@lobehub/chat 1.111.1 → 1.111.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (131) hide show
  1. package/.cursor/rules/code-review.mdc +2 -19
  2. package/.cursor/rules/cursor-ux.mdc +0 -72
  3. package/.cursor/rules/project-introduce.mdc +5 -5
  4. package/.cursor/rules/react-component.mdc +92 -73
  5. package/.cursor/rules/rules-attach.mdc +28 -61
  6. package/.cursor/rules/system-role.mdc +8 -20
  7. package/.cursor/rules/typescript.mdc +55 -14
  8. package/CHANGELOG.md +52 -0
  9. package/changelog/v1.json +14 -0
  10. package/locales/ar/models.json +21 -3
  11. package/locales/bg-BG/models.json +21 -3
  12. package/locales/de-DE/models.json +21 -3
  13. package/locales/en-US/models.json +21 -3
  14. package/locales/es-ES/models.json +21 -3
  15. package/locales/fa-IR/models.json +21 -3
  16. package/locales/fr-FR/models.json +21 -3
  17. package/locales/it-IT/models.json +21 -3
  18. package/locales/ja-JP/models.json +21 -3
  19. package/locales/ko-KR/models.json +21 -3
  20. package/locales/nl-NL/models.json +21 -3
  21. package/locales/pl-PL/models.json +21 -3
  22. package/locales/pt-BR/models.json +21 -3
  23. package/locales/ru-RU/models.json +21 -3
  24. package/locales/tr-TR/models.json +21 -3
  25. package/locales/vi-VN/models.json +21 -3
  26. package/locales/zh-CN/models.json +21 -3
  27. package/locales/zh-TW/models.json +21 -3
  28. package/package.json +1 -1
  29. package/packages/types/src/aiModel.ts +67 -46
  30. package/packages/types/src/hotkey.ts +2 -0
  31. package/packages/types/src/llm.ts +3 -3
  32. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/PinList/index.tsx +3 -3
  33. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.test.tsx +1 -0
  34. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.tsx +11 -2
  35. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/index.tsx +2 -2
  36. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/Main.tsx +2 -2
  37. package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -2
  38. package/src/app/[variants]/(main)/discover/(detail)/model/[...slugs]/features/Details/Overview/ProviderList/index.tsx +23 -12
  39. package/src/app/[variants]/(main)/discover/(detail)/provider/[...slugs]/features/Details/Overview/ModelList/index.tsx +23 -10
  40. package/src/app/[variants]/(main)/settings/provider/features/ModelList/ModelItem.tsx +21 -12
  41. package/src/components/Thinking/index.tsx +53 -13
  42. package/src/config/aiModels/ai21.ts +8 -4
  43. package/src/config/aiModels/ai360.ts +28 -14
  44. package/src/config/aiModels/aihubmix.ts +174 -86
  45. package/src/config/aiModels/anthropic.ts +97 -38
  46. package/src/config/aiModels/azure.ts +54 -32
  47. package/src/config/aiModels/azureai.ts +63 -37
  48. package/src/config/aiModels/baichuan.ts +24 -12
  49. package/src/config/aiModels/bedrock.ts +60 -30
  50. package/src/config/aiModels/cohere.ts +60 -30
  51. package/src/config/aiModels/deepseek.ts +10 -6
  52. package/src/config/aiModels/fireworksai.ts +88 -44
  53. package/src/config/aiModels/giteeai.ts +1 -1
  54. package/src/config/aiModels/github.ts +44 -26
  55. package/src/config/aiModels/google.ts +119 -68
  56. package/src/config/aiModels/groq.ts +48 -24
  57. package/src/config/aiModels/higress.ts +617 -310
  58. package/src/config/aiModels/hunyuan.ts +105 -54
  59. package/src/config/aiModels/infiniai.ts +104 -52
  60. package/src/config/aiModels/internlm.ts +16 -8
  61. package/src/config/aiModels/jina.ts +4 -2
  62. package/src/config/aiModels/minimax.ts +11 -10
  63. package/src/config/aiModels/mistral.ts +40 -20
  64. package/src/config/aiModels/moonshot.ts +42 -22
  65. package/src/config/aiModels/novita.ts +196 -98
  66. package/src/config/aiModels/openai.ts +270 -137
  67. package/src/config/aiModels/openrouter.ts +205 -100
  68. package/src/config/aiModels/perplexity.ts +36 -6
  69. package/src/config/aiModels/ppio.ts +76 -38
  70. package/src/config/aiModels/qwen.ts +257 -133
  71. package/src/config/aiModels/sambanova.ts +56 -28
  72. package/src/config/aiModels/sensenova.ts +100 -50
  73. package/src/config/aiModels/siliconcloud.ts +224 -112
  74. package/src/config/aiModels/stepfun.ts +44 -22
  75. package/src/config/aiModels/taichu.ts +8 -4
  76. package/src/config/aiModels/tencentcloud.ts +12 -6
  77. package/src/config/aiModels/upstage.ts +8 -4
  78. package/src/config/aiModels/v0.ts +15 -12
  79. package/src/config/aiModels/vertexai.ts +49 -27
  80. package/src/config/aiModels/volcengine.ts +110 -51
  81. package/src/config/aiModels/wenxin.ts +179 -73
  82. package/src/config/aiModels/xai.ts +33 -19
  83. package/src/config/aiModels/zeroone.ts +48 -24
  84. package/src/config/aiModels/zhipu.ts +118 -69
  85. package/src/config/modelProviders/ai21.ts +0 -8
  86. package/src/config/modelProviders/ai360.ts +0 -20
  87. package/src/config/modelProviders/anthropic.ts +0 -56
  88. package/src/config/modelProviders/baichuan.ts +0 -30
  89. package/src/config/modelProviders/bedrock.ts +0 -74
  90. package/src/config/modelProviders/deepseek.ts +0 -13
  91. package/src/config/modelProviders/fireworksai.ts +0 -88
  92. package/src/config/modelProviders/google.ts +0 -59
  93. package/src/config/modelProviders/groq.ts +0 -48
  94. package/src/config/modelProviders/higress.ts +0 -727
  95. package/src/config/modelProviders/hunyuan.ts +0 -45
  96. package/src/config/modelProviders/infiniai.ts +0 -60
  97. package/src/config/modelProviders/internlm.ts +0 -8
  98. package/src/config/modelProviders/mistral.ts +0 -48
  99. package/src/config/modelProviders/modelscope.ts +2 -1
  100. package/src/config/modelProviders/openai.ts +5 -100
  101. package/src/config/modelProviders/openrouter.ts +0 -77
  102. package/src/config/modelProviders/ppio.ts +0 -95
  103. package/src/config/modelProviders/qwen.ts +0 -165
  104. package/src/config/modelProviders/sensenova.ts +0 -45
  105. package/src/config/modelProviders/siliconcloud.ts +0 -266
  106. package/src/config/modelProviders/stepfun.ts +0 -60
  107. package/src/config/modelProviders/taichu.ts +0 -10
  108. package/src/config/modelProviders/wenxin.ts +0 -90
  109. package/src/config/modelProviders/xai.ts +0 -16
  110. package/src/config/modelProviders/zeroone.ts +0 -60
  111. package/src/config/modelProviders/zhipu.ts +0 -80
  112. package/src/const/hotkeys.ts +6 -0
  113. package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +4 -3
  114. package/src/features/Conversation/Extras/Usage/UsageDetail/pricing.ts +25 -15
  115. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.test.ts +7 -5
  116. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +6 -5
  117. package/src/hooks/useHotkeys/chatScope.ts +2 -2
  118. package/src/hooks/useHotkeys/globalScope.ts +16 -4
  119. package/src/hooks/usePinnedAgentState.ts +21 -0
  120. package/src/hooks/useSwitchSession.ts +1 -1
  121. package/src/libs/model-runtime/utils/openaiCompatibleFactory/index.test.ts +54 -8
  122. package/src/locales/default/hotkey.ts +4 -0
  123. package/src/server/routers/lambda/agent.ts +2 -2
  124. package/src/server/routers/lambda/config/__snapshots__/index.test.ts.snap +0 -28
  125. package/src/server/services/discover/index.ts +7 -6
  126. package/src/server/services/user/index.ts +1 -2
  127. package/src/utils/__snapshots__/parseModels.test.ts.snap +28 -4
  128. package/src/utils/_deprecated/__snapshots__/parseModels.test.ts.snap +0 -8
  129. package/src/utils/parseModels.test.ts +60 -9
  130. package/src/utils/pricing.test.ts +183 -0
  131. package/src/utils/pricing.ts +90 -0
@@ -10,11 +10,6 @@ const SiliconCloud: ModelProviderCard = {
10
10
  displayName: 'DeepSeek R1',
11
11
  enabled: true,
12
12
  id: 'deepseek-ai/DeepSeek-R1',
13
- pricing: {
14
- currency: 'CNY',
15
- input: 4,
16
- output: 16,
17
- },
18
13
  },
19
14
  {
20
15
  contextWindowTokens: 65_536,
@@ -24,12 +19,6 @@ const SiliconCloud: ModelProviderCard = {
24
19
  enabled: true,
25
20
  functionCall: true,
26
21
  id: 'deepseek-ai/DeepSeek-V3',
27
- pricing: {
28
- // 2.9 涨价
29
- currency: 'CNY',
30
- input: 1,
31
- output: 2,
32
- },
33
22
  },
34
23
  {
35
24
  contextWindowTokens: 65_536,
@@ -37,11 +26,6 @@ const SiliconCloud: ModelProviderCard = {
37
26
  'DeepSeek-R1 是一款强化学习(RL)驱动的推理模型,解决了模型中的重复性和可读性问题。在 RL 之前,DeepSeek-R1 引入了冷启动数据,进一步优化了推理性能。它在数学、代码和推理任务中与 OpenAI-o1 表现相当,并且通过精心设计的训练方法,提升了整体效果。',
38
27
  displayName: 'DeepSeek R1 (Pro)',
39
28
  id: 'Pro/deepseek-ai/DeepSeek-R1',
40
- pricing: {
41
- currency: 'CNY',
42
- input: 4,
43
- output: 16,
44
- },
45
29
  },
46
30
  {
47
31
  contextWindowTokens: 65_536,
@@ -50,11 +34,6 @@ const SiliconCloud: ModelProviderCard = {
50
34
  displayName: 'DeepSeek V3 (Pro)',
51
35
  functionCall: true,
52
36
  id: 'Pro/deepseek-ai/DeepSeek-V3',
53
- pricing: {
54
- currency: 'CNY',
55
- input: 2,
56
- output: 8,
57
- },
58
37
  },
59
38
  {
60
39
  contextWindowTokens: 32_768,
@@ -63,11 +42,6 @@ const SiliconCloud: ModelProviderCard = {
63
42
  displayName: 'DeepSeek R1 Distill Llama 70B',
64
43
  enabled: true,
65
44
  id: 'deepseek-ai/DeepSeek-R1-Distill-Llama-70B',
66
- pricing: {
67
- currency: 'CNY',
68
- input: 4.13,
69
- output: 4.13,
70
- },
71
45
  },
72
46
  {
73
47
  contextWindowTokens: 32_768,
@@ -76,11 +50,6 @@ const SiliconCloud: ModelProviderCard = {
76
50
  displayName: 'DeepSeek R1 Distill Qwen 32B',
77
51
  enabled: true,
78
52
  id: 'deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',
79
- pricing: {
80
- currency: 'CNY',
81
- input: 1.26,
82
- output: 1.26,
83
- },
84
53
  },
85
54
  {
86
55
  contextWindowTokens: 32_768,
@@ -89,11 +58,6 @@ const SiliconCloud: ModelProviderCard = {
89
58
  displayName: 'DeepSeek R1 Distill Qwen 14B',
90
59
  enabled: true,
91
60
  id: 'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B',
92
- pricing: {
93
- currency: 'CNY',
94
- input: 0.7,
95
- output: 0.7,
96
- },
97
61
  },
98
62
  {
99
63
  contextWindowTokens: 32_768,
@@ -102,11 +66,6 @@ const SiliconCloud: ModelProviderCard = {
102
66
  displayName: 'DeepSeek R1 Distill Llama 8B (Free)',
103
67
  enabled: true,
104
68
  id: 'deepseek-ai/DeepSeek-R1-Distill-Llama-8B',
105
- pricing: {
106
- currency: 'CNY',
107
- input: 0,
108
- output: 0,
109
- },
110
69
  },
111
70
  {
112
71
  contextWindowTokens: 32_768,
@@ -115,11 +74,6 @@ const SiliconCloud: ModelProviderCard = {
115
74
  displayName: 'DeepSeek R1 Distill Qwen 7B (Free)',
116
75
  enabled: true,
117
76
  id: 'deepseek-ai/DeepSeek-R1-Distill-Qwen-7B',
118
- pricing: {
119
- currency: 'CNY',
120
- input: 0,
121
- output: 0,
122
- },
123
77
  },
124
78
  {
125
79
  contextWindowTokens: 32_768,
@@ -127,11 +81,6 @@ const SiliconCloud: ModelProviderCard = {
127
81
  'DeepSeek-R1-Distill-Qwen-1.5B 是基于 Qwen2.5-Math-1.5B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在多个基准测试中展现出不错的性能。作为一个轻量级模型,在 MATH-500 上达到了 83.9% 的准确率,在 AIME 2024 上达到了 28.9% 的通过率,在 CodeForces 上获得了 954 的评分,显示出超出其参数规模的推理能力。',
128
82
  displayName: 'DeepSeek-R1-Distill-Qwen-1.5B (Free)',
129
83
  id: 'deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B',
130
- pricing: {
131
- currency: 'CNY',
132
- input: 0,
133
- output: 0,
134
- },
135
84
  },
136
85
  {
137
86
  contextWindowTokens: 32_768,
@@ -141,11 +90,6 @@ const SiliconCloud: ModelProviderCard = {
141
90
  enabled: true,
142
91
  functionCall: true,
143
92
  id: 'deepseek-ai/DeepSeek-V2.5',
144
- pricing: {
145
- currency: 'CNY',
146
- input: 1.33,
147
- output: 1.33,
148
- },
149
93
  },
150
94
  {
151
95
  contextWindowTokens: 4096,
@@ -153,11 +97,6 @@ const SiliconCloud: ModelProviderCard = {
153
97
  'DeepSeek-VL2 是一个基于 DeepSeekMoE-27B 开发的混合专家(MoE)视觉语言模型,采用稀疏激活的 MoE 架构,在仅激活 4.5B 参数的情况下实现了卓越性能。该模型在视觉问答、光学字符识别、文档/表格/图表理解和视觉定位等多个任务中表现优异。',
154
98
  displayName: 'DeepSeek VL2',
155
99
  id: 'deepseek-ai/deepseek-vl2',
156
- pricing: {
157
- currency: 'CNY',
158
- input: 0.99,
159
- output: 0.99,
160
- },
161
100
  vision: true,
162
101
  },
163
102
  {
@@ -167,11 +106,6 @@ const SiliconCloud: ModelProviderCard = {
167
106
  displayName: 'QVQ 72B Preview',
168
107
  enabled: true,
169
108
  id: 'Qwen/QVQ-72B-Preview',
170
- pricing: {
171
- currency: 'CNY',
172
- input: 9.9,
173
- output: 9.9,
174
- },
175
109
  vision: true,
176
110
  },
177
111
  {
@@ -181,11 +115,6 @@ const SiliconCloud: ModelProviderCard = {
181
115
  displayName: 'QwQ 32B Preview',
182
116
  enabled: true,
183
117
  id: 'Qwen/QwQ-32B-Preview',
184
- pricing: {
185
- currency: 'CNY',
186
- input: 1.26,
187
- output: 1.26,
188
- },
189
118
  },
190
119
  {
191
120
  contextWindowTokens: 32_768,
@@ -195,11 +124,6 @@ const SiliconCloud: ModelProviderCard = {
195
124
  enabled: true,
196
125
  functionCall: true,
197
126
  id: 'Qwen/Qwen2.5-7B-Instruct',
198
- pricing: {
199
- currency: 'CNY',
200
- input: 0,
201
- output: 0,
202
- },
203
127
  },
204
128
  {
205
129
  contextWindowTokens: 32_768,
@@ -207,11 +131,6 @@ const SiliconCloud: ModelProviderCard = {
207
131
  'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
208
132
  displayName: 'Qwen2.5 7B Instruct (LoRA)',
209
133
  id: 'LoRA/Qwen/Qwen2.5-7B-Instruct',
210
- pricing: {
211
- currency: 'CNY',
212
- input: 0.53,
213
- output: 0.53,
214
- },
215
134
  },
216
135
  {
217
136
  contextWindowTokens: 32_768,
@@ -220,11 +139,6 @@ const SiliconCloud: ModelProviderCard = {
220
139
  displayName: 'Qwen2.5 7B Instruct (Pro)',
221
140
  functionCall: true,
222
141
  id: 'Pro/Qwen/Qwen2.5-7B-Instruct',
223
- pricing: {
224
- currency: 'CNY',
225
- input: 0.35,
226
- output: 0.35,
227
- },
228
142
  },
229
143
  {
230
144
  contextWindowTokens: 32_768,
@@ -233,11 +147,6 @@ const SiliconCloud: ModelProviderCard = {
233
147
  displayName: 'Qwen2.5 14B Instruct',
234
148
  functionCall: true,
235
149
  id: 'Qwen/Qwen2.5-14B-Instruct',
236
- pricing: {
237
- currency: 'CNY',
238
- input: 0.7,
239
- output: 0.7,
240
- },
241
150
  },
242
151
  {
243
152
  contextWindowTokens: 32_768,
@@ -246,11 +155,6 @@ const SiliconCloud: ModelProviderCard = {
246
155
  displayName: 'Qwen2.5 32B Instruct',
247
156
  functionCall: true,
248
157
  id: 'Qwen/Qwen2.5-32B-Instruct',
249
- pricing: {
250
- currency: 'CNY',
251
- input: 1.26,
252
- output: 1.26,
253
- },
254
158
  },
255
159
  {
256
160
  contextWindowTokens: 32_768,
@@ -259,11 +163,6 @@ const SiliconCloud: ModelProviderCard = {
259
163
  displayName: 'Qwen2.5 72B Instruct',
260
164
  functionCall: true,
261
165
  id: 'Qwen/Qwen2.5-72B-Instruct',
262
- pricing: {
263
- currency: 'CNY',
264
- input: 4.13,
265
- output: 4.13,
266
- },
267
166
  },
268
167
  {
269
168
  contextWindowTokens: 32_768,
@@ -271,11 +170,6 @@ const SiliconCloud: ModelProviderCard = {
271
170
  'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
272
171
  displayName: 'Qwen2.5 72B Instruct (LoRA)',
273
172
  id: 'LoRA/Qwen/Qwen2.5-72B-Instruct',
274
- pricing: {
275
- currency: 'CNY',
276
- input: 6.2,
277
- output: 6.2,
278
- },
279
173
  },
280
174
  {
281
175
  contextWindowTokens: 32_768,
@@ -284,11 +178,6 @@ const SiliconCloud: ModelProviderCard = {
284
178
  displayName: 'Qwen2.5 72B Instruct (Vendor-A)',
285
179
  functionCall: true,
286
180
  id: 'Vendor-A/Qwen/Qwen2.5-72B-Instruct',
287
- pricing: {
288
- currency: 'CNY',
289
- input: 1,
290
- output: 1,
291
- },
292
181
  },
293
182
  {
294
183
  contextWindowTokens: 131_072,
@@ -298,11 +187,6 @@ const SiliconCloud: ModelProviderCard = {
298
187
  enabled: true,
299
188
  functionCall: true,
300
189
  id: 'Qwen/Qwen2.5-72B-Instruct-128K',
301
- pricing: {
302
- currency: 'CNY',
303
- input: 4.13,
304
- output: 4.13,
305
- },
306
190
  },
307
191
  {
308
192
  contextWindowTokens: 32_768,
@@ -310,11 +194,6 @@ const SiliconCloud: ModelProviderCard = {
310
194
  'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
311
195
  displayName: 'Qwen2.5 Coder 7B Instruct (Free)',
312
196
  id: 'Qwen/Qwen2.5-Coder-7B-Instruct',
313
- pricing: {
314
- currency: 'CNY',
315
- input: 0,
316
- output: 0,
317
- },
318
197
  },
319
198
  {
320
199
  contextWindowTokens: 32_768,
@@ -322,11 +201,6 @@ const SiliconCloud: ModelProviderCard = {
322
201
  'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
323
202
  displayName: 'Qwen2.5 Coder 7B Instruct (Pro)',
324
203
  id: 'Pro/Qwen/Qwen2.5-Coder-7B-Instruct',
325
- pricing: {
326
- currency: 'CNY',
327
- input: 0.35,
328
- output: 0.35,
329
- },
330
204
  },
331
205
  {
332
206
  contextWindowTokens: 32_768,
@@ -334,11 +208,6 @@ const SiliconCloud: ModelProviderCard = {
334
208
  'Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理',
335
209
  displayName: 'Qwen2.5 Coder 32B Instruct',
336
210
  id: 'Qwen/Qwen2.5-Coder-32B-Instruct',
337
- pricing: {
338
- currency: 'CNY',
339
- input: 1.26,
340
- output: 1.26,
341
- },
342
211
  },
343
212
  {
344
213
  contextWindowTokens: 32_768,
@@ -346,11 +215,6 @@ const SiliconCloud: ModelProviderCard = {
346
215
  'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
347
216
  displayName: 'Qwen2 1.5B Instruct (Free)',
348
217
  id: 'Qwen/Qwen2-1.5B-Instruct',
349
- pricing: {
350
- currency: 'CNY',
351
- input: 0,
352
- output: 0,
353
- },
354
218
  },
355
219
  {
356
220
  contextWindowTokens: 32_768,
@@ -358,11 +222,6 @@ const SiliconCloud: ModelProviderCard = {
358
222
  'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
359
223
  displayName: 'Qwen2 1.5B Instruct (Pro)',
360
224
  id: 'Pro/Qwen/Qwen2-1.5B-Instruct',
361
- pricing: {
362
- currency: 'CNY',
363
- input: 0.14,
364
- output: 0.14,
365
- },
366
225
  },
367
226
  {
368
227
  contextWindowTokens: 32_768,
@@ -370,11 +229,6 @@ const SiliconCloud: ModelProviderCard = {
370
229
  'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
371
230
  displayName: 'Qwen2 7B Instruct (Free)',
372
231
  id: 'Qwen/Qwen2-7B-Instruct',
373
- pricing: {
374
- currency: 'CNY',
375
- input: 0,
376
- output: 0,
377
- },
378
232
  },
379
233
  {
380
234
  contextWindowTokens: 32_768,
@@ -382,11 +236,6 @@ const SiliconCloud: ModelProviderCard = {
382
236
  'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
383
237
  displayName: 'Qwen2 7B Instruct (Pro)',
384
238
  id: 'Pro/Qwen/Qwen2-7B-Instruct',
385
- pricing: {
386
- currency: 'CNY',
387
- input: 0.35,
388
- output: 0.35,
389
- },
390
239
  },
391
240
  {
392
241
  contextWindowTokens: 32_768,
@@ -394,11 +243,6 @@ const SiliconCloud: ModelProviderCard = {
394
243
  'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
395
244
  displayName: 'Qwen2 72B Instruct',
396
245
  id: 'Qwen/Qwen2-7B-Instruct',
397
- pricing: {
398
- currency: 'CNY',
399
- input: 4.13,
400
- output: 4.13,
401
- },
402
246
  },
403
247
  {
404
248
  contextWindowTokens: 32_768,
@@ -407,11 +251,6 @@ const SiliconCloud: ModelProviderCard = {
407
251
  displayName: 'Qwen2 VL 7B Instruct (Pro)',
408
252
  enabled: true,
409
253
  id: 'Pro/Qwen/Qwen2-VL-7B-Instruct',
410
- pricing: {
411
- currency: 'CNY',
412
- input: 0.35,
413
- output: 0.35,
414
- },
415
254
  vision: true,
416
255
  },
417
256
  {
@@ -421,11 +260,6 @@ const SiliconCloud: ModelProviderCard = {
421
260
  displayName: 'Qwen2 VL 72B Instruct',
422
261
  enabled: true,
423
262
  id: 'Qwen/Qwen2-VL-72B-Instruct',
424
- pricing: {
425
- currency: 'CNY',
426
- input: 4.13,
427
- output: 4.13,
428
- },
429
263
  vision: true,
430
264
  },
431
265
  {
@@ -435,11 +269,6 @@ const SiliconCloud: ModelProviderCard = {
435
269
  displayName: 'InternLM2.5 7B Chat (Free)',
436
270
  functionCall: true,
437
271
  id: 'internlm/internlm2_5-7b-chat',
438
- pricing: {
439
- currency: 'CNY',
440
- input: 0,
441
- output: 0,
442
- },
443
272
  },
444
273
  {
445
274
  contextWindowTokens: 32_768,
@@ -448,11 +277,6 @@ const SiliconCloud: ModelProviderCard = {
448
277
  displayName: 'InternLM2.5 20B Chat',
449
278
  functionCall: true,
450
279
  id: 'internlm/internlm2_5-20b-chat',
451
- pricing: {
452
- currency: 'CNY',
453
- input: 1,
454
- output: 1,
455
- },
456
280
  },
457
281
  {
458
282
  contextWindowTokens: 32_768,
@@ -460,11 +284,6 @@ const SiliconCloud: ModelProviderCard = {
460
284
  'InternVL2-8B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
461
285
  displayName: 'InternVL2 8B (Pro)',
462
286
  id: 'Pro/OpenGVLab/InternVL2-8B',
463
- pricing: {
464
- currency: 'CNY',
465
- input: 0.35,
466
- output: 0.35,
467
- },
468
287
  vision: true,
469
288
  },
470
289
  {
@@ -473,11 +292,6 @@ const SiliconCloud: ModelProviderCard = {
473
292
  'InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
474
293
  displayName: 'InternVL2 26B',
475
294
  id: 'OpenGVLab/InternVL2-26B',
476
- pricing: {
477
- currency: 'CNY',
478
- input: 1,
479
- output: 1,
480
- },
481
295
  vision: true,
482
296
  },
483
297
  {
@@ -487,11 +301,6 @@ const SiliconCloud: ModelProviderCard = {
487
301
  displayName: 'GLM-4 9B Chat (Free)',
488
302
  functionCall: true,
489
303
  id: 'THUDM/glm-4-9b-chat',
490
- pricing: {
491
- currency: 'CNY',
492
- input: 0,
493
- output: 0,
494
- },
495
304
  },
496
305
  {
497
306
  contextWindowTokens: 131_072,
@@ -500,11 +309,6 @@ const SiliconCloud: ModelProviderCard = {
500
309
  displayName: 'GLM-4 9B Chat (Pro)',
501
310
  functionCall: true,
502
311
  id: 'Pro/THUDM/glm-4-9b-chat',
503
- pricing: {
504
- currency: 'CNY',
505
- input: 0.6,
506
- output: 0.6,
507
- },
508
312
  },
509
313
  {
510
314
  contextWindowTokens: 32_768,
@@ -512,11 +316,6 @@ const SiliconCloud: ModelProviderCard = {
512
316
  'ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用',
513
317
  displayName: 'ChatGLM3 6B (Free)',
514
318
  id: 'THUDM/chatglm3-6b',
515
- pricing: {
516
- currency: 'CNY',
517
- input: 0,
518
- output: 0,
519
- },
520
319
  },
521
320
  {
522
321
  contextWindowTokens: 4096,
@@ -524,11 +323,6 @@ const SiliconCloud: ModelProviderCard = {
524
323
  'Yi-1.5-6B-Chat 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 和 32K 的上下文长度版本,预训练总量达到 3.6T 个 token',
525
324
  displayName: 'Yi-1.5 6B Chat (Free)',
526
325
  id: '01-ai/Yi-1.5-6B-Chat',
527
- pricing: {
528
- currency: 'CNY',
529
- input: 0,
530
- output: 0,
531
- },
532
326
  },
533
327
  {
534
328
  contextWindowTokens: 16_384,
@@ -536,11 +330,6 @@ const SiliconCloud: ModelProviderCard = {
536
330
  'Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳',
537
331
  displayName: 'Yi-1.5 9B Chat 16K (Free)',
538
332
  id: '01-ai/Yi-1.5-9B-Chat-16K',
539
- pricing: {
540
- currency: 'CNY',
541
- input: 0,
542
- output: 0,
543
- },
544
333
  },
545
334
  {
546
335
  contextWindowTokens: 16_384,
@@ -548,11 +337,6 @@ const SiliconCloud: ModelProviderCard = {
548
337
  'Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度',
549
338
  displayName: 'Yi-1.5 34B Chat 16K',
550
339
  id: '01-ai/Yi-1.5-34B-Chat-16K',
551
- pricing: {
552
- currency: 'CNY',
553
- input: 1.26,
554
- output: 1.26,
555
- },
556
340
  },
557
341
  {
558
342
  contextWindowTokens: 8192,
@@ -561,11 +345,6 @@ const SiliconCloud: ModelProviderCard = {
561
345
  displayName: 'Gemma 2 9B (Free)',
562
346
  enabled: true,
563
347
  id: 'google/gemma-2-9b-it',
564
- pricing: {
565
- currency: 'CNY',
566
- input: 0,
567
- output: 0,
568
- },
569
348
  },
570
349
  {
571
350
  contextWindowTokens: 8192,
@@ -573,11 +352,6 @@ const SiliconCloud: ModelProviderCard = {
573
352
  'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
574
353
  displayName: 'Gemma 2 9B (Pro)',
575
354
  id: 'Pro/google/gemma-2-9b-it',
576
- pricing: {
577
- currency: 'CNY',
578
- input: 0.6,
579
- output: 0.6,
580
- },
581
355
  },
582
356
  {
583
357
  contextWindowTokens: 8192,
@@ -586,11 +360,6 @@ const SiliconCloud: ModelProviderCard = {
586
360
  displayName: 'Gemma 2 27B',
587
361
  enabled: true,
588
362
  id: 'google/gemma-2-27b-it',
589
- pricing: {
590
- currency: 'CNY',
591
- input: 1.26,
592
- output: 1.26,
593
- },
594
363
  },
595
364
  {
596
365
  contextWindowTokens: 32_768,
@@ -600,11 +369,6 @@ const SiliconCloud: ModelProviderCard = {
600
369
  enabled: true,
601
370
  functionCall: true,
602
371
  id: 'meta-llama/Meta-Llama-3.1-8B-Instruct',
603
- pricing: {
604
- currency: 'CNY',
605
- input: 0,
606
- output: 0,
607
- },
608
372
  },
609
373
  {
610
374
  contextWindowTokens: 32_768,
@@ -612,11 +376,6 @@ const SiliconCloud: ModelProviderCard = {
612
376
  'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
613
377
  displayName: 'Llama 3.1 8B Instruct (Pro)',
614
378
  id: 'Pro/meta-llama/Meta-Llama-3.1-8B-Instruct',
615
- pricing: {
616
- currency: 'CNY',
617
- input: 0.42,
618
- output: 0.42,
619
- },
620
379
  },
621
380
  {
622
381
  contextWindowTokens: 32_768,
@@ -626,11 +385,6 @@ const SiliconCloud: ModelProviderCard = {
626
385
  enabled: true,
627
386
  functionCall: true,
628
387
  id: 'meta-llama/Meta-Llama-3.1-70B-Instruct',
629
- pricing: {
630
- currency: 'CNY',
631
- input: 4.13,
632
- output: 4.13,
633
- },
634
388
  },
635
389
  {
636
390
  contextWindowTokens: 32_768,
@@ -639,11 +393,6 @@ const SiliconCloud: ModelProviderCard = {
639
393
  displayName: 'Llama 3.1 405B Instruct',
640
394
  enabled: true,
641
395
  id: 'meta-llama/Meta-Llama-3.1-405B-Instruct',
642
- pricing: {
643
- currency: 'CNY',
644
- input: 21,
645
- output: 21,
646
- },
647
396
  },
648
397
  {
649
398
  contextWindowTokens: 32_768,
@@ -653,11 +402,6 @@ const SiliconCloud: ModelProviderCard = {
653
402
  enabled: true,
654
403
  functionCall: true,
655
404
  id: 'meta-llama/Llama-3.3-70B-Instruct',
656
- pricing: {
657
- currency: 'CNY',
658
- input: 4.13,
659
- output: 4.13,
660
- },
661
405
  },
662
406
  {
663
407
  contextWindowTokens: 8192,
@@ -665,11 +409,6 @@ const SiliconCloud: ModelProviderCard = {
665
409
  'TeleChat2大模型是由中国电信从0到1自主研发的生成式语义大模型,支持百科问答、代码生成、长文生成等功能,为用户提供对话咨询服务,能够与用户进行对话互动,回答问题,协助创作,高效便捷地帮助用户获取信息、知识和灵感。模型在幻觉问题、长文生成、逻辑理解等方面均有较出色表现。',
666
410
  displayName: 'TeleChat2',
667
411
  id: 'TeleAI/TeleChat2',
668
- pricing: {
669
- currency: 'CNY',
670
- input: 1.33,
671
- output: 1.33,
672
- },
673
412
  },
674
413
  {
675
414
  contextWindowTokens: 32_768,
@@ -677,11 +416,6 @@ const SiliconCloud: ModelProviderCard = {
677
416
  'TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现',
678
417
  displayName: 'TeleMM',
679
418
  id: 'TeleAI/TeleMM',
680
- pricing: {
681
- currency: 'CNY',
682
- input: 1.33,
683
- output: 1.33,
684
- },
685
419
  vision: true,
686
420
  },
687
421
  ],