@lobehub/chat 1.120.0 → 1.120.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docs/self-hosting/environment-variables/basic.mdx +0 -7
- package/docs/self-hosting/environment-variables/basic.zh-CN.mdx +0 -7
- package/locales/ar/models.json +24 -3
- package/locales/bg-BG/models.json +24 -3
- package/locales/de-DE/models.json +24 -3
- package/locales/en-US/models.json +24 -3
- package/locales/es-ES/models.json +24 -3
- package/locales/fa-IR/models.json +24 -3
- package/locales/fr-FR/models.json +24 -3
- package/locales/it-IT/models.json +24 -3
- package/locales/ja-JP/models.json +24 -3
- package/locales/ko-KR/models.json +24 -3
- package/locales/nl-NL/models.json +24 -3
- package/locales/pl-PL/models.json +24 -3
- package/locales/pt-BR/models.json +24 -3
- package/locales/ru-RU/models.json +24 -3
- package/locales/tr-TR/models.json +24 -3
- package/locales/vi-VN/models.json +24 -3
- package/locales/zh-CN/models.json +24 -3
- package/locales/zh-TW/models.json +24 -3
- package/next.config.ts +0 -2
- package/package.json +4 -4
- package/packages/const/src/url.ts +1 -2
- package/packages/model-runtime/src/ModelRuntime.test.ts +1 -1
- package/packages/web-crawler/package.json +1 -1
- package/src/app/[variants]/metadata.ts +1 -7
- package/src/components/Analytics/Google.tsx +1 -1
- package/src/components/Analytics/LobeAnalyticsProviderWrapper.tsx +1 -1
- package/src/components/Analytics/Vercel.tsx +1 -1
- package/src/components/Analytics/index.tsx +1 -1
- package/src/config/__tests__/analytics.test.ts +1 -1
- package/src/config/__tests__/client.test.ts +1 -1
- package/src/envs/app.ts +0 -3
- package/src/libs/analytics/index.ts +1 -1
- package/src/libs/traces/index.test.ts +1 -1
- package/src/libs/traces/index.ts +1 -1
- package/src/libs/trpc/client/edge.ts +1 -2
- package/src/libs/unstructured/index.ts +1 -1
- package/src/locales/create.ts +1 -1
- package/src/server/globalConfig/index.test.ts +1 -2
- package/src/server/globalConfig/index.ts +2 -2
- package/src/server/modules/ContentChunk/index.ts +1 -1
- package/src/server/routers/tools/search.test.ts +1 -1
- package/src/server/services/search/impls/searxng/index.test.ts +1 -1
- package/src/server/services/search/impls/searxng/index.ts +1 -1
- package/src/server/services/search/index.ts +1 -1
- package/src/services/_url.ts +6 -19
- package/src/services/share.ts +1 -2
- package/packages/utils/src/basePath.ts +0 -3
- /package/src/{config → envs}/analytics.ts +0 -0
- /package/src/{config → envs}/debug.ts +0 -0
- /package/src/{config → envs}/knowledge.ts +0 -0
- /package/src/{config → envs}/langfuse.ts +0 -0
- /package/src/{config → envs}/tools.ts +0 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,56 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.120.2](https://github.com/lobehub/lobe-chat/compare/v1.120.1...v1.120.2)
|
6
|
+
|
7
|
+
<sup>Released on **2025-08-31**</sup>
|
8
|
+
|
9
|
+
#### ♻ Code Refactoring
|
10
|
+
|
11
|
+
- **misc**: Remove base path.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Code refactoring
|
19
|
+
|
20
|
+
- **misc**: Remove base path, closes [#9015](https://github.com/lobehub/lobe-chat/issues/9015) ([2a5f8d7](https://github.com/lobehub/lobe-chat/commit/2a5f8d7))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
### [Version 1.120.1](https://github.com/lobehub/lobe-chat/compare/v1.120.0...v1.120.1)
|
31
|
+
|
32
|
+
<sup>Released on **2025-08-31**</sup>
|
33
|
+
|
34
|
+
#### 💄 Styles
|
35
|
+
|
36
|
+
- **misc**: Update i18n.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### Styles
|
44
|
+
|
45
|
+
- **misc**: Update i18n, closes [#9005](https://github.com/lobehub/lobe-chat/issues/9005) ([63760f9](https://github.com/lobehub/lobe-chat/commit/63760f9))
|
46
|
+
|
47
|
+
</details>
|
48
|
+
|
49
|
+
<div align="right">
|
50
|
+
|
51
|
+
[](#readme-top)
|
52
|
+
|
53
|
+
</div>
|
54
|
+
|
5
55
|
## [Version 1.120.0](https://github.com/lobehub/lobe-chat/compare/v1.119.2...v1.120.0)
|
6
56
|
|
7
57
|
<sup>Released on **2025-08-30**</sup>
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Remove base path."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-08-31",
|
9
|
+
"version": "1.120.2"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"improvements": [
|
14
|
+
"Update i18n."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-08-31",
|
18
|
+
"version": "1.120.1"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"improvements": [
|
@@ -37,13 +37,6 @@ When using the `random` mode, a random API Key will be selected from the availab
|
|
37
37
|
|
38
38
|
When using the `turn` mode, the API Keys will be retrieved in a polling manner according to the specified order.
|
39
39
|
|
40
|
-
### `NEXT_PUBLIC_BASE_PATH`
|
41
|
-
|
42
|
-
- Type: Optional
|
43
|
-
- Description: Add a `basePath` for LobeChat.
|
44
|
-
- Default: -
|
45
|
-
- Example: `/test`
|
46
|
-
|
47
40
|
### `DEFAULT_AGENT_CONFIG`
|
48
41
|
|
49
42
|
- Type: Optional
|
package/locales/ar/models.json
CHANGED
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "مزود النموذج: منصة sophnet. DeepSeek V3 Fast هو النسخة السريعة عالية TPS من إصدار DeepSeek V3 0324، غير مكوّن بالكامل، يتمتع بقدرات برمجية ورياضية أقوى واستجابة أسرع!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 هو نموذج استدلال هجين جديد أطلقته DeepSeek، يدعم وضعين للاستدلال: التفكير وعدم التفكير، مع كفاءة تفكير أعلى مقارنة بـ DeepSeek-R1-0528. بعد تحسين ما بعد التدريب، تم تعزيز استخدام أدوات الوكيل وأداء مهام الوكيل بشكل كبير."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite يتميز بسرعة استجابة فائقة وقيمة أفضل مقابل المال، ويوفر خيارات أكثر مرونة للعملاء في سيناريوهات مختلفة. يدعم الاستدلال والتخصيص مع نافذة سياق 128k."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "نموذج اللغة الكبير عالي الأداء الذي طورته بايدو، والذي تم إصداره في عام 2024، يتمتع بقدرات عامة ممتازة، ويتميز بأداء أفضل من ERNIE Speed، مناسب كنموذج أساسي للتعديل الدقيق، مما يساعد على معالجة مشكلات السيناريوهات المحددة بشكل أفضل، مع أداء استدلال ممتاز."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev هو نموذج متعدد الوسائط لتوليد وتحرير الصور طورته Black Forest Labs، يعتمد على بنية Rectified Flow Transformer ويحتوي على 12 مليار معلمة، يركز على توليد وإعادة بناء وتعزيز أو تحرير الصور بناءً على شروط سياقية محددة. يجمع النموذج بين مزايا التوليد القابل للتحكم في نماذج الانتشار وقدرات نمذجة السياق في Transformer، ويدعم إخراج صور عالية الجودة، ويستخدم على نطاق واسع في إصلاح الصور، إكمال الصور، وإعادة بناء المشاهد البصرية."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev هو نموذج لغة متعدد الوسائط مفتوح المصدر طورته Black Forest Labs، مُحسّن لمهام النص والصورة، يدمج قدرات فهم وتوليد الصور والنصوص. يعتمد على نماذج اللغة الكبيرة المتقدمة مثل Mistral-7B، ويحقق معالجة متزامنة للنص والصورة واستدلالًا معقدًا من خلال مشفر بصري مصمم بعناية وضبط دقيق متعدد المراحل."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، يستخدم الانتباه المتعدد الرؤوس (MLA) وهيكل DeepSeekMoE، ويجمع بين استراتيجيات توازن الحمل بدون خسائر مساعدة، مما يحسن كفاءة الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون توكن عالية الجودة، وتم إجراء تعديل دقيق تحت الإشراف والتعلم المعزز، مما يجعل DeepSeek-V3 يتفوق على نماذج مفتوحة المصدر الأخرى، ويقترب من النماذج المغلقة الرائدة."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 هو نموذج لغة كبير بنمط هجين أصدرته DeepSeek AI، وقد شهد ترقيات مهمة متعددة مقارنة بالإصدارات السابقة. من الابتكارات الرئيسية في هذا النموذج دمج \"وضع التفكير\" و\"وضع عدم التفكير\" في نموذج واحد، حيث يمكن للمستخدمين التبديل بينهما بسهولة عبر تعديل قالب المحادثة لتلبية متطلبات المهام المختلفة. من خلال تحسينات ما بعد التدريب المخصصة، تم تعزيز أداء V3.1 في استدعاء الأدوات ومهام الوكيل بشكل ملحوظ، مما يمكنه من دعم أدوات البحث الخارجية وتنفيذ مهام معقدة متعددة الخطوات بشكل أفضل. يعتمد النموذج على DeepSeek-V3.1-Base مع تدريب إضافي، حيث تم توسيع حجم بيانات التدريب بشكل كبير عبر طريقة التوسيع النصي الطويل على مرحلتين، مما يحسن أدائه في معالجة المستندات الطويلة والرموز البرمجية الطويلة. كنموذج مفتوح المصدر، يظهر DeepSeek-V3.1 قدرة تنافسية مع أفضل النماذج المغلقة في مجالات الترميز والرياضيات والاستدلال، وبفضل هيكله المختلط للخبراء (MoE)، يحافظ على سعة نموذج ضخمة مع تقليل تكلفة الاستدلال بفعالية."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 هو نموذج أساسي يعتمد على بنية MoE مع قدرات قوية في البرمجة والوكيل، يحتوي على 1 تريليون معلمة و32 مليار معلمة مفعلة. يتفوق نموذج K2 في اختبارات الأداء الأساسية في مجالات المعرفة العامة، البرمجة، الرياضيات والوكيل مقارنة بالنماذج المفتوحة المصدر الأخرى."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، يستخدم انتباه متعدد الرؤوس (MLA) وبنية DeepSeekMoE، ويجمع بين استراتيجية توازن الحمل بدون خسارة مساعدة، مما يحسن كفاءة الاستدلال والتدريب. من خلال التدريب المسبق على 14.8 تريليون توكن عالي الجودة، وإجراء تعديلات إشرافية وتعلم معزز، يتفوق DeepSeek-V3 في الأداء على نماذج المصدر المفتوح الأخرى، ويقترب من النماذج المغلقة الرائدة."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 هو نموذج لغة كبير بنمط هجين أصدرته DeepSeek AI، وقد شهد ترقيات مهمة متعددة مقارنة بالإصدارات السابقة. من الابتكارات الرئيسية في هذا النموذج دمج \"وضع التفكير\" و\"وضع عدم التفكير\" في نموذج واحد، حيث يمكن للمستخدمين التبديل بينهما بسهولة عبر تعديل قالب المحادثة لتلبية متطلبات المهام المختلفة. من خلال تحسينات ما بعد التدريب المخصصة، تم تعزيز أداء V3.1 في استدعاء الأدوات ومهام الوكيل بشكل ملحوظ، مما يمكنه من دعم أدوات البحث الخارجية وتنفيذ مهام معقدة متعددة الخطوات بشكل أفضل. يعتمد النموذج على DeepSeek-V3.1-Base مع تدريب إضافي، حيث تم توسيع حجم بيانات التدريب بشكل كبير عبر طريقة التوسيع النصي الطويل على مرحلتين، مما يحسن أدائه في معالجة المستندات الطويلة والرموز البرمجية الطويلة. كنموذج مفتوح المصدر، يظهر DeepSeek-V3.1 قدرة تنافسية مع أفضل النماذج المغلقة في مجالات الترميز والرياضيات والاستدلال، وبفضل هيكله المختلط للخبراء (MoE)، يحافظ على سعة نموذج ضخمة مع تقليل تكلفة الاستدلال بفعالية."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B هو نموذج متقدم تم تدريبه للحوار المعقد."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 النسخة الكاملة، تحتوي على 671 مليار معلمة، تدعم البحث المتصل في الوقت الحقيقي، وتتمتع بقدرات فهم وتوليد أقوى."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "وضع التفكير في DeepSeek V3.1. قبل إخراج الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 هو نموذج لغوي فعال من نوع Mixture-of-Experts، مناسب لاحتياجات المعالجة الاقتصادية."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 هو نموذج MoE يحتوي على 671 مليار معلمة، ويتميز بقدرات بارزة في البرمجة والتقنية، وفهم السياق ومعالجة النصوص الطويلة."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 هو نموذج استدلال هجين جديد أطلقته DeepSeek، يدعم وضعين للاستدلال: التفكير وعدم التفكير، مع كفاءة تفكير أعلى مقارنة بـ DeepSeek-R1-0528. بعد تحسين ما بعد التدريب، تم تعزيز استخدام أدوات الوكيل وأداء مهام الوكيل بشكل كبير. يدعم نافذة سياق تصل إلى 128 ألف، وطول إخراج يصل إلى 64 ألف رمز."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 هو نموذج استدلال هجين كبير يدعم سياق طويل يصل إلى 128K وتبديل أوضاع فعال، ويحقق أداءً وسرعة ممتازة في استدعاء الأدوات، وتوليد الأكواد، والمهام الاستدلالية المعقدة."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash هو نموذج Google الأكثر فعالية من حيث التكلفة، ويوفر وظائف شاملة."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana هو أحدث وأسرع وأكثر نموذج متعدد الوسائط أصلي كفاءة من Google، يتيح لك إنشاء وتحرير الصور من خلال المحادثة."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana هو أحدث وأسرع وأكثر نموذج متعدد الوسائط أصلي كفاءة من Google، يتيح لك إنشاء وتحرير الصور من خلال المحادثة."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite هو أصغر وأفضل نموذج من حيث التكلفة من Google، مصمم للاستخدام على نطاق واسع."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "Доставчик на модела: платформа sophnet. DeepSeek V3 Fast е високоскоростната версия с висока TPS на DeepSeek V3 0324, с пълна точност без квантизация, с по-силни кодови и математически възможности и по-бърз отговор!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 е новият хибриден модел за разсъждение на DeepSeek, който поддържа два режима на разсъждение: мислене и немислене, с по-висока ефективност на мислене в сравнение с DeepSeek-R1-0528. След оптимизация чрез пост-тренировка, използването на агентски инструменти и изпълнението на задачи от интелигентни агенти са значително подобрени."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite предлага изключително бърза реакция и по-добро съотношение цена-качество, осигурявайки по-гъвкави опции за различни сценарии на клиентите. Поддържа разсъждения и финна настройка с контекстен прозорец от 128k."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "Най-новият модел на Baidu за големи езикови модели с висока производителност, разработен самостоятелно, с отлични общи способности, по-добри резултати в сравнение с ERNIE Speed, подходящ за основен модел за фина настройка, за по-добро справяне с конкретни проблеми, като същевременно предлага отлична производителност при извеждане."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev е мултимоделен модел за генериране и редактиране на изображения, разработен от Black Forest Labs, базиран на архитектурата Rectified Flow Transformer с 12 милиарда параметри. Моделът е специализиран в генериране, реконструкция, подобряване и редактиране на изображения при зададени контекстуални условия. Той съчетава предимствата на контролираното генериране на дифузионни модели с контекстуалното моделиране на Transformer, поддържайки висококачествен изход и широко приложение в задачи като възстановяване, допълване и реконструкция на визуални сцени."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev е отворен мултимодален езиков модел (Multimodal Language Model, MLLM), разработен от Black Forest Labs, оптимизиран за задачи с текст и изображения. Той интегрира разбиране и генериране на изображения и текст, базиран на напреднали големи езикови модели като Mistral-7B, с внимателно проектиран визуален енкодер и многостепенно фино настройване с инструкции, което позволява съвместна обработка на текст и изображения и сложни задачи за разсъждение."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 е модел на езика с 6710 милиарда параметри, който използва архитектура на смесени експерти (MoE) с много глави на потенциално внимание (MLA) и стратегия за баланс на натоварването без помощни загуби, оптимизираща производителността на инференцията и обучението. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо супервизирано фино настройване и обучение с подсилване, DeepSeek-V3 надминава производителността на други отворени модели и е близо до водещите затворени модели."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 е хибриден голям езиков модел, пуснат от DeepSeek AI, който включва множество важни подобрения спрямо предишните версии. Основната иновация на модела е интеграцията на „режим на мислене“ (Thinking Mode) и „режим без мислене“ (Non-thinking Mode), които потребителите могат гъвкаво да превключват чрез настройка на чат шаблони, за да отговарят на различни задачи. След специална пост-тренировка, V3.1 значително подобрява производителността при използване на инструменти и задачи на агенти, като по-добре поддържа външни търсачки и изпълнение на сложни многостъпкови задачи. Моделът е дообучен върху DeepSeek-V3.1-Base чрез двуфазен метод за разширяване на дълги текстове, което значително увеличава обема на тренировъчните данни и подобрява работата с дълги документи и кодове. Като отворен модел, DeepSeek-V3.1 демонстрира способности, сравними с водещи затворени модели в области като кодиране, математика и разсъждение, като същевременно с хибридната си експертна (MoE) архитектура поддържа голям капацитет на модела и ефективно намалява разходите за изчисления."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 е базов модел с MoE архитектура с изключителни кодови и агентски способности, с общо 1 трилион параметри и 32 милиарда активирани параметри. В бенчмаркове за общо знание, програмиране, математика и агентски задачи моделът K2 превъзхожда други водещи отворени модели."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 е езиков модел с 6710 милиарда параметри, базиран на смесени експерти (MoE), който използва многоглаво потенциално внимание (MLA) и архитектурата DeepSeekMoE, комбинирайки стратегии за баланс на натоварването без помощни загуби, за да оптимизира производителността на извеждане и обучение. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо наблюдавано фино настройване и подсилено обучение, DeepSeek-V3 надминава производителността на други отворени модели и се приближава до водещите затворени модели."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 е хибриден голям езиков модел, пуснат от DeepSeek AI, който включва множество важни подобрения спрямо предишните версии. Основната иновация на модела е интеграцията на „режим на мислене“ (Thinking Mode) и „режим без мислене“ (Non-thinking Mode), които потребителите могат гъвкаво да превключват чрез настройка на чат шаблони, за да отговарят на различни задачи. След специална пост-тренировка, V3.1 значително подобрява производителността при използване на инструменти и задачи на агенти, като по-добре поддържа външни търсачки и изпълнение на сложни многостъпкови задачи. Моделът е дообучен върху DeepSeek-V3.1-Base чрез двуфазен метод за разширяване на дълги текстове, което значително увеличава обема на тренировъчните данни и подобрява работата с дълги документи и кодове. Като отворен модел, DeepSeek-V3.1 демонстрира способности, сравними с водещи затворени модели в области като кодиране, математика и разсъждение, като същевременно с хибридната си експертна (MoE) архитектура поддържа голям капацитет на модела и ефективно намалява разходите за изчисления."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B е напреднал модел, обучен за диалози с висока сложност."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 пълна версия, с 671B параметри, поддържаща търсене в реално време, с по-силни способности за разбиране и генериране."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "DeepSeek V3.1 режим на мислене. Преди да изведе окончателния отговор, моделът първо генерира мисловна верига, за да повиши точността на крайния отговор."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 е ефективен модел на Mixture-of-Experts, подходящ за икономически ефективни нужди от обработка."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 е MoE модел с 671B параметри, който се отличава с предимства в програмирането и техническите способности, разбирането на контекста и обработката на дълги текстове."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 е новият хибриден модел за разсъждение на DeepSeek, който поддържа два режима на разсъждение: мислене и немислене, с по-висока ефективност на мислене в сравнение с DeepSeek-R1-0528. След оптимизация чрез пост-тренировка, използването на агентски инструменти и изпълнението на задачи от интелигентни агенти са значително подобрени. Поддържа контекстен прозорец до 128k и максимална дължина на изхода до 64k токена."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 е експертен смесен модел с 685B параметри, последната итерация на флагманската серия чат модели на екипа DeepSeek.\n\nТой наследява модела [DeepSeek V3](/deepseek/deepseek-chat-v3) и показва отлични резултати в различни задачи."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 е експертен смесен модел с 685B параметри, последната итерация на флагманската серия чат модели на екипа DeepSeek.\n\nТой наследява модела [DeepSeek V3](/deepseek/deepseek-chat-v3) и показва отлични резултати в различни задачи."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 е голям хибриден модел за разсъждение, който поддържа 128K дълъг контекст и ефективно превключване на режими, постигащ изключителна производителност и скорост при използване на инструменти, генериране на код и сложни задачи за разсъждение."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash е най-ефективният модел на Google, предлагащ пълна функционалност."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana е най-новият, най-бързият и най-ефективният роден мултимодален модел на Google, който ви позволява да генерирате и редактирате изображения чрез диалог."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana е най-новият, най-бързият и най-ефективният роден мултимодален модел на Google, който ви позволява да генерирате и редактирате изображения чрез диалог."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite е най-малкият и най-ефективен модел на Google, създаден специално за масово използване."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "Modellanbieter: sophnet-Plattform. DeepSeek V3 Fast ist die Hochgeschwindigkeitsversion mit hohem TPS des DeepSeek V3 0324 Modells, voll funktionsfähig ohne Quantisierung, mit stärkerer Code- und mathematischer Leistungsfähigkeit und schnellerer Reaktionszeit!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 ist ein neu eingeführtes hybrides Inferenzmodell von DeepSeek, das zwei Inferenzmodi unterstützt: Denkmodus und Nicht-Denkmodus. Es ist effizienter im Denkprozess als DeepSeek-R1-0528. Durch Post-Training-Optimierung wurden die Nutzung von Agenten-Tools und die Leistung bei Agentenaufgaben erheblich verbessert."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite bietet extrem schnelle Reaktionszeiten und ein hervorragendes Preis-Leistungs-Verhältnis, um Kunden in verschiedenen Szenarien flexiblere Optionen zu bieten. Unterstützt Inferenz und Feintuning mit einem Kontextfenster von 128k."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "Das neueste von Baidu im Jahr 2024 veröffentlichte hochleistungsfähige Sprachmodell, das überragende allgemeine Fähigkeiten bietet und bessere Ergebnisse als ERNIE Speed erzielt. Es eignet sich als Basis-Modell für Feinabstimmungen, um spezifische Szenarien besser zu bearbeiten, und bietet gleichzeitig hervorragende Inferenzleistung."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev ist ein von Black Forest Labs entwickeltes multimodales Bildgenerierungs- und Bearbeitungsmodell auf Basis der Rectified Flow Transformer-Architektur mit 12 Milliarden Parametern. Es konzentriert sich auf die Generierung, Rekonstruktion, Verbesserung oder Bearbeitung von Bildern unter gegebenen Kontextbedingungen. Das Modell kombiniert die kontrollierbare Generierung von Diffusionsmodellen mit der Kontextmodellierung von Transformern, unterstützt hochwertige Bildausgaben und ist vielseitig einsetzbar für Bildrestaurierung, Bildvervollständigung und visuelle Szenenrekonstruktion."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev ist ein von Black Forest Labs entwickeltes Open-Source-multimodales Sprachmodell (Multimodal Language Model, MLLM), das für Bild-Text-Aufgaben optimiert ist und Verständnis sowie Generierung von Bildern und Texten vereint. Es basiert auf fortschrittlichen großen Sprachmodellen wie Mistral-7B und erreicht durch sorgfältig gestaltete visuelle Encoder und mehrstufige Instruktions-Feinabstimmung eine kooperative Verarbeitung von Bild und Text sowie komplexe Aufgabenlogik."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 ist ein hybrides Experten (MoE) Sprachmodell mit 6710 Milliarden Parametern, das eine Multi-Head-Latente-Attention (MLA) und DeepSeekMoE-Architektur verwendet, kombiniert mit einer Lastenausgleichsstrategie ohne Hilfskosten, um die Inferenz- und Trainingseffizienz zu optimieren. Durch das Pre-Training auf 14,8 Billionen hochwertigen Tokens und anschließende überwachte Feinabstimmung und verstärktes Lernen übertrifft DeepSeek-V3 in der Leistung andere Open-Source-Modelle und nähert sich führenden geschlossenen Modellen."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 ist ein hybrides großes Sprachmodell, das von DeepSeek AI veröffentlicht wurde und auf dem Vorgängermodell in vielerlei Hinsicht bedeutende Verbesserungen aufweist. Eine wesentliche Innovation dieses Modells ist die Integration des „Denkmodus“ und des „Nicht-Denkmodus“ in einem System, wobei Nutzer durch Anpassung der Chat-Vorlagen flexibel zwischen den Modi wechseln können, um unterschiedlichen Aufgabenanforderungen gerecht zu werden. Durch spezielles Post-Training wurde die Leistung von V3.1 bei Tool-Aufrufen und Agentenaufgaben deutlich gesteigert, was eine bessere Unterstützung externer Suchwerkzeuge und die Ausführung komplexer mehrstufiger Aufgaben ermöglicht. Das Modell basiert auf DeepSeek-V3.1-Base und wurde durch eine zweistufige Langtext-Erweiterungsmethode nachtrainiert, wodurch das Trainingsdatenvolumen erheblich erhöht wurde und es sich besonders bei der Verarbeitung langer Dokumente und umfangreicher Codes bewährt. Als Open-Source-Modell zeigt DeepSeek-V3.1 in Benchmarks zu Codierung, Mathematik und logischem Denken Fähigkeiten, die mit führenden Closed-Source-Modellen vergleichbar sind. Gleichzeitig senkt seine hybride Expertenarchitektur (MoE) die Inferenzkosten bei gleichzeitiger Beibehaltung einer enormen Modellkapazität."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 ist ein MoE-Architektur-Basis-Modell mit herausragenden Code- und Agentenfähigkeiten, insgesamt 1 Billion Parameter und 32 Milliarden aktivierten Parametern. In Benchmark-Tests zu allgemeinem Wissen, Programmierung, Mathematik und Agentenaufgaben übertrifft das K2-Modell andere führende Open-Source-Modelle."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 ist ein hybrides Expertenmodell (MoE) mit 6710 Milliarden Parametern, das eine Multi-Head-Latent-Attention (MLA) und die DeepSeekMoE-Architektur verwendet, kombiniert mit einer Lastenausgleichsstrategie ohne Hilfskosten, um die Inferenz- und Trainingseffizienz zu optimieren. Durch das Pre-Training auf 14,8 Billionen hochwertigen Tokens und anschließendes überwachten Feintuning und verstärkendes Lernen übertrifft DeepSeek-V3 in der Leistung andere Open-Source-Modelle und nähert sich führenden Closed-Source-Modellen."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 ist ein hybrides großes Sprachmodell, das von DeepSeek AI veröffentlicht wurde und auf dem Vorgängermodell in vielerlei Hinsicht bedeutende Verbesserungen aufweist. Eine wesentliche Innovation dieses Modells ist die Integration des „Denkmodus“ und des „Nicht-Denkmodus“ in einem System, wobei Nutzer durch Anpassung der Chat-Vorlagen flexibel zwischen den Modi wechseln können, um unterschiedlichen Aufgabenanforderungen gerecht zu werden. Durch spezielles Post-Training wurde die Leistung von V3.1 bei Tool-Aufrufen und Agentenaufgaben deutlich gesteigert, was eine bessere Unterstützung externer Suchwerkzeuge und die Ausführung komplexer mehrstufiger Aufgaben ermöglicht. Das Modell basiert auf DeepSeek-V3.1-Base und wurde durch eine zweistufige Langtext-Erweiterungsmethode nachtrainiert, wodurch das Trainingsdatenvolumen erheblich erhöht wurde und es sich besonders bei der Verarbeitung langer Dokumente und umfangreicher Codes bewährt. Als Open-Source-Modell zeigt DeepSeek-V3.1 in Benchmarks zu Codierung, Mathematik und logischem Denken Fähigkeiten, die mit führenden Closed-Source-Modellen vergleichbar sind. Gleichzeitig senkt seine hybride Expertenarchitektur (MoE) die Inferenzkosten bei gleichzeitiger Beibehaltung einer enormen Modellkapazität."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B ist ein fortschrittliches Modell, das für komplexe Dialoge trainiert wurde."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 Vollversion mit 671B Parametern, die Echtzeit-Online-Suche unterstützt und über verbesserte Verständnis- und Generierungsfähigkeiten verfügt."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "DeepSeek V3.1 Denkmodus. Bevor die endgültige Antwort ausgegeben wird, generiert das Modell eine Kette von Überlegungen, um die Genauigkeit der finalen Antwort zu verbessern."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 ist ein effizientes Mixture-of-Experts-Sprachmodell, das für wirtschaftliche Verarbeitungsanforderungen geeignet ist."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 ist ein MoE-Modell mit 671 Milliarden Parametern, das in den Bereichen Programmierung und technische Fähigkeiten, Kontextverständnis und Verarbeitung langer Texte herausragende Vorteile bietet."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 ist ein neu eingeführtes hybrides Inferenzmodell von DeepSeek, das zwei Inferenzmodi unterstützt: Denkmodus und Nicht-Denkmodus. Es ist effizienter im Denkprozess als DeepSeek-R1-0528. Durch Post-Training-Optimierung wurden die Nutzung von Agenten-Tools und die Leistung bei Agentenaufgaben erheblich verbessert. Unterstützt ein Kontextfenster von 128k und eine maximale Ausgabelänge von 64k Tokens."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 ist ein Experten-Mischmodell mit 685B Parametern und die neueste Iteration der Flaggschiff-Chatmodellreihe des DeepSeek-Teams.\n\nEs erbt das [DeepSeek V3](/deepseek/deepseek-chat-v3) Modell und zeigt hervorragende Leistungen in verschiedenen Aufgaben."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 ist ein Experten-Mischmodell mit 685B Parametern und die neueste Iteration der Flaggschiff-Chatmodellreihe des DeepSeek-Teams.\n\nEs erbt das [DeepSeek V3](/deepseek/deepseek-chat-v3) Modell und zeigt hervorragende Leistungen in verschiedenen Aufgaben."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 ist ein großes hybrides Inferenzmodell, das 128K langen Kontext und effizienten Moduswechsel unterstützt. Es erzielt herausragende Leistung und Geschwindigkeit bei Tool-Aufrufen, Codegenerierung und komplexen Inferenzaufgaben."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 hat die Schlussfolgerungsfähigkeiten des Modells erheblich verbessert, selbst bei nur wenigen gekennzeichneten Daten. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash ist Googles kosteneffizientestes Modell und bietet umfassende Funktionen."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana ist Googles neuestes, schnellstes und effizientestes natives multimodales Modell, das es Ihnen ermöglicht, Bilder durch Dialog zu generieren und zu bearbeiten."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana ist Googles neuestes, schnellstes und effizientestes natives multimodales Modell, das es Ihnen ermöglicht, Bilder durch Dialog zu generieren und zu bearbeiten."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite ist Googles kleinstes und kosteneffizientestes Modell, das speziell für den großflächigen Einsatz entwickelt wurde."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "Model provider: sophnet platform. DeepSeek V3 Fast is the high-TPS ultra-fast version of DeepSeek V3 0324, fully powered without quantization, featuring enhanced coding and mathematical capabilities for faster response!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 is a newly launched hybrid reasoning model by DeepSeek, supporting two reasoning modes: thinking and non-thinking. It offers higher thinking efficiency compared to DeepSeek-R1-0528. With post-training optimization, the use of Agent tools and agent task performance have been significantly enhanced."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite offers ultra-fast response times and better cost-effectiveness, providing customers with more flexible options for different scenarios. Supports inference and fine-tuning with a 128k context window."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "Baidu's latest self-developed high-performance large language model released in 2024, with outstanding general capabilities, providing better results than ERNIE Speed, suitable as a base model for fine-tuning, effectively addressing specific scenario issues while also exhibiting excellent inference performance."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev is a multimodal image generation and editing model developed by Black Forest Labs based on the Rectified Flow Transformer architecture, featuring 12 billion parameters. It specializes in generating, reconstructing, enhancing, or editing images under given contextual conditions. The model combines the controllable generation advantages of diffusion models with the contextual modeling capabilities of Transformers, supporting high-quality image output and widely applicable to image restoration, completion, and visual scene reconstruction tasks."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev is an open-source multimodal language model (MLLM) developed by Black Forest Labs, optimized for vision-and-language tasks by integrating image and text understanding and generation capabilities. Built upon advanced large language models such as Mistral-7B, it achieves vision-language collaborative processing and complex task reasoning through a carefully designed visual encoder and multi-stage instruction fine-tuning."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 is a mixed expert (MoE) language model with 671 billion parameters, utilizing multi-head latent attention (MLA) and the DeepSeekMoE architecture, combined with a load balancing strategy without auxiliary loss to optimize inference and training efficiency. Pre-trained on 14.8 trillion high-quality tokens and fine-tuned with supervision and reinforcement learning, DeepSeek-V3 outperforms other open-source models and approaches leading closed-source models."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 is a hybrid large language model released by DeepSeek AI, featuring multiple significant upgrades over its predecessor. A key innovation of this model is the integration of both \"Thinking Mode\" and \"Non-thinking Mode,\" allowing users to flexibly switch between modes by adjusting chat templates to suit different task requirements. Through dedicated post-training optimization, V3.1 significantly enhances performance in tool invocation and Agent tasks, better supporting external search tools and executing complex multi-step tasks. Based on DeepSeek-V3.1-Base, it employs a two-stage long-text extension method to greatly increase training data volume, improving its handling of long documents and extensive code. As an open-source model, DeepSeek-V3.1 demonstrates capabilities comparable to top closed-source models across benchmarks in coding, mathematics, and reasoning. Its Mixture of Experts (MoE) architecture maintains a massive model capacity while effectively reducing inference costs."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 is a MoE architecture base model with exceptional coding and agent capabilities, featuring 1 trillion total parameters and 32 billion activated parameters. In benchmark tests across general knowledge reasoning, programming, mathematics, and agent tasks, the K2 model outperforms other mainstream open-source models."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 is a mixture of experts (MoE) language model with 671 billion parameters, utilizing multi-head latent attention (MLA) and the DeepSeekMoE architecture, combined with a load balancing strategy that does not rely on auxiliary loss, optimizing inference and training efficiency. Pre-trained on 14.8 trillion high-quality tokens and fine-tuned with supervision and reinforcement learning, DeepSeek-V3 outperforms other open-source models and approaches leading closed-source models in performance."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 is a hybrid large language model released by DeepSeek AI, featuring multiple significant upgrades over its predecessor. A key innovation of this model is the integration of both \"Thinking Mode\" and \"Non-thinking Mode,\" allowing users to flexibly switch between modes by adjusting chat templates to suit different task requirements. Through dedicated post-training optimization, V3.1 significantly enhances performance in tool invocation and Agent tasks, better supporting external search tools and executing complex multi-step tasks. Based on DeepSeek-V3.1-Base, it employs a two-stage long-text extension method to greatly increase training data volume, improving its handling of long documents and extensive code. As an open-source model, DeepSeek-V3.1 demonstrates capabilities comparable to top closed-source models across benchmarks in coding, mathematics, and reasoning. Its Mixture of Experts (MoE) architecture maintains a massive model capacity while effectively reducing inference costs."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B is an advanced model trained for highly complex conversations."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 full version, with 671B parameters, supporting real-time online search, offering enhanced understanding and generation capabilities."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "DeepSeek V3.1 Thinking Mode. Before outputting the final answer, the model first generates a chain of thought to improve the accuracy of the final response."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 is an efficient Mixture-of-Experts language model, suitable for cost-effective processing needs."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 is a 671B parameter MoE model, excelling in programming and technical capabilities, contextual understanding, and long text processing."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 is a newly launched hybrid reasoning model by DeepSeek, supporting two reasoning modes: thinking and non-thinking. It offers higher thinking efficiency compared to DeepSeek-R1-0528. With post-training optimization, the use of Agent tools and agent task performance have been significantly enhanced. It supports a 128k context window and an output length of up to 64k tokens."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 is a 685B parameter expert mixture model, the latest iteration in the DeepSeek team's flagship chat model series.\n\nIt inherits from the [DeepSeek V3](/deepseek/deepseek-chat-v3) model and performs excellently across various tasks."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 is a 685B parameter expert mixture model, the latest iteration in the DeepSeek team's flagship chat model series.\n\nIt inherits from the [DeepSeek V3](/deepseek/deepseek-chat-v3) model and performs excellently across various tasks."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 is a large hybrid reasoning model supporting 128K long context and efficient mode switching, delivering outstanding performance and speed in tool invocation, code generation, and complex reasoning tasks."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 significantly enhances model reasoning capabilities with minimal labeled data. Before outputting the final answer, the model first provides a chain of thought to improve the accuracy of the final response."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash is Google's most cost-effective model, offering comprehensive capabilities."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana is Google's latest, fastest, and most efficient native multimodal model, enabling you to generate and edit images through conversation."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana is Google's latest, fastest, and most efficient native multimodal model, enabling you to generate and edit images through conversation."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite is Google's smallest and most cost-effective model, designed for large-scale use."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "Proveedor del modelo: plataforma sophnet. DeepSeek V3 Fast es la versión de alta velocidad y alto TPS de DeepSeek V3 0324, completamente sin cuantificación, con mayor capacidad en código y matemáticas, ¡y respuesta más rápida!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 es un nuevo modelo híbrido de razonamiento lanzado por DeepSeek, que soporta dos modos de razonamiento: con pensamiento y sin pensamiento, con una eficiencia de pensamiento superior a DeepSeek-R1-0528. Tras una optimización post-entrenamiento, el uso de herramientas Agent y el rendimiento en tareas inteligentes han mejorado significativamente."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite ofrece una velocidad de respuesta excepcional y una mejor relación calidad-precio, proporcionando opciones más flexibles para diferentes escenarios de los clientes. Soporta inferencia y ajuste fino con una ventana de contexto de 128k."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "Modelo de lenguaje de alto rendimiento desarrollado por Baidu, lanzado en 2024, con capacidades generales excepcionales, superando a ERNIE Speed, adecuado como modelo base para ajustes finos, manejando mejor problemas en escenarios específicos, y con un rendimiento de inferencia excelente."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev es un modelo multimodal de generación y edición de imágenes desarrollado por Black Forest Labs, basado en la arquitectura Rectified Flow Transformer, con una escala de 12 mil millones de parámetros. Se especializa en generar, reconstruir, mejorar o editar imágenes bajo condiciones contextuales dadas. Combina las ventajas de generación controlada de modelos de difusión con la capacidad de modelado contextual de Transformers, soportando salidas de alta calidad y aplicándose ampliamente en tareas como restauración de imágenes, completado y reconstrucción de escenas visuales."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev es un modelo multimodal de lenguaje (MLLM) de código abierto desarrollado por Black Forest Labs, optimizado para tareas de texto e imagen, integrando capacidades de comprensión y generación tanto visual como textual. Está basado en avanzados modelos de lenguaje grande (como Mistral-7B) y mediante un codificador visual cuidadosamente diseñado y un ajuste fino por etapas con instrucciones, logra procesamiento colaborativo de texto e imagen y razonamiento para tareas complejas."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 es un modelo de lenguaje de expertos mixtos (MoE) con 671 mil millones de parámetros, que utiliza atención potencial de múltiples cabezas (MLA) y la arquitectura DeepSeekMoE, combinando estrategias de balanceo de carga sin pérdidas auxiliares para optimizar la eficiencia de inferencia y entrenamiento. Preentrenado en 14.8 billones de tokens de alta calidad, y ajustado mediante supervisión y aprendizaje por refuerzo, DeepSeek-V3 supera a otros modelos de código abierto y se acerca a los modelos cerrados líderes."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 es un modelo de lenguaje grande híbrido lanzado por DeepSeek AI, que incorpora múltiples mejoras importantes sobre su predecesor. Una innovación clave es la integración de los modos \"Pensamiento\" y \"No pensamiento\" en un solo modelo, permitiendo a los usuarios alternar flexiblemente mediante la configuración de plantillas de chat para adaptarse a diferentes tareas. Gracias a una optimización post-entrenamiento especializada, V3.1 mejora significativamente el rendimiento en llamadas a herramientas y tareas Agent, soportando mejor herramientas de búsqueda externas y la ejecución de tareas complejas en múltiples pasos. Basado en DeepSeek-V3.1-Base, se amplió considerablemente la cantidad de datos de entrenamiento mediante un método de extensión de texto largo en dos fases, mejorando su desempeño en documentos extensos y código largo. Como modelo de código abierto, DeepSeek-V3.1 demuestra capacidades comparables a los mejores modelos cerrados en benchmarks de codificación, matemáticas y razonamiento, y gracias a su arquitectura de expertos mixtos (MoE), mantiene una gran capacidad de modelo mientras reduce eficazmente los costos de inferencia."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 es un modelo base con arquitectura MoE que posee capacidades avanzadas de codificación y agentes, con un total de 1 billón de parámetros y 32 mil millones de parámetros activados. En pruebas de referencia en categorías principales como razonamiento general, programación, matemáticas y agentes, el rendimiento del modelo K2 supera a otros modelos de código abierto populares."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 es un modelo de lenguaje de expertos mixtos (MoE) con 6710 millones de parámetros, que utiliza atención latente de múltiples cabezas (MLA) y la arquitectura DeepSeekMoE, combinando una estrategia de balanceo de carga sin pérdidas auxiliares para optimizar la eficiencia de inferencia y entrenamiento. Al ser preentrenado en 14.8 billones de tokens de alta calidad y realizar ajustes supervisados y aprendizaje reforzado, DeepSeek-V3 supera en rendimiento a otros modelos de código abierto, acercándose a los modelos cerrados líderes."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 es un modelo de lenguaje grande híbrido lanzado por DeepSeek AI, que incorpora múltiples mejoras importantes sobre su predecesor. Una innovación clave es la integración de los modos \"Pensamiento\" y \"No pensamiento\" en un solo modelo, permitiendo a los usuarios alternar flexiblemente mediante la configuración de plantillas de chat para adaptarse a diferentes tareas. Gracias a una optimización post-entrenamiento especializada, V3.1 mejora significativamente el rendimiento en llamadas a herramientas y tareas Agent, soportando mejor herramientas de búsqueda externas y la ejecución de tareas complejas en múltiples pasos. Basado en DeepSeek-V3.1-Base, se amplió considerablemente la cantidad de datos de entrenamiento mediante un método de extensión de texto largo en dos fases, mejorando su desempeño en documentos extensos y código largo. Como modelo de código abierto, DeepSeek-V3.1 demuestra capacidades comparables a los mejores modelos cerrados en benchmarks de codificación, matemáticas y razonamiento, y gracias a su arquitectura de expertos mixtos (MoE), mantiene una gran capacidad de modelo mientras reduce eficazmente los costos de inferencia."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B es un modelo avanzado entrenado para diálogos de alta complejidad."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 versión completa, con 671B de parámetros, que soporta búsqueda en línea en tiempo real, con una capacidad de comprensión y generación más potente."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "Modo de pensamiento DeepSeek V3.1. Antes de emitir la respuesta final, el modelo genera una cadena de razonamiento para mejorar la precisión de la respuesta."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 es un modelo de lenguaje Mixture-of-Experts eficiente, adecuado para necesidades de procesamiento económico."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 es un modelo MoE de 671B parámetros, destacándose en habilidades de programación y técnicas, comprensión del contexto y procesamiento de textos largos."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 es un nuevo modelo híbrido de razonamiento lanzado por DeepSeek, que soporta dos modos de razonamiento: con pensamiento y sin pensamiento, con una eficiencia de pensamiento superior a DeepSeek-R1-0528. Tras una optimización post-entrenamiento, el uso de herramientas Agent y el rendimiento en tareas inteligentes han mejorado significativamente. Soporta una ventana de contexto de 128k y una longitud máxima de salida de 64k tokens."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 es un modelo experto de mezcla de 685B parámetros, la última iteración de la serie de modelos de chat insignia del equipo de DeepSeek.\n\nHereda el modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) y se desempeña excepcionalmente en diversas tareas."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 es un modelo experto de mezcla de 685B parámetros, la última iteración de la serie de modelos de chat insignia del equipo de DeepSeek.\n\nHereda el modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) y se desempeña excepcionalmente en diversas tareas."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 es un modelo híbrido de razonamiento grande que soporta contexto largo de 128K y cambio eficiente de modos, logrando un rendimiento y velocidad sobresalientes en llamadas a herramientas, generación de código y tareas complejas de razonamiento."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 mejora significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de proporcionar la respuesta final, el modelo genera una cadena de pensamiento para mejorar la precisión de la respuesta final."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash es el modelo de mejor relación calidad-precio de Google, que ofrece funcionalidades completas."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana es el modelo multimodal nativo más reciente, rápido y eficiente de Google, que permite generar y editar imágenes mediante diálogo."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana es el modelo multimodal nativo más reciente, rápido y eficiente de Google, que permite generar y editar imágenes mediante diálogo."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite es el modelo más pequeño y rentable de Google, diseñado para un uso a gran escala."
|