@lobehub/chat 1.106.3 → 1.106.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +58 -0
- package/apps/desktop/src/preload/routeInterceptor.ts +28 -0
- package/changelog/v1.json +21 -0
- package/locales/ar/models.json +164 -5
- package/locales/bg-BG/models.json +164 -5
- package/locales/de-DE/models.json +164 -5
- package/locales/en-US/models.json +164 -5
- package/locales/es-ES/models.json +164 -5
- package/locales/fa-IR/models.json +164 -5
- package/locales/fr-FR/models.json +164 -5
- package/locales/it-IT/models.json +164 -5
- package/locales/ja-JP/models.json +164 -5
- package/locales/ko-KR/models.json +164 -5
- package/locales/nl-NL/models.json +164 -5
- package/locales/pl-PL/models.json +164 -5
- package/locales/pt-BR/models.json +164 -5
- package/locales/ru-RU/models.json +164 -5
- package/locales/tr-TR/models.json +164 -5
- package/locales/vi-VN/models.json +164 -5
- package/locales/zh-CN/models.json +164 -5
- package/locales/zh-TW/models.json +164 -5
- package/package.json +1 -1
- package/src/features/Conversation/Messages/Assistant/Tool/Inspector/BuiltinPluginTitle.tsx +2 -9
- package/src/features/Conversation/Messages/Assistant/Tool/Inspector/PluginResultJSON.tsx +7 -2
- package/src/features/Conversation/Messages/Assistant/Tool/Inspector/ToolTitle.tsx +2 -2
- package/src/features/Conversation/Messages/Assistant/Tool/Inspector/index.tsx +5 -11
- package/src/features/Conversation/Messages/Assistant/Tool/Render/Arguments/index.tsx +37 -12
- package/src/features/Conversation/Messages/Assistant/Tool/Render/CustomRender.tsx +43 -34
- package/src/features/Conversation/Messages/Assistant/Tool/index.tsx +23 -6
- package/src/features/Conversation/Messages/Assistant/index.tsx +1 -0
- package/src/features/Conversation/components/VirtualizedList/index.tsx +0 -1
- package/src/server/services/mcp/index.test.ts +161 -0
- package/src/server/services/mcp/index.ts +4 -1
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +10 -0
- package/src/store/chat/slices/aiChat/initialState.ts +2 -0
- package/src/store/chat/slices/message/selectors.ts +9 -0
- package/src/store/chat/slices/plugin/action.ts +2 -0
@@ -32,6 +32,9 @@
|
|
32
32
|
"4.0Ultra": {
|
33
33
|
"description": "Spark4.0 Ultra is de krachtigste versie in de Spark-grootmodelserie, die de netwerkintegratie heeft geüpgraded en de tekstbegrip- en samenvattingscapaciteiten heeft verbeterd. Het is een allesomvattende oplossing voor het verbeteren van de kantoorproductiviteit en het nauwkeurig reageren op behoeften, en is een toonaangevend intelligent product in de industrie."
|
34
34
|
},
|
35
|
+
"AnimeSharp": {
|
36
|
+
"description": "AnimeSharp (ook bekend als “4x‑AnimeSharp”) is een open-source superresolutiemodel ontwikkeld door Kim2091, gebaseerd op de ESRGAN-architectuur, gericht op het vergroten en verscherpen van afbeeldingen in anime-stijl. Het werd in februari 2022 hernoemd van “4x-TextSharpV1” en was oorspronkelijk ook geschikt voor tekstafbeeldingen, maar de prestaties zijn sterk geoptimaliseerd voor anime-inhoud."
|
37
|
+
},
|
35
38
|
"Baichuan2-Turbo": {
|
36
39
|
"description": "Maakt gebruik van zoekversterkingstechnologie om een uitgebreide koppeling tussen het grote model en domeinspecifieke kennis en wereldwijde kennis te realiseren. Ondersteunt het uploaden van verschillende documenten zoals PDF en Word, evenals URL-invoer, met tijdige en uitgebreide informatieverzameling en nauwkeurige, professionele output."
|
37
40
|
},
|
@@ -89,6 +92,9 @@
|
|
89
92
|
"Doubao-pro-4k": {
|
90
93
|
"description": "Het beste hoofdmodel, geschikt voor het verwerken van complexe taken, met uitstekende prestaties in scenario's zoals referentievragen, samenvattingen, creatief schrijven, tekstclassificatie en rollenspellen. Ondersteunt redeneren en fijn afstemmen met een contextvenster van 4k."
|
91
94
|
},
|
95
|
+
"DreamO": {
|
96
|
+
"description": "DreamO is een open-source beeldgeneratiemodel ontwikkeld in samenwerking tussen ByteDance en de Universiteit van Peking, ontworpen om multi-task beeldgeneratie te ondersteunen via een uniforme architectuur. Het maakt gebruik van een efficiënte combinatiemodelmethode om op basis van door de gebruiker gespecificeerde identiteit, onderwerp, stijl, achtergrond en andere voorwaarden zeer consistente en aangepaste beelden te genereren."
|
97
|
+
},
|
92
98
|
"ERNIE-3.5-128K": {
|
93
99
|
"description": "De door Baidu ontwikkelde vlaggenschip grote taalmodel, dat een enorme hoeveelheid Chinese en Engelse gegevens dekt, met krachtige algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met de Baidu zoekplug-in, wat de actualiteit van vraag- en antwoordinformatie waarborgt."
|
94
100
|
},
|
@@ -122,15 +128,39 @@
|
|
122
128
|
"ERNIE-Speed-Pro-128K": {
|
123
129
|
"description": "Het door Baidu in 2024 gepresenteerde nieuwe hoge-prestatie taalmodel, met uitstekende algemene capaciteiten, betere resultaten dan ERNIE Speed, en geschikt als basis model voor fine-tuning, om beter specifieke probleemstellingen aan te pakken, met uitstekende inferentieprestaties."
|
124
130
|
},
|
131
|
+
"FLUX.1-Kontext-dev": {
|
132
|
+
"description": "FLUX.1-Kontext-dev is een multimodaal beeldgeneratie- en bewerkingsmodel ontwikkeld door Black Forest Labs, gebaseerd op de Rectified Flow Transformer-architectuur met 12 miljard parameters. Het richt zich op het genereren, reconstrueren, verbeteren of bewerken van beelden onder gegeven contextuele voorwaarden. Dit model combineert de controleerbare generatievoordelen van diffusie-modellen met de contextuele modellering van Transformers en ondersteunt hoogwaardige beeldoutput, breed toepasbaar voor beeldherstel, beeldaanvulling en visuele scèneherconstructie."
|
133
|
+
},
|
134
|
+
"FLUX.1-dev": {
|
135
|
+
"description": "FLUX.1-dev is een open-source multimodaal taalmodel (Multimodal Language Model, MLLM) ontwikkeld door Black Forest Labs, geoptimaliseerd voor taken met tekst en beeld. Het integreert begrip en generatie van zowel afbeeldingen als tekst. Gebaseerd op geavanceerde grote taalmodellen zoals Mistral-7B, bereikt het door zorgvuldig ontworpen visuele encoders en meervoudige instructiefijnafstelling een vermogen tot gecombineerde tekst-beeldverwerking en complexe taakredenering."
|
136
|
+
},
|
125
137
|
"Gryphe/MythoMax-L2-13b": {
|
126
138
|
"description": "MythoMax-L2 (13B) is een innovatief model, geschikt voor toepassingen in meerdere domeinen en complexe taken."
|
127
139
|
},
|
140
|
+
"HelloMeme": {
|
141
|
+
"description": "HelloMeme is een AI-tool die automatisch memes, GIF's of korte video's genereert op basis van door jou aangeleverde afbeeldingen of acties. Je hebt geen teken- of programmeerkennis nodig; met alleen referentieafbeeldingen helpt het je om aantrekkelijke, leuke en stijlconsistente content te maken."
|
142
|
+
},
|
143
|
+
"HiDream-I1-Full": {
|
144
|
+
"description": "HiDream-E1-Full is een open-source multimodaal beeldbewerkingsmodel uitgebracht door HiDream.ai, gebaseerd op de geavanceerde Diffusion Transformer-architectuur en gecombineerd met krachtige taalbegripsmogelijkheden (ingebouwde LLaMA 3.1-8B-Instruct). Het ondersteunt beeldgeneratie, stijltransfer, lokale bewerking en inhoudshertekening via natuurlijke taalopdrachten en beschikt over uitstekende tekst-beeldbegrip en uitvoeringscapaciteiten."
|
145
|
+
},
|
146
|
+
"HunyuanDiT-v1.2-Diffusers-Distilled": {
|
147
|
+
"description": "hunyuandit-v1.2-distilled is een lichtgewicht tekst-naar-beeldmodel dat door distillatie is geoptimaliseerd om snel hoogwaardige beelden te genereren, bijzonder geschikt voor omgevingen met beperkte middelen en realtime generatie."
|
148
|
+
},
|
149
|
+
"InstantCharacter": {
|
150
|
+
"description": "InstantCharacter is een in 2025 door het Tencent AI-team uitgebracht tuning-vrij gepersonaliseerd karaktergeneratiemodel, gericht op het realiseren van hoge-fideliteit en consistente karaktergeneratie over verschillende scènes. Het model ondersteunt karaktermodellering op basis van slechts één referentieafbeelding en kan dit karakter flexibel overbrengen naar diverse stijlen, houdingen en achtergronden."
|
151
|
+
},
|
128
152
|
"InternVL2-8B": {
|
129
153
|
"description": "InternVL2-8B is een krachtig visueel taalmodel dat multimodale verwerking van afbeeldingen en tekst ondersteunt, in staat om afbeeldingsinhoud nauwkeurig te identificeren en relevante beschrijvingen of antwoorden te genereren."
|
130
154
|
},
|
131
155
|
"InternVL2.5-26B": {
|
132
156
|
"description": "InternVL2.5-26B is een krachtig visueel taalmodel dat multimodale verwerking van afbeeldingen en tekst ondersteunt, in staat om afbeeldingsinhoud nauwkeurig te identificeren en relevante beschrijvingen of antwoorden te genereren."
|
133
157
|
},
|
158
|
+
"Kolors": {
|
159
|
+
"description": "Kolors is een tekst-naar-beeldmodel ontwikkeld door het Kolors-team van Kuaishou. Het is getraind met miljarden parameters en heeft significante voordelen in visuele kwaliteit, Chinees semantisch begrip en tekstrendering."
|
160
|
+
},
|
161
|
+
"Kwai-Kolors/Kolors": {
|
162
|
+
"description": "Kolors is een grootschalig tekst-naar-beeldgeneratiemodel gebaseerd op latente diffusie, ontwikkeld door het Kolors-team van Kuaishou. Het model is getraind op miljarden tekst-beeldparen en toont uitstekende prestaties in visuele kwaliteit, complexe semantische nauwkeurigheid en het renderen van Chinese en Engelse karakters. Het ondersteunt zowel Chinese als Engelse invoer en blinkt uit in het begrijpen en genereren van specifieke Chinese inhoud."
|
163
|
+
},
|
134
164
|
"Llama-3.2-11B-Vision-Instruct": {
|
135
165
|
"description": "Uitstekende beeldredeneringscapaciteiten op hoge resolutie afbeeldingen, geschikt voor visuele begripstoepassingen."
|
136
166
|
},
|
@@ -164,9 +194,15 @@
|
|
164
194
|
"MiniMaxAI/MiniMax-M1-80k": {
|
165
195
|
"description": "MiniMax-M1 is een open-source gewichtenschaalmodel met gemengde aandacht, met 456 miljard parameters, waarbij elke token ongeveer 45,9 miljard parameters activeert. Het model ondersteunt native een ultralange context van 1 miljoen tokens en bespaart dankzij het bliksemaandachtmechanisme 75% van de floating-point-bewerkingen bij generatietaken van 100.000 tokens vergeleken met DeepSeek R1. Tegelijkertijd maakt MiniMax-M1 gebruik van een MoE (Mixture of Experts) architectuur, gecombineerd met het CISPO-algoritme en een efficiënt versterkend leermodel met gemengde aandacht, wat leidt tot toonaangevende prestaties bij lange invoerredenering en echte software-engineering scenario's."
|
166
196
|
},
|
197
|
+
"Moonshot-Kimi-K2-Instruct": {
|
198
|
+
"description": "Met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters is dit het toonaangevende niet-denkende model op het gebied van geavanceerde kennis, wiskunde en codering, en is het beter geschikt voor algemene agenttaken. Het is zorgvuldig geoptimaliseerd voor agenttaken, kan niet alleen vragen beantwoorden maar ook acties ondernemen. Ideaal voor improvisatie, algemene chat en agentervaringen, het is een reflexniveau model zonder lange denktijd."
|
199
|
+
},
|
167
200
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
168
201
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) is een hoogprecisie instructiemodel, geschikt voor complexe berekeningen."
|
169
202
|
},
|
203
|
+
"OmniConsistency": {
|
204
|
+
"description": "OmniConsistency verbetert de stijlconsistentie en generalisatie in image-to-image taken door grootschalige Diffusion Transformers (DiTs) en gepaarde gestileerde data te introduceren, waardoor stijldegradatie wordt voorkomen."
|
205
|
+
},
|
170
206
|
"Phi-3-medium-128k-instruct": {
|
171
207
|
"description": "Hetzelfde Phi-3-medium model, maar met een grotere contextgrootte voor RAG of few shot prompting."
|
172
208
|
},
|
@@ -218,6 +254,9 @@
|
|
218
254
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
255
|
"description": "DeepSeek-V3 is een hybride expert (MoE) taalmodel met 6710 miljard parameters, dat gebruikmaakt van multi-head latent attention (MLA) en de DeepSeekMoE-architectuur, gecombineerd met een load balancing-strategie zonder extra verlies, om de inferentie- en trainingsefficiëntie te optimaliseren. Door voorgetraind te worden op 14,8 biljoen hoogwaardige tokens en vervolgens te worden fijngesteld met supervisie en versterkend leren, overtreft DeepSeek-V3 andere open-source modellen in prestaties en komt het dicht in de buurt van toonaangevende gesloten modellen."
|
220
256
|
},
|
257
|
+
"Pro/moonshotai/Kimi-K2-Instruct": {
|
258
|
+
"description": "Kimi K2 is een MoE-architectuurbasis model met krachtige codeer- en agentcapaciteiten, met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. In benchmarktests voor algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model andere toonaangevende open-source modellen."
|
259
|
+
},
|
221
260
|
"QwQ-32B-Preview": {
|
222
261
|
"description": "QwQ-32B-Preview is een innovatief natuurlijk taalverwerkingsmodel dat efficiënt complexe dialooggeneratie en contextbegripstaken kan verwerken."
|
223
262
|
},
|
@@ -278,6 +317,12 @@
|
|
278
317
|
"Qwen/Qwen3-235B-A22B": {
|
279
318
|
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
280
319
|
},
|
320
|
+
"Qwen/Qwen3-235B-A22B-Instruct-2507": {
|
321
|
+
"description": "Qwen3-235B-A22B-Instruct-2507 is een vlaggenschip hybride-expert (MoE) groot taalmodel uit de Qwen3-serie, ontwikkeld door het Alibaba Cloud Tongyi Qianwen-team. Het model heeft 235 miljard totale parameters en activeert 22 miljard parameters per inferentie. Het is een update van de niet-denkende modus van Qwen3-235B-A22B, met significante verbeteringen in instructienaleving, logische redenering, tekstbegrip, wiskunde, wetenschap, programmeren en toolgebruik. Daarnaast is de dekking van meertalige lange staartkennis versterkt en is het beter afgestemd op gebruikersvoorkeuren in subjectieve en open taken voor het genereren van nuttigere en kwalitatief betere teksten."
|
322
|
+
},
|
323
|
+
"Qwen/Qwen3-235B-A22B-Thinking-2507": {
|
324
|
+
"description": "Qwen3-235B-A22B-Thinking-2507 is een lid van de Qwen3-serie grote taalmodellen ontwikkeld door Alibaba Tongyi Qianwen, gericht op complexe en moeilijke redeneertaken. Het model is gebaseerd op een hybride-expert (MoE) architectuur met 235 miljard parameters, waarbij per token ongeveer 22 miljard parameters worden geactiveerd, wat zorgt voor hoge prestaties en efficiëntie. Als speciaal 'denk'-model excelleert het in logische redenering, wiskunde, wetenschap, programmeren en academische benchmarks, en bereikt het topniveau onder open-source denkmodellen. Het model versterkt ook algemene capaciteiten zoals instructienaleving, toolgebruik en tekstgeneratie, ondersteunt native 256K lange contexten en is ideaal voor diepgaande redenering en verwerking van lange documenten."
|
325
|
+
},
|
281
326
|
"Qwen/Qwen3-30B-A3B": {
|
282
327
|
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
283
328
|
},
|
@@ -944,6 +989,9 @@
|
|
944
989
|
"doubao-seed-1.6-thinking": {
|
945
990
|
"description": "Doubao-Seed-1.6-thinking model heeft sterk verbeterde denkvermogens, met verdere verbeteringen in basisvaardigheden zoals coderen, wiskunde en logisch redeneren ten opzichte van Doubao-1.5-thinking-pro, en ondersteunt visueel begrip. Ondersteunt een contextvenster van 256k en een maximale uitvoerlengte van 16k tokens."
|
946
991
|
},
|
992
|
+
"doubao-seedream-3-0-t2i-250415": {
|
993
|
+
"description": "Het Doubao beeldgeneratiemodel is ontwikkeld door het Seed-team van ByteDance en ondersteunt zowel tekst- als beeldinvoer, en biedt een hoog controleerbare en hoogwaardige beeldgeneratie-ervaring. Het genereert beelden op basis van tekstprompts."
|
994
|
+
},
|
947
995
|
"doubao-vision-lite-32k": {
|
948
996
|
"description": "Het Doubao-vision model is een multimodaal groot model van Doubao met krachtige beeldbegrip- en redeneercapaciteiten, evenals nauwkeurige instructiebegrip. Het model presteert sterk bij het extraheren van beeld- en tekstinformatie en bij beeldgebaseerde redeneertaken, en is toepasbaar op complexere en bredere visuele vraag-en-antwoord scenario's."
|
949
997
|
},
|
@@ -995,6 +1043,9 @@
|
|
995
1043
|
"ernie-char-fiction-8k": {
|
996
1044
|
"description": "Een door Baidu ontwikkeld groot taalmodel voor verticale scenario's, geschikt voor toepassingen zoals game NPC's, klantenservice dialoog, en rollenspellen, met een duidelijkere en consistentere karakterstijl, sterkere instructievolgcapaciteiten en betere inferentieprestaties."
|
997
1045
|
},
|
1046
|
+
"ernie-irag-edit": {
|
1047
|
+
"description": "Het door Baidu zelf ontwikkelde ERNIE iRAG Edit beeldbewerkingsmodel ondersteunt bewerkingen zoals wissen (erase), hertekenen (repaint) en variatie (variantie genereren) op basis van afbeeldingen."
|
1048
|
+
},
|
998
1049
|
"ernie-lite-8k": {
|
999
1050
|
"description": "ERNIE Lite is een lichtgewicht groot taalmodel dat door Baidu is ontwikkeld, dat uitstekende modelprestaties en inferentiecapaciteiten combineert, geschikt voor gebruik met AI-versnelling kaarten met lage rekencapaciteit."
|
1000
1051
|
},
|
@@ -1022,12 +1073,27 @@
|
|
1022
1073
|
"ernie-x1-turbo-32k": {
|
1023
1074
|
"description": "In vergelijking met ERNIE-X1-32K biedt dit model betere prestaties en effectiviteit."
|
1024
1075
|
},
|
1076
|
+
"flux-1-schnell": {
|
1077
|
+
"description": "Een tekst-naar-beeldmodel met 12 miljard parameters ontwikkeld door Black Forest Labs, gebruikmakend van latente adversariële diffusie-distillatie technologie, dat hoogwaardige beelden kan genereren binnen 1 tot 4 stappen. Dit model presteert vergelijkbaar met gesloten bron alternatieven en wordt uitgebracht onder de Apache-2.0 licentie, geschikt voor persoonlijk, wetenschappelijk en commercieel gebruik."
|
1078
|
+
},
|
1079
|
+
"flux-dev": {
|
1080
|
+
"description": "FLUX.1 [dev] is een open-source gewicht en verfijnd model voor niet-commercieel gebruik. Het behoudt een beeldkwaliteit en instructienaleving vergelijkbaar met de professionele versie van FLUX, maar met een hogere operationele efficiëntie. Vergeleken met standaardmodellen van dezelfde grootte is het efficiënter in het gebruik van middelen."
|
1081
|
+
},
|
1025
1082
|
"flux-kontext/dev": {
|
1026
1083
|
"description": "Frontier beeldbewerkingsmodel."
|
1027
1084
|
},
|
1085
|
+
"flux-merged": {
|
1086
|
+
"description": "Het FLUX.1-merged model combineert de diepgaande kenmerken verkend tijdens de ontwikkelingsfase van \"DEV\" met de hoge uitvoeringssnelheid van \"Schnell\". Deze combinatie verhoogt niet alleen de prestatiegrenzen van het model, maar breidt ook het toepassingsgebied uit."
|
1087
|
+
},
|
1028
1088
|
"flux-pro/kontext": {
|
1029
1089
|
"description": "FLUX.1 Kontext [pro] kan tekst en referentieafbeeldingen als invoer verwerken, waardoor doelgerichte lokale bewerkingen en complexe algehele scèneveranderingen naadloos mogelijk zijn."
|
1030
1090
|
},
|
1091
|
+
"flux-schnell": {
|
1092
|
+
"description": "FLUX.1 [schnell] is momenteel het meest geavanceerde open-source model met weinig stappen, dat niet alleen concurrenten overtreft, maar ook krachtige niet-gedistilleerde modellen zoals Midjourney v6.0 en DALL·E 3 (HD). Het model is speciaal fijn afgesteld om de volledige outputdiversiteit van de pre-trainingsfase te behouden. Vergeleken met de meest geavanceerde modellen op de markt verbetert FLUX.1 [schnell] aanzienlijk de visuele kwaliteit, instructienaleving, schaal/verhouding aanpassing, lettertypeverwerking en outputdiversiteit, wat gebruikers een rijkere en gevarieerdere creatieve beeldgeneratie-ervaring biedt."
|
1093
|
+
},
|
1094
|
+
"flux.1-schnell": {
|
1095
|
+
"description": "Een Rectified Flow Transformer met 12 miljard parameters, in staat om beelden te genereren op basis van tekstbeschrijvingen."
|
1096
|
+
},
|
1031
1097
|
"flux/schnell": {
|
1032
1098
|
"description": "FLUX.1 [schnell] is een streaming transformer-model met 12 miljard parameters, dat binnen 1 tot 4 stappen hoogwaardige afbeeldingen uit tekst kan genereren, geschikt voor persoonlijk en commercieel gebruik."
|
1033
1099
|
},
|
@@ -1109,9 +1175,6 @@
|
|
1109
1175
|
"gemini-2.5-flash-preview-04-17": {
|
1110
1176
|
"description": "Gemini 2.5 Flash Preview is het meest kosteneffectieve model van Google, dat uitgebreide functionaliteit biedt."
|
1111
1177
|
},
|
1112
|
-
"gemini-2.5-flash-preview-04-17-thinking": {
|
1113
|
-
"description": "Gemini 2.5 Flash Preview is het meest kosteneffectieve model van Google en biedt uitgebreide functionaliteiten."
|
1114
|
-
},
|
1115
1178
|
"gemini-2.5-flash-preview-05-20": {
|
1116
1179
|
"description": "Gemini 2.5 Flash Preview is het meest kosteneffectieve model van Google en biedt uitgebreide functionaliteiten."
|
1117
1180
|
},
|
@@ -1190,6 +1253,21 @@
|
|
1190
1253
|
"glm-4.1v-thinking-flashx": {
|
1191
1254
|
"description": "De GLM-4.1V-Thinking serie modellen zijn momenteel de krachtigste visuele modellen binnen de bekende 10 miljard parameter VLM's. Ze integreren state-of-the-art visuele-taaltaakprestaties op hetzelfde niveau, waaronder videoverwerking, beeldvraag-antwoordsystemen, vakinhoudelijke probleemoplossing, OCR-tekstherkenning, document- en grafiekanalyse, GUI-agenten, frontend webcodering en grounding. De capaciteiten van meerdere taken overtreffen zelfs die van Qwen2.5-VL-72B met acht keer zoveel parameters. Door geavanceerde versterkend leren technologie beheerst het model chain-of-thought redenering om de nauwkeurigheid en rijkdom van antwoorden te verbeteren, wat resulteert in aanzienlijk betere eindresultaten en interpretatie dan traditionele niet-thinking modellen."
|
1192
1255
|
},
|
1256
|
+
"glm-4.5": {
|
1257
|
+
"description": "Het nieuwste vlaggenschipmodel van Zhizhu, ondersteunt schakeling tussen denkmodi, met een algehele prestatie die het SOTA-niveau van open-source modellen bereikt, en een contextlengte tot 128K."
|
1258
|
+
},
|
1259
|
+
"glm-4.5-air": {
|
1260
|
+
"description": "Een lichtgewicht versie van GLM-4.5, die zowel prestaties als kosteneffectiviteit combineert en flexibel kan schakelen tussen hybride denkmodellen."
|
1261
|
+
},
|
1262
|
+
"glm-4.5-airx": {
|
1263
|
+
"description": "De snelle versie van GLM-4.5-Air, met snellere reactietijden, speciaal ontworpen voor grootschalige en hoge-snelheidsbehoeften."
|
1264
|
+
},
|
1265
|
+
"glm-4.5-flash": {
|
1266
|
+
"description": "De gratis versie van GLM-4.5, met uitstekende prestaties in inferentie, codering en agenttaken."
|
1267
|
+
},
|
1268
|
+
"glm-4.5-x": {
|
1269
|
+
"description": "De snelle versie van GLM-4.5, met krachtige prestaties en een generatie snelheid tot 100 tokens per seconde."
|
1270
|
+
},
|
1193
1271
|
"glm-4v": {
|
1194
1272
|
"description": "GLM-4V biedt krachtige beeldbegrip- en redeneercapaciteiten, ondersteunt verschillende visuele taken."
|
1195
1273
|
},
|
@@ -1209,7 +1287,7 @@
|
|
1209
1287
|
"description": "Supersnelle redenering: met een extreem snelle redeneringssnelheid en krachtige redeneringseffecten."
|
1210
1288
|
},
|
1211
1289
|
"glm-z1-flash": {
|
1212
|
-
"description": "De GLM-Z1
|
1290
|
+
"description": "De GLM-Z1-serie beschikt over sterke capaciteiten voor complexe redenering en presteert uitstekend in logica, wiskunde en programmeren."
|
1213
1291
|
},
|
1214
1292
|
"glm-z1-flashx": {
|
1215
1293
|
"description": "Snel en betaalbaar: Flash verbeterde versie met ultrahoge inferentiesnelheid en snellere gelijktijdige verwerking."
|
@@ -1385,6 +1463,9 @@
|
|
1385
1463
|
"grok-2-1212": {
|
1386
1464
|
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
1387
1465
|
},
|
1466
|
+
"grok-2-image-1212": {
|
1467
|
+
"description": "Ons nieuwste beeldgeneratiemodel kan levendige en realistische beelden genereren op basis van tekstprompts. Het presteert uitstekend in beeldgeneratie voor marketing, sociale media en entertainment."
|
1468
|
+
},
|
1388
1469
|
"grok-2-vision-1212": {
|
1389
1470
|
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
1390
1471
|
},
|
@@ -1454,6 +1535,9 @@
|
|
1454
1535
|
"hunyuan-t1-20250529": {
|
1455
1536
|
"description": "Geoptimaliseerd voor tekstcreatie en essay schrijven, verbeterde vaardigheden in frontend codering, wiskunde en logisch redeneren, en verbeterde instructievolging."
|
1456
1537
|
},
|
1538
|
+
"hunyuan-t1-20250711": {
|
1539
|
+
"description": "Significante verbetering van geavanceerde wiskundige, logische en codeervaardigheden, optimalisatie van modeloutputstabiliteit en verbetering van lange-tekstcapaciteiten."
|
1540
|
+
},
|
1457
1541
|
"hunyuan-t1-latest": {
|
1458
1542
|
"description": "De eerste ultra-grote Hybrid-Transformer-Mamba inferentiemodel in de industrie, dat de inferentiemogelijkheden uitbreidt, met een superieure decodesnelheid en verder afgestemd op menselijke voorkeuren."
|
1459
1543
|
},
|
@@ -1502,6 +1586,12 @@
|
|
1502
1586
|
"hunyuan-vision": {
|
1503
1587
|
"description": "Het nieuwste multimodale model van Hunyuan, ondersteunt het genereren van tekstinhoud op basis van afbeelding + tekstinvoer."
|
1504
1588
|
},
|
1589
|
+
"image-01": {
|
1590
|
+
"description": "Een nieuw beeldgeneratiemodel met fijne beeldweergave, ondersteunt tekst-naar-beeld en beeld-naar-beeld."
|
1591
|
+
},
|
1592
|
+
"image-01-live": {
|
1593
|
+
"description": "Beeldgeneratiemodel met fijne beeldweergave, ondersteunt tekst-naar-beeld en stijlinstellingen."
|
1594
|
+
},
|
1505
1595
|
"imagen-4.0-generate-preview-06-06": {
|
1506
1596
|
"description": "Imagen 4e generatie tekst-naar-beeld modelserie"
|
1507
1597
|
},
|
@@ -1526,6 +1616,9 @@
|
|
1526
1616
|
"internvl3-latest": {
|
1527
1617
|
"description": "Ons nieuwste multimodale grote model, met verbeterde beeld- en tekstbegripcapaciteiten en lange termijn beeldbegrip, presteert op het niveau van toonaangevende gesloten modellen. Standaard gericht op ons recentste InternVL-seriemodel, momenteel gericht op internvl3-78b."
|
1528
1618
|
},
|
1619
|
+
"irag-1.0": {
|
1620
|
+
"description": "Baidu's zelfontwikkelde iRAG (image based RAG) is een doorzoekversterkte tekst-naar-beeldtechnologie die Baidu's miljarden afbeeldingen combineert met krachtige basismodelcapaciteiten om diverse ultra-realistische beelden te genereren. Het overtreft native tekst-naar-beeldsystemen aanzienlijk, zonder AI-achtige uitstraling en met lage kosten. iRAG kenmerkt zich door geen hallucinaties, ultra-realistische beelden en directe beschikbaarheid."
|
1621
|
+
},
|
1529
1622
|
"jamba-large": {
|
1530
1623
|
"description": "Ons krachtigste en meest geavanceerde model, speciaal ontworpen voor het verwerken van complexe taken op bedrijfsniveau, met uitstekende prestaties."
|
1531
1624
|
},
|
@@ -1535,6 +1628,9 @@
|
|
1535
1628
|
"jina-deepsearch-v1": {
|
1536
1629
|
"description": "Diepe zoekopdrachten combineren webzoekopdrachten, lezen en redeneren voor een uitgebreide verkenning. Je kunt het beschouwen als een agent die jouw onderzoeksopdracht aanneemt - het zal een uitgebreide zoektocht uitvoeren en meerdere iteraties doorlopen voordat het een antwoord geeft. Dit proces omvat voortdurende onderzoek, redeneren en het oplossen van problemen vanuit verschillende invalshoeken. Dit is fundamenteel anders dan het rechtstreeks genereren van antwoorden uit voorgetrainde gegevens door standaard grote modellen en het vertrouwen op eenmalige oppervlakkige zoekopdrachten van traditionele RAG-systemen."
|
1537
1630
|
},
|
1631
|
+
"kimi-k2": {
|
1632
|
+
"description": "Kimi-K2 is een MoE-architectuurbasis model met krachtige codeer- en agentcapaciteiten, uitgebracht door Moonshot AI, met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. In benchmarktests voor algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model andere toonaangevende open-source modellen."
|
1633
|
+
},
|
1538
1634
|
"kimi-k2-0711-preview": {
|
1539
1635
|
"description": "kimi-k2 is een MoE-architectuurbasis model met krachtige codeer- en agentcapaciteiten, met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. In benchmarktests voor algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model andere toonaangevende open-source modellen."
|
1540
1636
|
},
|
@@ -1928,6 +2024,9 @@
|
|
1928
2024
|
"moonshotai/Kimi-Dev-72B": {
|
1929
2025
|
"description": "Kimi-Dev-72B is een open source code groot model, geoptimaliseerd door grootschalige versterkte leerprocessen, dat robuuste en direct inzetbare patches kan genereren. Dit model behaalde een nieuwe recordscore van 60,4% op SWE-bench Verified en vestigde daarmee een nieuw hoogtepunt voor open source modellen bij geautomatiseerde software engineering taken zoals defectherstel en code review."
|
1930
2026
|
},
|
2027
|
+
"moonshotai/Kimi-K2-Instruct": {
|
2028
|
+
"description": "Kimi K2 is een MoE-architectuurbasis model met krachtige codeer- en agentcapaciteiten, met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. In benchmarktests voor algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model andere toonaangevende open-source modellen."
|
2029
|
+
},
|
1931
2030
|
"moonshotai/kimi-k2-instruct": {
|
1932
2031
|
"description": "kimi-k2 is een MoE-architectuurbasis model met krachtige codeer- en agentmogelijkheden, met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. In benchmarktests voor algemene kennisredenering, programmeren, wiskunde en agent-gerelateerde categorieën presteert het K2-model beter dan andere gangbare open-source modellen."
|
1933
2032
|
},
|
@@ -2264,6 +2363,12 @@
|
|
2264
2363
|
"qwen3-235b-a22b": {
|
2265
2364
|
"description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
|
2266
2365
|
},
|
2366
|
+
"qwen3-235b-a22b-instruct-2507": {
|
2367
|
+
"description": "Open-source model in niet-denkende modus gebaseerd op Qwen3, met lichte verbeteringen in subjectieve creativiteit en modelveiligheid ten opzichte van de vorige versie (Tongyi Qianwen 3-235B-A22B)."
|
2368
|
+
},
|
2369
|
+
"qwen3-235b-a22b-thinking-2507": {
|
2370
|
+
"description": "Open-source model in denkmodus gebaseerd op Qwen3, met aanzienlijke verbeteringen in logische vaardigheden, algemene capaciteiten, kennisversterking en creativiteit ten opzichte van de vorige versie (Tongyi Qianwen 3-235B-A22B), geschikt voor complexe en veeleisende redeneerscenario's."
|
2371
|
+
},
|
2267
2372
|
"qwen3-30b-a3b": {
|
2268
2373
|
"description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
|
2269
2374
|
},
|
@@ -2276,6 +2381,12 @@
|
|
2276
2381
|
"qwen3-8b": {
|
2277
2382
|
"description": "Qwen3 is een nieuwe generatie van het Qwen grote model met aanzienlijk verbeterde capaciteiten, die de industrie leidende niveaus bereikt in redeneren, algemeen gebruik, agent en meertalige ondersteuning, en ondersteunt de schakeling tussen denkmodi."
|
2278
2383
|
},
|
2384
|
+
"qwen3-coder-480b-a35b-instruct": {
|
2385
|
+
"description": "Open-source codeermodel van Tongyi Qianwen. De nieuwste qwen3-coder-480b-a35b-instruct is gebaseerd op Qwen3, met krachtige Coding Agent-capaciteiten, bedreven in toolaanroepen en omgevingsinteractie, en kan zelfstandig programmeren met uitstekende codeervaardigheden en algemene capaciteiten."
|
2386
|
+
},
|
2387
|
+
"qwen3-coder-plus": {
|
2388
|
+
"description": "Codeermodel van Tongyi Qianwen. De nieuwste Qwen3-Coder-Plus serie is gebaseerd op Qwen3, met krachtige Coding Agent-capaciteiten, bedreven in toolaanroepen en omgevingsinteractie, en kan zelfstandig programmeren met uitstekende codeervaardigheden en algemene capaciteiten."
|
2389
|
+
},
|
2279
2390
|
"qwq": {
|
2280
2391
|
"description": "QwQ is een experimenteel onderzoeksmodel dat zich richt op het verbeteren van de AI-redeneringscapaciteiten."
|
2281
2392
|
},
|
@@ -2318,6 +2429,24 @@
|
|
2318
2429
|
"sonar-reasoning-pro": {
|
2319
2430
|
"description": "Een nieuw API-product ondersteund door het DeepSeek redeneringsmodel."
|
2320
2431
|
},
|
2432
|
+
"stable-diffusion-3-medium": {
|
2433
|
+
"description": "Het nieuwste tekst-naar-beeld groot model uitgebracht door Stability AI. Deze versie bouwt voort op de voordelen van eerdere generaties en verbetert aanzienlijk de beeldkwaliteit, tekstbegrip en stijlvariëteit. Het kan complexe natuurlijke taal prompts nauwkeuriger interpreteren en genereert preciezere en gevarieerdere beelden."
|
2434
|
+
},
|
2435
|
+
"stable-diffusion-3.5-large": {
|
2436
|
+
"description": "stable-diffusion-3.5-large is een multimodale diffusie-transformer (MMDiT) tekst-naar-beeldgeneratiemodel met 800 miljoen parameters, met uitstekende beeldkwaliteit en promptmatching. Het ondersteunt het genereren van hoge-resolutie beelden tot 1 miljoen pixels en kan efficiënt draaien op standaard consumentenhardware."
|
2437
|
+
},
|
2438
|
+
"stable-diffusion-3.5-large-turbo": {
|
2439
|
+
"description": "stable-diffusion-3.5-large-turbo is een model gebaseerd op stable-diffusion-3.5-large, met adversariële diffusie-distillatie (ADD) technologie voor snellere snelheid."
|
2440
|
+
},
|
2441
|
+
"stable-diffusion-v1.5": {
|
2442
|
+
"description": "stable-diffusion-v1.5 is geïnitialiseerd met de stable-diffusion-v1.2 checkpoint gewichten en fijn afgesteld met 595k stappen op \"laion-aesthetics v2 5+\" dataset bij 512x512 resolutie, met 10% minder tekstconditionering om classifier-vrije begeleiding te verbeteren."
|
2443
|
+
},
|
2444
|
+
"stable-diffusion-xl": {
|
2445
|
+
"description": "stable-diffusion-xl heeft aanzienlijke verbeteringen ten opzichte van v1.5 en levert vergelijkbare resultaten als het huidige open-source SOTA tekst-naar-beeld model Midjourney. Verbeteringen omvatten een drie keer grotere UNet backbone, een refinement module voor betere beeldkwaliteit en efficiëntere trainingstechnieken."
|
2446
|
+
},
|
2447
|
+
"stable-diffusion-xl-base-1.0": {
|
2448
|
+
"description": "Een door Stability AI ontwikkeld en open-source groot tekst-naar-beeld model met toonaangevende creatieve beeldgeneratiecapaciteiten. Het beschikt over uitstekende instructiebegrip en ondersteunt omgekeerde promptdefinities voor nauwkeurige inhoudsgeneratie."
|
2449
|
+
},
|
2321
2450
|
"step-1-128k": {
|
2322
2451
|
"description": "Biedt een balans tussen prestaties en kosten, geschikt voor algemene scenario's."
|
2323
2452
|
},
|
@@ -2348,6 +2477,12 @@
|
|
2348
2477
|
"step-1v-8k": {
|
2349
2478
|
"description": "Klein visueel model, geschikt voor basis tekst- en afbeeldingtaken."
|
2350
2479
|
},
|
2480
|
+
"step-1x-edit": {
|
2481
|
+
"description": "Dit model is gespecialiseerd in beeldbewerkingsopdrachten en kan afbeeldingen aanpassen en verbeteren op basis van door gebruikers aangeleverde afbeeldingen en tekstbeschrijvingen. Het ondersteunt diverse invoerformaten, waaronder tekstbeschrijvingen en voorbeeldafbeeldingen. Het model begrijpt de intentie van de gebruiker en genereert beeldbewerkingsresultaten die aan de eisen voldoen."
|
2482
|
+
},
|
2483
|
+
"step-1x-medium": {
|
2484
|
+
"description": "Dit model heeft krachtige beeldgeneratiecapaciteiten en ondersteunt tekstbeschrijvingen als invoer. Het biedt native ondersteuning voor het Chinees, waardoor het Chinese tekstbeschrijvingen beter kan begrijpen en verwerken. Het kan semantische informatie nauwkeuriger vastleggen en omzetten in beeldkenmerken voor preciezere beeldgeneratie. Het model genereert hoge-resolutie, hoogwaardige beelden en heeft enige stijltransfercapaciteit."
|
2485
|
+
},
|
2351
2486
|
"step-2-16k": {
|
2352
2487
|
"description": "Ondersteunt grootschalige contextinteracties, geschikt voor complexe gespreksscenario's."
|
2353
2488
|
},
|
@@ -2357,6 +2492,9 @@
|
|
2357
2492
|
"step-2-mini": {
|
2358
2493
|
"description": "Een razendsnel groot model gebaseerd op de nieuwe generatie zelfontwikkelde Attention-architectuur MFA, dat met zeer lage kosten vergelijkbare resultaten als step1 behaalt, terwijl het een hogere doorvoer en snellere responstijd behoudt. Het kan algemene taken verwerken en heeft speciale vaardigheden op het gebied van codering."
|
2359
2494
|
},
|
2495
|
+
"step-2x-large": {
|
2496
|
+
"description": "De nieuwe generatie Step Star beeldgeneratiemodel, gespecialiseerd in beeldgeneratie. Het kan op basis van door gebruikers aangeleverde tekstbeschrijvingen hoogwaardige beelden genereren. Het nieuwe model produceert realistischere texturen en heeft sterkere Chinese en Engelse tekstgeneratiecapaciteiten."
|
2497
|
+
},
|
2360
2498
|
"step-r1-v-mini": {
|
2361
2499
|
"description": "Dit model is een krachtig redeneringsmodel met sterke beeldbegripcapaciteiten, in staat om beeld- en tekstinformatie te verwerken en tekstinhoud te genereren na diep nadenken. Dit model presteert uitstekend in visuele redenering en heeft eersteklas wiskundige, code- en tekstredeneringscapaciteiten. De contextlengte is 100k."
|
2362
2500
|
},
|
@@ -2432,8 +2570,23 @@
|
|
2432
2570
|
"v0-1.5-md": {
|
2433
2571
|
"description": "Het v0-1.5-md model is geschikt voor dagelijkse taken en het genereren van gebruikersinterfaces (UI)"
|
2434
2572
|
},
|
2573
|
+
"wan2.2-t2i-flash": {
|
2574
|
+
"description": "Wanxiang 2.2 Flash-versie, het nieuwste model. Volledige upgrades in creativiteit, stabiliteit en realistische textuur, met snelle generatie en hoge kosteneffectiviteit."
|
2575
|
+
},
|
2576
|
+
"wan2.2-t2i-plus": {
|
2577
|
+
"description": "Wanxiang 2.2 professionele versie, het nieuwste model. Volledige upgrades in creativiteit, stabiliteit en realistische textuur, met rijke details in de gegenereerde beelden."
|
2578
|
+
},
|
2579
|
+
"wanx-v1": {
|
2580
|
+
"description": "Basis tekst-naar-beeld model, overeenkomend met het Tongyi Wanxiang officiële 1.0 algemene model."
|
2581
|
+
},
|
2582
|
+
"wanx2.0-t2i-turbo": {
|
2583
|
+
"description": "Gespecialiseerd in realistische portretten, met gemiddelde snelheid en lage kosten. Overeenkomend met het Tongyi Wanxiang officiële 2.0 Turbo model."
|
2584
|
+
},
|
2585
|
+
"wanx2.1-t2i-plus": {
|
2586
|
+
"description": "Volledig geüpgraded versie. Genereert beelden met rijkere details, iets langzamere snelheid. Overeenkomend met het Tongyi Wanxiang officiële 2.1 professionele model."
|
2587
|
+
},
|
2435
2588
|
"wanx2.1-t2i-turbo": {
|
2436
|
-
"description": "
|
2589
|
+
"description": "Volledig geüpgraded versie. Snelle generatie, uitgebreide effecten en hoge algehele kosteneffectiviteit. Overeenkomend met het Tongyi Wanxiang officiële 2.1 Turbo model."
|
2437
2590
|
},
|
2438
2591
|
"whisper-1": {
|
2439
2592
|
"description": "Algemeen spraakherkenningsmodel, ondersteunt meertalige spraakherkenning, spraakvertaling en taalherkenning."
|
@@ -2485,5 +2638,11 @@
|
|
2485
2638
|
},
|
2486
2639
|
"yi-vision-v2": {
|
2487
2640
|
"description": "Complex visietakenmodel dat hoge prestaties biedt in begrip en analyse op basis van meerdere afbeeldingen."
|
2641
|
+
},
|
2642
|
+
"zai-org/GLM-4.5": {
|
2643
|
+
"description": "GLM-4.5 is een basis model speciaal ontworpen voor agenttoepassingen, gebruikmakend van een Mixture-of-Experts (MoE) architectuur. Het is diep geoptimaliseerd voor toolaanroepen, web browsing, software engineering en frontend programmeren, en ondersteunt naadloze integratie met code-agents zoals Claude Code en Roo Code. GLM-4.5 gebruikt een hybride redeneermodus en is geschikt voor complexe redenering en dagelijks gebruik."
|
2644
|
+
},
|
2645
|
+
"zai-org/GLM-4.5-Air": {
|
2646
|
+
"description": "GLM-4.5-Air is een basis model speciaal ontworpen voor agenttoepassingen, gebruikmakend van een Mixture-of-Experts (MoE) architectuur. Het is diep geoptimaliseerd voor toolaanroepen, web browsing, software engineering en frontend programmeren, en ondersteunt naadloze integratie met code-agents zoals Claude Code en Roo Code. GLM-4.5 gebruikt een hybride redeneermodus en is geschikt voor complexe redenering en dagelijks gebruik."
|
2488
2647
|
}
|
2489
2648
|
}
|