@lobehub/chat 1.119.2 → 1.120.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.vscode/settings.json +2 -3
- package/CHANGELOG.md +58 -0
- package/changelog/v1.json +21 -0
- package/locales/ar/models.json +24 -3
- package/locales/bg-BG/models.json +24 -3
- package/locales/de-DE/models.json +24 -3
- package/locales/en-US/models.json +24 -3
- package/locales/es-ES/models.json +24 -3
- package/locales/fa-IR/models.json +24 -3
- package/locales/fr-FR/models.json +24 -3
- package/locales/it-IT/models.json +24 -3
- package/locales/ja-JP/models.json +24 -3
- package/locales/ko-KR/models.json +24 -3
- package/locales/nl-NL/models.json +24 -3
- package/locales/pl-PL/models.json +24 -3
- package/locales/pt-BR/models.json +24 -3
- package/locales/ru-RU/models.json +24 -3
- package/locales/tr-TR/models.json +24 -3
- package/locales/vi-VN/models.json +24 -3
- package/locales/zh-CN/models.json +24 -3
- package/locales/zh-TW/models.json +24 -3
- package/package.json +2 -5
- package/packages/database/src/models/__tests__/generationBatch.test.ts +47 -1
- package/packages/database/src/models/generationBatch.ts +8 -1
- package/packages/model-bank/src/aiModels/aihubmix.ts +1 -1
- package/packages/model-bank/src/aiModels/google.ts +4 -4
- package/packages/model-bank/src/aiModels/openrouter.ts +2 -2
- package/packages/model-bank/src/aiModels/qwen.ts +3 -1
- package/packages/model-bank/src/aiModels/siliconcloud.ts +6 -0
- package/packages/model-bank/src/aiModels/vertexai.ts +2 -2
- package/packages/model-runtime/src/google/createImage.ts +52 -24
- package/packages/model-runtime/src/qwen/index.ts +1 -1
- package/packages/model-runtime/src/siliconcloud/index.ts +1 -1
- package/src/app/[variants]/(main)/(mobile)/me/settings/features/useCategory.tsx +2 -16
- package/src/app/[variants]/(main)/chat/@session/_layout/Desktop/SessionHeader.tsx +1 -3
- package/src/app/[variants]/(main)/chat/@session/_layout/Mobile/SessionHeader.tsx +1 -3
- package/src/app/[variants]/(main)/settings/hooks/useCategory.tsx +3 -21
- package/src/config/featureFlags/schema.test.ts +1 -2
- package/src/config/featureFlags/schema.ts +0 -6
- package/src/config/featureFlags/utils/parser.test.ts +7 -7
- package/src/database/_deprecated/core/index.ts +0 -1
- package/src/database/_deprecated/core/model.ts +4 -38
- package/src/database/_deprecated/models/message.ts +1 -1
- package/src/layout/GlobalProvider/StoreInitialization.tsx +0 -3
- package/src/store/serverConfig/selectors.test.ts +0 -1
- package/src/store/user/initialState.ts +1 -4
- package/src/store/user/selectors.ts +0 -1
- package/src/store/user/store.ts +1 -4
- package/docs/self-hosting/advanced/webrtc.mdx +0 -86
- package/docs/self-hosting/advanced/webrtc.zh-CN.mdx +0 -80
- package/src/app/[variants]/(main)/settings/sync/features/Alert.tsx +0 -53
- package/src/app/[variants]/(main)/settings/sync/features/DeviceInfo/Card.tsx +0 -42
- package/src/app/[variants]/(main)/settings/sync/features/DeviceInfo/DeviceName.tsx +0 -62
- package/src/app/[variants]/(main)/settings/sync/features/DeviceInfo/SystemIcon.tsx +0 -31
- package/src/app/[variants]/(main)/settings/sync/features/DeviceInfo/index.tsx +0 -103
- package/src/app/[variants]/(main)/settings/sync/features/WebRTC/ChannelNameInput.tsx +0 -45
- package/src/app/[variants]/(main)/settings/sync/features/WebRTC/SyncSwitch/index.css +0 -238
- package/src/app/[variants]/(main)/settings/sync/features/WebRTC/SyncSwitch/index.tsx +0 -79
- package/src/app/[variants]/(main)/settings/sync/features/WebRTC/generateRandomRoomName.ts +0 -4
- package/src/app/[variants]/(main)/settings/sync/features/WebRTC/index.tsx +0 -103
- package/src/app/[variants]/(main)/settings/sync/index.tsx +0 -17
- package/src/app/[variants]/(main)/settings/sync/page.tsx +0 -29
- package/src/database/_deprecated/core/sync.ts +0 -321
- package/src/features/SyncStatusInspector/DisableSync.tsx +0 -79
- package/src/features/SyncStatusInspector/EnableSync.tsx +0 -132
- package/src/features/SyncStatusInspector/EnableTag.tsx +0 -66
- package/src/features/SyncStatusInspector/index.tsx +0 -27
- package/src/hooks/useSyncData.ts +0 -50
- package/src/services/__tests__/sync.test.ts +0 -56
- package/src/services/sync.ts +0 -19
- package/src/store/user/slices/sync/action.test.ts +0 -164
- package/src/store/user/slices/sync/action.ts +0 -101
- package/src/store/user/slices/sync/initialState.ts +0 -13
- package/src/store/user/slices/sync/selectors.ts +0 -20
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "تأمینکننده مدل: پلتفرم sophnet. DeepSeek V3 Fast نسخهای با TPS بالا و سرعت بسیار زیاد از نسخه DeepSeek V3 0324 است، بدون کمیتسازی، با تواناییهای کد و ریاضی قویتر و پاسخدهی سریعتر!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 یک مدل استدلال ترکیبی جدید از DeepSeek است که از دو حالت استدلال تفکری و غیرتفکری پشتیبانی میکند و نسبت به DeepSeek-R1-0528 در حالت تفکری کارایی بالاتری دارد. پس از آموزش تکمیلی، استفاده از ابزارهای Agent و عملکرد وظایف هوشمند به طور قابل توجهی بهبود یافته است."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite دارای سرعت پاسخگویی بینظیر و نسبت قیمت به کارایی بهتر است و گزینههای انعطافپذیرتری را برای سناریوهای مختلف مشتریان ارائه میدهد. از پنجره متنی 128k برای استدلال و تنظیم دقیق پشتیبانی میکند."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "مدل زبان بزرگ با عملکرد بالا که در سال 2024 توسط بایدو بهطور مستقل توسعه یافته است. این مدل دارای تواناییهای عمومی برجستهای است و عملکرد بهتری نسبت به ERNIE Speed دارد. مناسب برای استفاده به عنوان مدل پایه برای تنظیم دقیق و حل بهتر مسائل در سناریوهای خاص، همچنین دارای عملکرد استنتاجی بسیار عالی است."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev یک مدل تولید و ویرایش تصویر چندرسانهای است که توسط Black Forest Labs توسعه یافته و بر اساس معماری Rectified Flow Transformer ساخته شده است. این مدل با 12 میلیارد پارامتر، بر تولید، بازسازی، تقویت یا ویرایش تصاویر تحت شرایط متنی تمرکز دارد. این مدل ترکیبی از مزایای تولید کنترلشده مدلهای انتشار و قابلیت مدلسازی زمینهای ترنسفورمر است و از خروجی تصاویر با کیفیت بالا پشتیبانی میکند و در وظایفی مانند ترمیم تصویر، تکمیل تصویر و بازسازی صحنههای بصری کاربرد گسترده دارد."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev یک مدل زبان چندرسانهای متنباز است که توسط Black Forest Labs توسعه یافته و برای وظایف ترکیبی تصویر و متن بهینه شده است. این مدل بر پایه مدلهای زبان بزرگ پیشرفته مانند Mistral-7B ساخته شده و با استفاده از رمزگذار بصری طراحیشده و تنظیم دقیق چندمرحلهای دستوری، توانایی پردازش همزمان تصویر و متن و استدلال در وظایف پیچیده را دارد."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 یک مدل زبان با 671 میلیارد پارامتر است که از معماری متخصصان ترکیبی (MoE) و توجه چندسر (MLA) استفاده میکند و با استراتژی تعادل بار بدون ضرر کمکی بهینهسازی کارایی استنتاج و آموزش را انجام میدهد. این مدل با پیشآموزش بر روی 14.8 تریلیون توکن با کیفیت بالا و انجام تنظیم دقیق نظارتی و یادگیری تقویتی، در عملکرد از سایر مدلهای متنباز پیشی میگیرد و به مدلهای بسته پیشرو نزدیک میشود."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 یک مدل زبان بزرگ با حالت ترکیبی است که توسط DeepSeek AI منتشر شده و در مقایسه با نسخههای قبلی خود بهروزرسانیهای مهمی را تجربه کرده است. نوآوری اصلی این مدل ادغام «حالت تفکر» و «حالت غیرتفکر» در یک مدل است که کاربران میتوانند با تنظیم قالب گفتگو به صورت انعطافپذیر بین آنها جابجا شوند تا نیازهای مختلف وظایف را برآورده کنند. با بهینهسازی پس از آموزش تخصصی، عملکرد V3.1 در فراخوانی ابزارها و وظایف Agent به طور قابل توجهی افزایش یافته و پشتیبانی بهتری از ابزارهای جستجوی خارجی و اجرای وظایف پیچیده چندمرحلهای ارائه میدهد. این مدل بر پایه DeepSeek-V3.1-Base آموزش داده شده و با روش توسعه متن بلند دو مرحلهای، حجم دادههای آموزشی را به طور چشمگیری افزایش داده است که باعث بهبود عملکرد در پردازش اسناد طولانی و کدهای بلند میشود. به عنوان یک مدل متنباز، DeepSeek-V3.1 در آزمونهای معیار مختلفی مانند کدنویسی، ریاضیات و استدلال تواناییهایی در حد مدلهای بسته پیشرفته نشان میدهد و با معماری متخصص ترکیبی (MoE) خود، ضمن حفظ ظرفیت عظیم مدل، هزینههای استدلال را به طور موثری کاهش میدهد."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 یک مدل پایه با معماری MoE است که دارای تواناییهای بسیار قوی در کدنویسی و عامل است، با 1 تریلیون پارامتر کل و 32 میلیارد پارامتر فعال. در آزمونهای معیار عملکرد در حوزههای دانش عمومی، برنامهنویسی، ریاضیات و عامل، مدل K2 عملکردی فراتر از سایر مدلهای متنباز اصلی دارد."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 یک مدل زبانی ترکیبی از متخصصان (MoE) با 671 میلیارد پارامتر است که از توجه چندسر (MLA) و معماری DeepSeekMoE استفاده میکند و با ترکیب استراتژی تعادل بار بدون ضرر کمکی، کارایی استنتاج و آموزش را بهینه میکند. با پیشآموزش بر روی 14.8 تریلیون توکن با کیفیت بالا و انجام تنظیم دقیق نظارتی و یادگیری تقویتی، DeepSeek-V3 در عملکرد از سایر مدلهای متنباز پیشی میگیرد و به مدلهای بسته پیشرو نزدیک میشود."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 یک مدل زبان بزرگ با حالت ترکیبی است که توسط DeepSeek AI منتشر شده و در مقایسه با نسخههای قبلی خود بهروزرسانیهای مهمی را تجربه کرده است. نوآوری اصلی این مدل ادغام «حالت تفکر» و «حالت غیرتفکر» در یک مدل است که کاربران میتوانند با تنظیم قالب گفتگو به صورت انعطافپذیر بین آنها جابجا شوند تا نیازهای مختلف وظایف را برآورده کنند. با بهینهسازی پس از آموزش تخصصی، عملکرد V3.1 در فراخوانی ابزارها و وظایف Agent به طور قابل توجهی افزایش یافته و پشتیبانی بهتری از ابزارهای جستجوی خارجی و اجرای وظایف پیچیده چندمرحلهای ارائه میدهد. این مدل بر پایه DeepSeek-V3.1-Base آموزش داده شده و با روش توسعه متن بلند دو مرحلهای، حجم دادههای آموزشی را به طور چشمگیری افزایش داده است که باعث بهبود عملکرد در پردازش اسناد طولانی و کدهای بلند میشود. به عنوان یک مدل متنباز، DeepSeek-V3.1 در آزمونهای معیار مختلفی مانند کدنویسی، ریاضیات و استدلال تواناییهایی در حد مدلهای بسته پیشرفته نشان میدهد و با معماری متخصص ترکیبی (MoE) خود، ضمن حفظ ظرفیت عظیم مدل، هزینههای استدلال را به طور موثری کاهش میدهد."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek LLM Chat (67B) یک مدل نوآورانه هوش مصنوعی است که توانایی درک عمیق زبان و تعامل را فراهم میکند."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 نسخه کامل است که دارای 671B پارامتر است و از جستجوی آنلاین زنده پشتیبانی میکند و دارای تواناییهای درک و تولید قویتری است."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "حالت تفکر DeepSeek V3.1. قبل از ارائه پاسخ نهایی، مدل یک زنجیره فکری را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 یک مدل زبانی Mixture-of-Experts کارآمد است که برای پردازش نیازهای اقتصادی و کارآمد مناسب میباشد."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 یک مدل MoE با ۶۷۱ میلیارد پارامتر است که در زمینههای برنامهنویسی و تواناییهای فنی، درک زمینه و پردازش متنهای طولانی برتری دارد."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 یک مدل استدلال ترکیبی جدید از DeepSeek است که از دو حالت استدلال تفکری و غیرتفکری پشتیبانی میکند و نسبت به DeepSeek-R1-0528 در حالت تفکری کارایی بالاتری دارد. پس از آموزش تکمیلی، استفاده از ابزارهای Agent و عملکرد وظایف هوشمند به طور قابل توجهی بهبود یافته است. پشتیبانی از پنجره متنی 128k و طول خروجی تا 64k توکن."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 یک مدل بزرگ استدلال ترکیبی است که از زمینه طولانی 128K و تغییر حالت کارآمد پشتیبانی میکند و در فراخوانی ابزارها، تولید کد و وظایف استدلال پیچیده عملکرد و سرعت برجستهای دارد."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash مدل با بهترین نسبت قیمت به کارایی گوگل است که امکانات جامع را ارائه میدهد."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana جدیدترین، سریعترین و کارآمدترین مدل چندرسانهای بومی گوگل است که به شما امکان میدهد از طریق گفتگو تصاویر را تولید و ویرایش کنید."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana جدیدترین، سریعترین و کارآمدترین مدل چندرسانهای بومی گوگل است که به شما امکان میدهد از طریق گفتگو تصاویر را تولید و ویرایش کنید."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite کوچکترین و مقرونبهصرفهترین مدل گوگل است که برای استفاده در مقیاس وسیع طراحی شده است."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "Fournisseur du modèle : plateforme sophnet. DeepSeek V3 Fast est la version ultra-rapide à TPS élevé de DeepSeek V3 0324, entièrement non quantifiée, avec des capacités de code et mathématiques renforcées, offrant une réactivité accrue !"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 est un nouveau modèle d'inférence hybride lancé par DeepSeek, prenant en charge deux modes d'inférence : réfléchi et non réfléchi, avec une efficacité de réflexion supérieure à celle de DeepSeek-R1-0528. Optimisé par post-entraînement, l'utilisation des outils Agent et les performances des tâches des agents ont été grandement améliorées."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite offre une vitesse de réponse exceptionnelle et un excellent rapport qualité-prix, offrant aux clients une flexibilité accrue pour différents scénarios. Prend en charge l'inférence et le fine-tuning avec une fenêtre contextuelle de 128k."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "Modèle de langage haute performance développé par Baidu, publié en 2024, avec d'excellentes capacités générales, offrant de meilleures performances que ERNIE Speed, adapté comme modèle de base pour un ajustement fin, permettant de mieux traiter les problèmes de scénarios spécifiques, tout en offrant d'excellentes performances d'inférence."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev est un modèle multimodal de génération et d'édition d'images développé par Black Forest Labs, basé sur l'architecture Rectified Flow Transformer, avec une échelle de 12 milliards de paramètres. Il se concentre sur la génération, la reconstruction, l'amélioration ou l'édition d'images sous conditions contextuelles données. Ce modèle combine les avantages de génération contrôlée des modèles de diffusion et la capacité de modélisation contextuelle des Transformers, supportant une sortie d'images de haute qualité, applicable à la restauration, au remplissage et à la reconstruction visuelle de scènes."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev est un modèle open source multimodal de langage (Multimodal Language Model, MLLM) développé par Black Forest Labs, optimisé pour les tâches texte-image, intégrant la compréhension et la génération d'images et de textes. Basé sur des modèles de langage avancés tels que Mistral-7B, il utilise un encodeur visuel soigneusement conçu et un affinage par instructions en plusieurs étapes, permettant un traitement collaboratif texte-image et un raisonnement complexe."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 est un modèle de langage à experts mixtes (MoE) avec 671 milliards de paramètres, utilisant une attention potentielle multi-tête (MLA) et une architecture DeepSeekMoE, combinant une stratégie d'équilibrage de charge sans perte auxiliaire pour optimiser l'efficacité d'inférence et d'entraînement. Pré-entraîné sur 14,8 billions de tokens de haute qualité, et affiné par supervision et apprentissage par renforcement, DeepSeek-V3 surpasse d'autres modèles open source et se rapproche des modèles fermés de premier plan."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 est un grand modèle de langage hybride publié par DeepSeek AI, intégrant de nombreuses améliorations majeures par rapport à la génération précédente. Une innovation clé de ce modèle est l'intégration des modes « réflexion » (Thinking Mode) et « non-réflexion » (Non-thinking Mode), permettant aux utilisateurs de basculer facilement entre eux via des modèles de conversation adaptés aux différents besoins. Grâce à une optimisation post-entraînement spécifique, la version V3.1 améliore significativement les performances dans l'appel d'outils et les tâches d'agent, supportant mieux les outils de recherche externes et l'exécution de tâches complexes en plusieurs étapes. Basé sur DeepSeek-V3.1-Base, il bénéficie d'un entraînement supplémentaire avec une méthode d'extension de texte long en deux phases, augmentant considérablement la quantité de données d'entraînement pour une meilleure gestion des documents longs et des codes étendus. En tant que modèle open source, DeepSeek-V3.1 démontre des capacités comparables aux meilleurs modèles propriétaires dans plusieurs benchmarks en codage, mathématiques et raisonnement, tout en réduisant efficacement les coûts d'inférence grâce à son architecture à experts mixtes (MoE) qui maintient une grande capacité de modèle."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 est un modèle de base à architecture MoE doté de capacités exceptionnelles en codage et agents, avec 1 000 milliards de paramètres au total et 32 milliards activés. Il surpasse les autres modèles open source majeurs dans les tests de performance sur les connaissances générales, la programmation, les mathématiques et les agents."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 est un modèle de langage à experts mixtes (MoE) avec 6710 milliards de paramètres, utilisant une attention potentielle multi-tête (MLA) et l'architecture DeepSeekMoE, combinée à une stratégie d'équilibrage de charge sans perte auxiliaire, optimisant ainsi l'efficacité d'inférence et d'entraînement. En pré-entraînant sur 14,8 billions de tokens de haute qualité, suivi d'un ajustement supervisé et d'apprentissage par renforcement, DeepSeek-V3 surpasse les autres modèles open source en termes de performance, se rapprochant des modèles fermés de premier plan."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 est un grand modèle de langage hybride publié par DeepSeek AI, intégrant de nombreuses améliorations majeures par rapport à la génération précédente. Une innovation clé de ce modèle est l'intégration des modes « réflexion » (Thinking Mode) et « non-réflexion » (Non-thinking Mode), permettant aux utilisateurs de basculer facilement entre eux via des modèles de conversation adaptés aux différents besoins. Grâce à une optimisation post-entraînement spécifique, la version V3.1 améliore significativement les performances dans l'appel d'outils et les tâches d'agent, supportant mieux les outils de recherche externes et l'exécution de tâches complexes en plusieurs étapes. Basé sur DeepSeek-V3.1-Base, il bénéficie d'un entraînement supplémentaire avec une méthode d'extension de texte long en deux phases, augmentant considérablement la quantité de données d'entraînement pour une meilleure gestion des documents longs et des codes étendus. En tant que modèle open source, DeepSeek-V3.1 démontre des capacités comparables aux meilleurs modèles propriétaires dans plusieurs benchmarks en codage, mathématiques et raisonnement, tout en réduisant efficacement les coûts d'inférence grâce à son architecture à experts mixtes (MoE) qui maintient une grande capacité de modèle."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B est un modèle avancé formé pour des dialogues de haute complexité."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 version complète, avec 671B de paramètres, prenant en charge la recherche en ligne en temps réel, offrant des capacités de compréhension et de génération plus puissantes."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "DeepSeek V3.1 en mode réflexion. Avant de fournir la réponse finale, le modèle génère une chaîne de pensée pour améliorer la précision de la réponse finale."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 est un modèle de langage Mixture-of-Experts efficace, adapté aux besoins de traitement économique."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 est un modèle MoE de 671 milliards de paramètres, se distinguant par ses capacités en programmation et en technique, ainsi que par sa compréhension du contexte et son traitement de longs textes."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 est un nouveau modèle d'inférence hybride lancé par DeepSeek, prenant en charge deux modes d'inférence : réfléchi et non réfléchi, avec une efficacité de réflexion supérieure à celle de DeepSeek-R1-0528. Optimisé par post-entraînement, l'utilisation des outils Agent et les performances des tâches des agents ont été grandement améliorées. Supporte une fenêtre contextuelle de 128k et une longueur de sortie maximale de 64k tokens."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 est un grand modèle d'inférence hybride supportant un contexte long de 128K et un changement de mode efficace, offrant des performances et une rapidité exceptionnelles dans l'appel d'outils, la génération de code et les tâches de raisonnement complexes."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana est le tout dernier modèle multimodal natif de Google, le plus rapide et le plus efficace, qui vous permet de générer et d'éditer des images par conversation."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana est le tout dernier modèle multimodal natif de Google, le plus rapide et le plus efficace, qui vous permet de générer et d'éditer des images par conversation."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite est le modèle le plus petit et le plus rentable de Google, conçu pour une utilisation à grande échelle."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "Il fornitore del modello è la piattaforma sophnet. DeepSeek V3 Fast è la versione ad alta velocità TPS del modello DeepSeek V3 0324, completamente non quantificata, con capacità di codice e matematica potenziate e risposte più rapide!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 è il nuovo modello di ragionamento ibrido lanciato da DeepSeek, che supporta due modalità di ragionamento: con pensiero e senza pensiero, con un'efficienza di pensiero superiore rispetto a DeepSeek-R1-0528. Ottimizzato tramite post-addestramento, l'uso degli strumenti Agent e le prestazioni nelle attività degli agenti sono notevolmente migliorate."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite offre una velocità di risposta eccezionale e un miglior rapporto qualità-prezzo, fornendo ai clienti scelte più flessibili per diversi scenari. Supporta inferenza e fine-tuning con una finestra contestuale di 128k."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "Modello di linguaggio ad alte prestazioni sviluppato da Baidu, lanciato nel 2024, con capacità generali eccellenti, risultati migliori rispetto a ERNIE Speed, adatto come modello di base per il fine-tuning, per gestire meglio le problematiche di scenari specifici, mantenendo al contempo prestazioni di inferenza eccezionali."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev è un modello multimodale di generazione e modifica di immagini sviluppato da Black Forest Labs, basato sull'architettura Rectified Flow Transformer, con una scala di 12 miliardi di parametri. Si concentra sulla generazione, ricostruzione, miglioramento o modifica di immagini in base a condizioni contestuali fornite. Combina i vantaggi della generazione controllata dei modelli di diffusione con la capacità di modellazione contestuale dei Transformer, supportando output di alta qualità e applicazioni estese come il restauro, il completamento e la ricostruzione di scene visive."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev è un modello linguistico multimodale open source sviluppato da Black Forest Labs, ottimizzato per compiti testo-immagine, che integra capacità di comprensione e generazione sia visive che testuali. Basato su modelli linguistici avanzati come Mistral-7B, utilizza un codificatore visivo progettato con cura e un raffinamento a più fasi tramite istruzioni per realizzare capacità collaborative testo-immagine e ragionamento su compiti complessi."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 è un modello di linguaggio con 6710 miliardi di parametri, basato su un'architettura di esperti misti (MoE) che utilizza attenzione multilivello (MLA) e la strategia di bilanciamento del carico senza perdite ausiliarie, ottimizzando l'efficienza di inferenza e addestramento. Pre-addestrato su 14,8 trilioni di token di alta qualità e successivamente affinato tramite supervisione e apprendimento per rinforzo, DeepSeek-V3 supera altri modelli open source, avvicinandosi ai modelli chiusi di punta."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 è un modello linguistico di grandi dimensioni a modalità mista rilasciato da DeepSeek AI, che presenta numerosi aggiornamenti significativi rispetto alla generazione precedente. Una delle innovazioni principali è l'integrazione delle modalità “Thinking Mode” e “Non-thinking Mode” in un unico modello, permettendo agli utenti di passare agevolmente da una modalità all'altra modificando il template di chat, per adattarsi a diverse esigenze di compito. Grazie a un'ottimizzazione post-addestramento dedicata, la versione V3.1 ha migliorato significativamente le prestazioni nell'uso degli strumenti e nelle attività degli agenti, supportando meglio strumenti di ricerca esterni e l'esecuzione di compiti complessi a più fasi. Basato su DeepSeek-V3.1-Base, il modello è stato ulteriormente addestrato con un metodo di estensione in due fasi per testi lunghi, aumentando notevolmente la quantità di dati di addestramento e migliorando la gestione di documenti lunghi e codice esteso. Essendo un modello open source, DeepSeek-V3.1 dimostra capacità comparabili ai migliori modelli proprietari in benchmark di codifica, matematica e ragionamento, e grazie alla sua architettura a esperti misti (MoE), mantiene una grande capacità del modello riducendo efficacemente i costi di inferenza."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 è un modello base con architettura MoE dotato di potenti capacità di codice e agenti, con 1 trilione di parametri totali e 32 miliardi di parametri attivi. Nei test di benchmark su ragionamento generale, programmazione, matematica e agenti, il modello K2 supera altri modelli open source principali."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 è un modello linguistico a esperti misti (MoE) con 6710 miliardi di parametri, che utilizza attenzione latente multi-testa (MLA) e architettura DeepSeekMoE, combinando strategie di bilanciamento del carico senza perdite ausiliarie per ottimizzare l'efficienza di inferenza e addestramento. Pre-addestrato su 14,8 trilioni di token di alta qualità e successivamente affinato supervisionato e tramite apprendimento rinforzato, DeepSeek-V3 supera le prestazioni di altri modelli open source, avvicinandosi ai modelli closed source leader."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 è un modello linguistico di grandi dimensioni a modalità mista rilasciato da DeepSeek AI, che presenta numerosi aggiornamenti significativi rispetto alla generazione precedente. Una delle innovazioni principali è l'integrazione delle modalità “Thinking Mode” e “Non-thinking Mode” in un unico modello, permettendo agli utenti di passare agevolmente da una modalità all'altra modificando il template di chat, per adattarsi a diverse esigenze di compito. Grazie a un'ottimizzazione post-addestramento dedicata, la versione V3.1 ha migliorato significativamente le prestazioni nell'uso degli strumenti e nelle attività degli agenti, supportando meglio strumenti di ricerca esterni e l'esecuzione di compiti complessi a più fasi. Basato su DeepSeek-V3.1-Base, il modello è stato ulteriormente addestrato con un metodo di estensione in due fasi per testi lunghi, aumentando notevolmente la quantità di dati di addestramento e migliorando la gestione di documenti lunghi e codice esteso. Essendo un modello open source, DeepSeek-V3.1 dimostra capacità comparabili ai migliori modelli proprietari in benchmark di codifica, matematica e ragionamento, e grazie alla sua architettura a esperti misti (MoE), mantiene una grande capacità del modello riducendo efficacemente i costi di inferenza."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B è un modello avanzato addestrato per dialoghi ad alta complessità."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 versione completa, con 671B parametri, supporta la ricerca online in tempo reale, con capacità di comprensione e generazione più potenti."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "DeepSeek V3.1 modalità di pensiero. Prima di fornire la risposta finale, il modello genera una catena di pensieri per migliorare la precisione della risposta finale."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 è un modello di linguaggio Mixture-of-Experts efficiente, adatto per esigenze di elaborazione economica."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 è un modello MoE con 671 miliardi di parametri, con vantaggi notevoli nelle capacità di programmazione e tecniche, comprensione del contesto e gestione di testi lunghi."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 è il nuovo modello di ragionamento ibrido lanciato da DeepSeek, che supporta due modalità di ragionamento: con pensiero e senza pensiero, con un'efficienza di pensiero superiore rispetto a DeepSeek-R1-0528. Ottimizzato tramite post-addestramento, l'uso degli strumenti Agent e le prestazioni nelle attività degli agenti sono notevolmente migliorate. Supporta una finestra contestuale di 128k e una lunghezza massima di output di 64k token."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 è un grande modello di ragionamento ibrido che supporta contesti lunghi fino a 128K e un cambio efficiente di modalità. Offre prestazioni e velocità eccellenti nell'uso di strumenti, generazione di codice e compiti di ragionamento complessi."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash è il modello Google con il miglior rapporto qualità-prezzo, offrendo funzionalità complete."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana è l'ultimo, più veloce ed efficiente modello multimodale nativo di Google, che consente di generare e modificare immagini tramite conversazione."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana è l'ultimo, più veloce ed efficiente modello multimodale nativo di Google, che consente di generare e modificare immagini tramite conversazione."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite è il modello più piccolo e conveniente di Google, progettato per un utilizzo su larga scala."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "モデル提供元:sophnetプラットフォーム。DeepSeek V3 FastはDeepSeek V3 0324バージョンの高TPS高速版で、フルパワーの非量子化モデルです。コードと数学能力が強化され、応答速度がさらに速くなっています!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 は、DeepSeek が新たにリリースしたハイブリッド推論モデルで、思考モードと非思考モードの2つの推論モードをサポートし、DeepSeek-R1-0528 よりも思考効率が向上しています。ポストトレーニングによる最適化により、エージェントツールの使用とインテリジェントタスクのパフォーマンスが大幅に向上しました。"
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-liteは極めて高速な応答速度と優れたコストパフォーマンスを備え、さまざまなシナリオに柔軟な選択肢を提供します。128kのコンテキストウィンドウでの推論と微調整をサポートします。"
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "百度が2024年に最新リリースした独自開発の高性能大規模言語モデルで、汎用能力が優れており、ERNIE Speedよりも効果が優れており、基盤モデルとして微調整に適しており、特定のシナリオの問題をより良く処理し、優れた推論性能を持っています。"
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-devはBlack Forest Labsが開発した、Rectified Flow Transformerアーキテクチャに基づくマルチモーダル画像生成・編集モデルで、120億パラメータ規模を持ち、与えられたコンテキスト条件下で画像の生成、再構築、強化、編集に特化しています。本モデルは拡散モデルの制御可能な生成能力とTransformerのコンテキストモデリング能力を融合し、高品質な画像出力を実現。画像修復、画像補完、視覚シーン再構築など幅広いタスクに適用可能です。"
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-devはBlack Forest Labsが開発したオープンソースのマルチモーダル言語モデル(Multimodal Language Model, MLLM)で、画像と言語の理解と生成能力を融合し、画像と言語のタスクに最適化されています。先進的な大規模言語モデル(例:Mistral-7B)を基盤に、精巧に設計された視覚エンコーダーと多段階の指示微調整を通じて、画像と言語の協調処理と複雑なタスク推論能力を実現しています。"
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3は、6710億パラメータを持つ混合専門家(MoE)言語モデルで、多頭潜在注意力(MLA)とDeepSeekMoEアーキテクチャを採用し、無補助損失の負荷バランス戦略を組み合わせて推論とトレーニングの効率を最適化しています。14.8兆の高品質トークンで事前トレーニングを行い、監視付き微調整と強化学習を経て、DeepSeek-V3は他のオープンソースモデルを超え、先進的なクローズドモデルに近づいています。"
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 は DeepSeek AI によってリリースされたハイブリッドモードの大規模言語モデルで、前世代モデルを基に多方面で重要なアップグレードが施されています。このモデルの大きな革新は「思考モード」と「非思考モード」を統合しており、ユーザーはチャットテンプレートを調整することで柔軟に切り替え、異なるタスクのニーズに対応できます。専用のポストトレーニング最適化により、V3.1 はツール呼び出しやエージェントタスクの性能が著しく向上し、外部検索ツールのサポートや多段階の複雑なタスクの実行がより効果的になりました。このモデルは DeepSeek-V3.1-Base をベースにポストトレーニングされ、2段階の長文拡張手法によりトレーニングデータ量を大幅に増加させ、長文ドキュメントや長大なコードの処理能力が向上しています。オープンソースモデルとして、DeepSeek-V3.1 はコーディング、数学、推論など複数のベンチマークでトップクラスのクローズドモデルに匹敵する能力を示し、混合エキスパート(MoE)アーキテクチャにより巨大なモデル容量を維持しつつ推論コストを効果的に削減しています。"
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2は超強力なコードおよびエージェント能力を持つMoEアーキテクチャの基盤モデルで、総パラメータ数1兆、活性化パラメータ320億です。汎用知識推論、プログラミング、数学、エージェントなど主要カテゴリのベンチマーク性能で他の主流オープンソースモデルを上回っています。"
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3は、6710億パラメータを持つ混合専門家(MoE)言語モデルであり、多頭潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用し、補助損失なしの負荷バランス戦略を組み合わせて、推論とトレーニングの効率を最適化します。14.8兆の高品質トークンで事前トレーニングを行い、監視微調整と強化学習を経て、DeepSeek-V3は他のオープンソースモデルを超え、先進的なクローズドソースモデルに近づきました。"
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 は DeepSeek AI によってリリースされたハイブリッドモードの大規模言語モデルで、前世代モデルを基に多方面で重要なアップグレードが施されています。このモデルの大きな革新は「思考モード」と「非思考モード」を統合しており、ユーザーはチャットテンプレートを調整することで柔軟に切り替え、異なるタスクのニーズに対応できます。専用のポストトレーニング最適化により、V3.1 はツール呼び出しやエージェントタスクの性能が著しく向上し、外部検索ツールのサポートや多段階の複雑なタスクの実行がより効果的になりました。このモデルは DeepSeek-V3.1-Base をベースにポストトレーニングされ、2段階の長文拡張手法によりトレーニングデータ量を大幅に増加させ、長文ドキュメントや長大なコードの処理能力が向上しています。オープンソースモデルとして、DeepSeek-V3.1 はコーディング、数学、推論など複数のベンチマークでトップクラスのクローズドモデルに匹敵する能力を示し、混合エキスパート(MoE)アーキテクチャにより巨大なモデル容量を維持しつつ推論コストを効果的に削減しています。"
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67Bは、高い複雑性の対話のために訓練された先進的なモデルです。"
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1フルバージョンで、671Bパラメータを持ち、リアルタイムのオンライン検索をサポートし、より強力な理解と生成能力を備えています。"
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "DeepSeek
|
933
|
+
"description": "DeepSeek V3.1 思考モード。最終回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を高めます。"
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2は、高効率なMixture-of-Experts言語モデルであり、経済的な処理ニーズに適しています。"
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324は671BパラメータのMoEモデルであり、プログラミングと技術能力、文脈理解、長文処理において優れた性能を発揮します。"
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 は DeepSeek が新たにリリースしたハイブリッド推論モデルで、思考モードと非思考モードの2つの推論モードをサポートし、DeepSeek-R1-0528 よりも思考効率が向上しています。ポストトレーニングによる最適化により、エージェントツールの使用とインテリジェントタスクのパフォーマンスが大幅に向上しました。128k のコンテキストウィンドウをサポートし、最大64kトークンの出力長に対応しています。"
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 は128Kの長いコンテキストと効率的なモード切替をサポートする大型ハイブリッド推論モデルで、ツール呼び出し、コード生成、複雑な推論タスクにおいて卓越した性能と速度を実現しています。"
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 FlashはGoogleのコストパフォーマンスに優れたモデルで、包括的な機能を提供します。"
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana は Google の最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、対話を通じて画像の生成と編集を可能にします。"
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana は Google の最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、対話を通じて画像の生成と編集を可能にします。"
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite は、Google の中で最も小さく、コストパフォーマンスに優れたモデルであり、大規模な利用を目的に設計されています。"
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "모델 공급자는 sophnet 플랫폼입니다. DeepSeek V3 Fast는 DeepSeek V3 0324 버전의 고TPS 초고속 버전으로, 완전 비양자화되어 코드와 수학 능력이 더욱 강력하며 반응 속도가 훨씬 빠릅니다!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1은 DeepSeek에서 새롭게 출시한 하이브리드 추론 모델로, 사고 모드와 비사고 모드 두 가지 추론 방식을 지원하며, DeepSeek-R1-0528보다 사고 효율이 더 뛰어납니다. 사후 학습(Post-Training) 최적화를 거쳐 에이전트 도구 사용과 지능형 작업 성능이 크게 향상되었습니다."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite는 탁월한 응답 속도와 뛰어난 가성비를 자랑하며, 고객의 다양한 시나리오에 더 유연한 선택을 제공합니다. 128k 컨텍스트 윈도우 추론 및 미세 조정을 지원합니다."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "바이두가 2024년에 최신 발표한 자체 개발 고성능 대언어 모델로, 일반 능력이 뛰어나며, ERNIE Speed보다 더 나은 성능을 보여 특정 시나리오 문제를 더 잘 처리하기 위해 기본 모델로 조정하는 데 적합하며, 뛰어난 추론 성능을 갖추고 있습니다."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev는 Black Forest Labs가 개발한 Rectified Flow Transformer 아키텍처 기반의 다중 모달 이미지 생성 및 편집 모델로, 120억(12B) 파라미터 규모를 갖추고 있습니다. 주어진 컨텍스트 조건 하에서 이미지 생성, 재구성, 향상 또는 편집에 특화되어 있습니다. 이 모델은 확산 모델의 제어 가능한 생성 장점과 Transformer의 컨텍스트 모델링 능력을 결합하여 고품질 이미지 출력을 지원하며, 이미지 복원, 이미지 보완, 시각적 장면 재구성 등 다양한 작업에 널리 활용됩니다."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev는 Black Forest Labs가 개발한 오픈 소스 다중 모달 언어 모델(MLLM)로, 이미지와 텍스트 이해 및 생성 능력을 융합하여 이미지-텍스트 작업에 최적화되어 있습니다. Mistral-7B와 같은 최첨단 대형 언어 모델을 기반으로 정교하게 설계된 시각 인코더와 다단계 명령 미세 조정을 통해 이미지-텍스트 협업 처리 및 복잡한 작업 추론 능력을 구현합니다."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3는 6710억 개의 매개변수를 가진 혼합 전문가(MoE) 언어 모델로, 다중 헤드 잠재 주의(MLA) 및 DeepSeekMoE 아키텍처를 사용하여 보조 손실 없는 부하 균형 전략을 결합하여 추론 및 훈련 효율성을 최적화합니다. 14.8조 개의 고품질 토큰에서 사전 훈련을 수행하고 감독 미세 조정 및 강화 학습을 통해 DeepSeek-V3는 성능 면에서 다른 오픈 소스 모델을 초월하며, 선도적인 폐쇄형 모델에 근접합니다."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1은 DeepSeek AI에서 발표한 하이브리드 모드 대형 언어 모델로, 이전 모델을 기반으로 다방면에서 중요한 업그레이드를 이루었습니다. 이 모델의 주요 혁신은 '사고 모드'(Thinking Mode)와 '비사고 모드'(Non-thinking Mode)를 통합하여 사용자가 채팅 템플릿을 조정해 다양한 작업 요구에 유연하게 대응할 수 있다는 점입니다. 전용 사후 학습 최적화를 통해 V3.1은 도구 호출과 에이전트 작업 성능이 크게 향상되어 외부 검색 도구 지원과 다단계 복잡 작업 수행에 뛰어납니다. 이 모델은 DeepSeek-V3.1-Base를 기반으로 사후 학습되었으며, 2단계 장문 확장 방식을 통해 학습 데이터 양을 대폭 늘려 긴 문서와 장문의 코드 처리에 우수한 성능을 보입니다. 오픈소스 모델로서 DeepSeek-V3.1은 코딩, 수학, 추론 등 여러 벤치마크에서 최상위 폐쇄형 모델과 견줄 만한 능력을 보여주며, 혼합 전문가(MoE) 아키텍처 덕분에 대규모 모델 용량을 유지하면서도 추론 비용을 효과적으로 낮췄습니다."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2는 초강력 코드 및 에이전트 능력을 갖춘 MoE 아키텍처 기반 모델로, 총 파라미터 1조, 활성화 파라미터 320억입니다. 범용 지식 추론, 프로그래밍, 수학, 에이전트 등 주요 분야 벤치마크에서 K2 모델은 다른 주류 오픈 소스 모델을 능가하는 성능을 보입니다."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3는 6710억 개의 매개변수를 가진 혼합 전문가(MoE) 언어 모델로, 다중 헤드 잠재 주의(MLA) 및 DeepSeekMoE 아키텍처를 채택하여 보조 손실 없는 부하 균형 전략을 결합하여 추론 및 훈련 효율성을 최적화합니다. 14.8조 개의 고품질 토큰에서 사전 훈련을 수행하고 감독 미세 조정 및 강화 학습을 통해 DeepSeek-V3는 성능 면에서 다른 오픈 소스 모델을 초월하며, 선도적인 폐쇄형 모델에 근접합니다."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1은 DeepSeek AI에서 발표한 하이브리드 모드 대형 언어 모델로, 이전 모델을 기반으로 다방면에서 중요한 업그레이드를 이루었습니다. 이 모델의 주요 혁신은 '사고 모드'(Thinking Mode)와 '비사고 모드'(Non-thinking Mode)를 통합하여 사용자가 채팅 템플릿을 조정해 다양한 작업 요구에 유연하게 대응할 수 있다는 점입니다. 전용 사후 학습 최적화를 통해 V3.1은 도구 호출과 에이전트 작업 성능이 크게 향상되어 외부 검색 도구 지원과 다단계 복잡 작업 수행에 뛰어납니다. 이 모델은 DeepSeek-V3.1-Base를 기반으로 사후 학습되었으며, 2단계 장문 확장 방식을 통해 학습 데이터 양을 대폭 늘려 긴 문서와 장문의 코드 처리에 우수한 성능을 보입니다. 오픈소스 모델로서 DeepSeek-V3.1은 코딩, 수학, 추론 등 여러 벤치마크에서 최상위 폐쇄형 모델과 견줄 만한 능력을 보여주며, 혼합 전문가(MoE) 아키텍처 덕분에 대규모 모델 용량을 유지하면서도 추론 비용을 효과적으로 낮췄습니다."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B는 고복잡성 대화를 위해 훈련된 고급 모델입니다."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 풀 버전으로, 671B 매개변수를 가지고 있으며 실시간 온라인 검색을 지원하여 더 강력한 이해 및 생성 능력을 제공합니다."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "DeepSeek
|
933
|
+
"description": "DeepSeek V3.1 사고 모드입니다. 최종 답변을 출력하기 전에 모델이 먼저 사고 과정을 출력하여 최종 답변의 정확성을 높입니다."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2는 경제적이고 효율적인 처리 요구에 적합한 Mixture-of-Experts 언어 모델입니다."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324는 671B 매개변수를 가진 MoE 모델로, 프로그래밍 및 기술 능력, 맥락 이해 및 긴 텍스트 처리 등에서 두드러진 장점을 보입니다."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1은 DeepSeek에서 새롭게 출시한 하이브리드 추론 모델로, 사고 모드와 비사고 모드 두 가지 추론 방식을 지원하며 DeepSeek-R1-0528보다 사고 효율이 더 뛰어납니다. 사후 학습 최적화를 거쳐 에이전트 도구 사용과 지능형 작업 성능이 크게 향상되었습니다. 128k 컨텍스트 윈도우를 지원하며, 출력 길이는 최대 64k 토큰까지 가능합니다."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3는 685B 매개변수를 가진 전문가 혼합 모델로, DeepSeek 팀의 플래그십 채팅 모델 시리즈의 최신 반복입니다.\n\n이 모델은 [DeepSeek V3](/deepseek/deepseek-chat-v3) 모델을 계승하며 다양한 작업에서 뛰어난 성능을 보입니다."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3는 685B 매개변수를 가진 전문가 혼합 모델로, DeepSeek 팀의 플래그십 채팅 모델 시리즈의 최신 반복입니다.\n\n이 모델은 [DeepSeek V3](/deepseek/deepseek-chat-v3) 모델을 계승하며 다양한 작업에서 뛰어난 성능을 보입니다."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1은 128K 긴 컨텍스트와 효율적인 모드 전환을 지원하는 대형 하이브리드 추론 모델로, 도구 호출, 코드 생성 및 복잡한 추론 작업에서 탁월한 성능과 속도를 구현했습니다."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash는 구글에서 가장 가성비가 뛰어난 모델로, 포괄적인 기능을 제공합니다."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana는 구글의 최신이자 가장 빠르고 효율적인 네이티브 멀티모달 모델로, 대화를 통해 이미지 생성 및 편집이 가능합니다."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana는 구글의 최신이자 가장 빠르고 효율적인 네이티브 멀티모달 모델로, 대화를 통해 이미지 생성 및 편집이 가능합니다."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite는 Google의 가장 작고 가성비가 뛰어난 모델로, 대규모 사용을 위해 설계되었습니다."
|
@@ -80,6 +80,9 @@
|
|
80
80
|
"DeepSeek-V3-Fast": {
|
81
81
|
"description": "Modelleverancier: sophnet-platform. DeepSeek V3 Fast is de high-TPS snelle versie van DeepSeek V3 0324, volledig niet-gequantiseerd, met sterkere codeer- en wiskundige capaciteiten en snellere respons!"
|
82
82
|
},
|
83
|
+
"DeepSeek-V3.1": {
|
84
|
+
"description": "DeepSeek-V3.1 is het nieuwe hybride redeneermodel van DeepSeek, dat twee redeneermodi ondersteunt: denken en niet-denken. Het is efficiënter in denken dan DeepSeek-R1-0528. Dankzij post-training optimalisatie is het gebruik van agenttools en de prestaties bij agenttaken aanzienlijk verbeterd."
|
85
|
+
},
|
83
86
|
"Doubao-lite-128k": {
|
84
87
|
"description": "Doubao-lite biedt een ultieme responssnelheid en een betere prijs-kwaliteitverhouding, waardoor het flexibele keuzes biedt voor verschillende klantenscenario's. Ondersteunt redeneren en fijn afstemmen met een contextvenster van 128k."
|
85
88
|
},
|
@@ -134,9 +137,15 @@
|
|
134
137
|
"ERNIE-Speed-Pro-128K": {
|
135
138
|
"description": "Het door Baidu in 2024 gepresenteerde nieuwe hoge-prestatie taalmodel, met uitstekende algemene capaciteiten, betere resultaten dan ERNIE Speed, en geschikt als basis model voor fine-tuning, om beter specifieke probleemstellingen aan te pakken, met uitstekende inferentieprestaties."
|
136
139
|
},
|
140
|
+
"FLUX-1.1-pro": {
|
141
|
+
"description": "FLUX.1.1 Pro"
|
142
|
+
},
|
137
143
|
"FLUX.1-Kontext-dev": {
|
138
144
|
"description": "FLUX.1-Kontext-dev is een multimodaal beeldgeneratie- en bewerkingsmodel ontwikkeld door Black Forest Labs, gebaseerd op de Rectified Flow Transformer-architectuur met 12 miljard parameters. Het richt zich op het genereren, reconstrueren, verbeteren of bewerken van beelden onder gegeven contextuele voorwaarden. Dit model combineert de controleerbare generatievoordelen van diffusie-modellen met de contextuele modellering van Transformers en ondersteunt hoogwaardige beeldoutput, breed toepasbaar voor beeldherstel, beeldaanvulling en visuele scèneherconstructie."
|
139
145
|
},
|
146
|
+
"FLUX.1-Kontext-pro": {
|
147
|
+
"description": "FLUX.1 Kontext [pro]"
|
148
|
+
},
|
140
149
|
"FLUX.1-dev": {
|
141
150
|
"description": "FLUX.1-dev is een open-source multimodaal taalmodel (Multimodal Language Model, MLLM) ontwikkeld door Black Forest Labs, geoptimaliseerd voor taken met tekst en beeld. Het integreert begrip en generatie van zowel afbeeldingen als tekst. Gebaseerd op geavanceerde grote taalmodellen zoals Mistral-7B, bereikt het door zorgvuldig ontworpen visuele encoders en meervoudige instructiefijnafstelling een vermogen tot gecombineerde tekst-beeldverwerking en complexe taakredenering."
|
142
151
|
},
|
@@ -266,6 +275,9 @@
|
|
266
275
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
267
276
|
"description": "DeepSeek-V3 is een hybride expert (MoE) taalmodel met 6710 miljard parameters, dat gebruikmaakt van multi-head latent attention (MLA) en de DeepSeekMoE-architectuur, gecombineerd met een load balancing-strategie zonder extra verlies, om de inferentie- en trainingsefficiëntie te optimaliseren. Door voorgetraind te worden op 14,8 biljoen hoogwaardige tokens en vervolgens te worden fijngesteld met supervisie en versterkend leren, overtreft DeepSeek-V3 andere open-source modellen in prestaties en komt het dicht in de buurt van toonaangevende gesloten modellen."
|
268
277
|
},
|
278
|
+
"Pro/deepseek-ai/DeepSeek-V3.1": {
|
279
|
+
"description": "DeepSeek-V3.1 is een hybride groot taalmodel uitgebracht door DeepSeek AI, met belangrijke upgrades ten opzichte van eerdere modellen. Een belangrijke innovatie is de integratie van een 'denkenmodus' en een 'niet-denkenmodus', die gebruikers flexibel kunnen wisselen via aanpasbare chattemplates om aan verschillende taakvereisten te voldoen. Dankzij speciale post-training optimalisaties is de prestatie bij toolaanroepen en agenttaken aanzienlijk verbeterd, waardoor het beter externe zoektools ondersteunt en complexe meerstaps taken kan uitvoeren. Het model is gebaseerd op DeepSeek-V3.1-Base en uitgebreid met een tweefasige lange-tekst uitbreidingsmethode, wat de hoeveelheid trainingsdata sterk vergroot en betere prestaties levert bij het verwerken van lange documenten en uitgebreide code. Als open source model toont DeepSeek-V3.1 vergelijkbare capaciteiten als toonaangevende gesloten modellen in benchmarks voor codering, wiskunde en redeneren. Dankzij de hybride expertarchitectuur (MoE) behoudt het een enorme modelcapaciteit terwijl de redeneerkosten effectief worden verlaagd."
|
280
|
+
},
|
269
281
|
"Pro/moonshotai/Kimi-K2-Instruct": {
|
270
282
|
"description": "Kimi K2 is een MoE-architectuurbasis model met krachtige codeer- en agentcapaciteiten, met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. In benchmarktests voor algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model andere toonaangevende open-source modellen."
|
271
283
|
},
|
@@ -845,6 +857,9 @@
|
|
845
857
|
"deepseek-ai/DeepSeek-V3": {
|
846
858
|
"description": "DeepSeek-V3 is een hybride expert (MoE) taalmodel met 6710 miljard parameters, dat gebruikmaakt van multi-head latent attention (MLA) en de DeepSeekMoE-architectuur, gecombineerd met een load balancing-strategie zonder extra verlies, om de inferentie- en trainingsefficiëntie te optimaliseren. Door voorgetraind te worden op 14,8 biljoen hoogwaardige tokens en vervolgens te worden fijngetuned met supervisie en versterkend leren, overtreft DeepSeek-V3 andere open-source modellen in prestaties en komt het dicht in de buurt van toonaangevende gesloten modellen."
|
847
859
|
},
|
860
|
+
"deepseek-ai/DeepSeek-V3.1": {
|
861
|
+
"description": "DeepSeek-V3.1 is een hybride groot taalmodel uitgebracht door DeepSeek AI, met belangrijke upgrades ten opzichte van eerdere modellen. Een belangrijke innovatie is de integratie van een 'denkenmodus' en een 'niet-denkenmodus', die gebruikers flexibel kunnen wisselen via aanpasbare chattemplates om aan verschillende taakvereisten te voldoen. Dankzij speciale post-training optimalisaties is de prestatie bij toolaanroepen en agenttaken aanzienlijk verbeterd, waardoor het beter externe zoektools ondersteunt en complexe meerstaps taken kan uitvoeren. Het model is gebaseerd op DeepSeek-V3.1-Base en uitgebreid met een tweefasige lange-tekst uitbreidingsmethode, wat de hoeveelheid trainingsdata sterk vergroot en betere prestaties levert bij het verwerken van lange documenten en uitgebreide code. Als open source model toont DeepSeek-V3.1 vergelijkbare capaciteiten als toonaangevende gesloten modellen in benchmarks voor codering, wiskunde en redeneren. Dankzij de hybride expertarchitectuur (MoE) behoudt het een enorme modelcapaciteit terwijl de redeneerkosten effectief worden verlaagd."
|
862
|
+
},
|
848
863
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
849
864
|
"description": "DeepSeek 67B is een geavanceerd model dat is getraind voor complexe gesprekken."
|
850
865
|
},
|
@@ -915,7 +930,7 @@
|
|
915
930
|
"description": "DeepSeek R1 volledige versie, met 671B parameters, ondersteunt realtime online zoeken en heeft krachtige begrip- en generatiecapaciteiten."
|
916
931
|
},
|
917
932
|
"deepseek-reasoner": {
|
918
|
-
"description": "
|
933
|
+
"description": "DeepSeek V3.1 denkenmodus. Voordat het model het definitieve antwoord geeft, genereert het eerst een keten van gedachten om de nauwkeurigheid van het eindantwoord te verbeteren."
|
919
934
|
},
|
920
935
|
"deepseek-v2": {
|
921
936
|
"description": "DeepSeek V2 is een efficiënt Mixture-of-Experts taalmodel, geschikt voor kosteneffectieve verwerkingsbehoeften."
|
@@ -929,12 +944,18 @@
|
|
929
944
|
"deepseek-v3-0324": {
|
930
945
|
"description": "DeepSeek-V3-0324 is een MoE-model met 671 miljard parameters, dat uitblinkt in programmeer- en technische vaardigheden, contextbegrip en het verwerken van lange teksten."
|
931
946
|
},
|
947
|
+
"deepseek-v3.1": {
|
948
|
+
"description": "DeepSeek-V3.1 is het nieuwe hybride redeneermodel van DeepSeek, dat twee redeneermodi ondersteunt: denken en niet-denken. Het is efficiënter in denken dan DeepSeek-R1-0528. Dankzij post-training optimalisatie is het gebruik van agenttools en de prestaties bij agenttaken aanzienlijk verbeterd. Ondersteunt een contextvenster van 128k en een maximale outputlengte van 64k tokens."
|
949
|
+
},
|
932
950
|
"deepseek/deepseek-chat-v3-0324": {
|
933
951
|
"description": "DeepSeek V3 is een expert gemengd model met 685B parameters, de nieuwste iteratie van de vlaggenschip chatmodelreeks van het DeepSeek-team.\n\nHet is een opvolger van het [DeepSeek V3](/deepseek/deepseek-chat-v3) model en presteert uitstekend in verschillende taken."
|
934
952
|
},
|
935
953
|
"deepseek/deepseek-chat-v3-0324:free": {
|
936
954
|
"description": "DeepSeek V3 is een expert gemengd model met 685B parameters, de nieuwste iteratie van de vlaggenschip chatmodelreeks van het DeepSeek-team.\n\nHet is een opvolger van het [DeepSeek V3](/deepseek/deepseek-chat-v3) model en presteert uitstekend in verschillende taken."
|
937
955
|
},
|
956
|
+
"deepseek/deepseek-chat-v3.1": {
|
957
|
+
"description": "DeepSeek-V3.1 is een groot hybride redeneermodel dat 128K lange context ondersteunt en efficiënte moduswisselingen mogelijk maakt. Het levert uitstekende prestaties en snelheid bij toolaanroepen, codegeneratie en complexe redeneertaken."
|
958
|
+
},
|
938
959
|
"deepseek/deepseek-r1": {
|
939
960
|
"description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
|
940
961
|
},
|
@@ -1230,10 +1251,10 @@
|
|
1230
1251
|
"description": "Gemini 2.5 Flash is het meest kosteneffectieve model van Google en biedt uitgebreide functionaliteiten."
|
1231
1252
|
},
|
1232
1253
|
"gemini-2.5-flash-image-preview": {
|
1233
|
-
"description": "
|
1254
|
+
"description": "Nano Banana is het nieuwste, snelste en meest efficiënte native multimodale model van Google, waarmee u via dialoog afbeeldingen kunt genereren en bewerken."
|
1234
1255
|
},
|
1235
1256
|
"gemini-2.5-flash-image-preview:image": {
|
1236
|
-
"description": "
|
1257
|
+
"description": "Nano Banana is het nieuwste, snelste en meest efficiënte native multimodale model van Google, waarmee u via dialoog afbeeldingen kunt genereren en bewerken."
|
1237
1258
|
},
|
1238
1259
|
"gemini-2.5-flash-lite": {
|
1239
1260
|
"description": "Gemini 2.5 Flash-Lite is het kleinste en meest kosteneffectieve model van Google, speciaal ontworpen voor grootschalig gebruik."
|