماذج GLM-4.5 هي نماذج أساسية مصممة خصيصًا للوكلاء. النموذج الرائد GLM-4.5 يدمج 355 مليار معلمة إجمالية (32 مليار نشطة)، موحدًا الاستدلال، الترميز، وقدرات الوكيل لتلبية متطلبات التطبيقات المعقدة. كنظام استدلال مختلط، يوفر وضعين تشغيليين."
3103
+ },
3104
+ "zai/glm-4.5-air": {
3105
+ "description": "GLM-4.5 وGLM-4.5-Air هما أحدث نماذجنا الرائدة، مصممة كنماذج أساسية لتطبيقات الوكلاء. كلاهما يستخدم بنية الخبراء المختلطة (MoE). يحتوي GLM-4.5 على 355 مليار معلمة إجمالية و32 مليار معلمة نشطة في كل تمرير أمامي، بينما يتميز GLM-4.5-Air بتصميم مبسط مع 106 مليار معلمة إجمالية و12 مليار معلمة نشطة."
3106
+ },
3107
+ "zai/glm-4.5v": {
3108
+ "description": "GLM-4.5V مبني على نموذج GLM-4.5-Air الأساسي، يرث التقنيات المثبتة من GLM-4.1V-Thinking، ويوسعها بفعالية من خلال بنية MoE القوية التي تضم 106 مليار معلمة."
2884
3109
  }
2885
3110
  }