@lobehub/chat 1.106.2 → 1.106.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +67 -0
- package/apps/desktop/src/preload/routeInterceptor.ts +28 -0
- package/changelog/v1.json +24 -0
- package/locales/ar/models.json +164 -5
- package/locales/bg-BG/models.json +164 -5
- package/locales/de-DE/models.json +164 -5
- package/locales/en-US/models.json +164 -5
- package/locales/es-ES/models.json +164 -5
- package/locales/fa-IR/models.json +164 -5
- package/locales/fr-FR/models.json +164 -5
- package/locales/it-IT/models.json +164 -5
- package/locales/ja-JP/models.json +164 -5
- package/locales/ko-KR/models.json +164 -5
- package/locales/nl-NL/models.json +164 -5
- package/locales/pl-PL/models.json +164 -5
- package/locales/pt-BR/models.json +164 -5
- package/locales/ru-RU/models.json +164 -5
- package/locales/tr-TR/models.json +164 -5
- package/locales/vi-VN/models.json +164 -5
- package/locales/zh-CN/models.json +164 -5
- package/locales/zh-TW/models.json +164 -5
- package/package.json +1 -1
- package/src/config/aiModels/google.ts +0 -48
- package/src/config/aiModels/groq.ts +4 -0
- package/src/config/aiModels/hunyuan.ts +22 -0
- package/src/config/aiModels/moonshot.ts +0 -36
- package/src/config/aiModels/qwen.ts +110 -11
- package/src/config/aiModels/siliconcloud.ts +101 -0
- package/src/config/aiModels/stepfun.ts +0 -53
- package/src/config/aiModels/volcengine.ts +21 -0
- package/src/config/aiModels/zhipu.ts +132 -11
- package/src/config/modelProviders/moonshot.ts +1 -0
- package/src/libs/model-runtime/moonshot/index.ts +10 -1
- package/src/libs/model-runtime/utils/modelParse.ts +2 -2
- package/src/libs/model-runtime/zhipu/index.ts +57 -1
- package/src/server/services/mcp/index.test.ts +161 -0
- package/src/server/services/mcp/index.ts +4 -1
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,73 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.106.4](https://github.com/lobehub/lobe-chat/compare/v1.106.3...v1.106.4)
|
6
|
+
|
7
|
+
<sup>Released on **2025-07-30**</sup>
|
8
|
+
|
9
|
+
#### 🐛 Bug Fixes
|
10
|
+
|
11
|
+
- **misc**: Fix mcp calling missing array content.
|
12
|
+
|
13
|
+
#### 💄 Styles
|
14
|
+
|
15
|
+
- **misc**: Update i18n.
|
16
|
+
|
17
|
+
<br/>
|
18
|
+
|
19
|
+
<details>
|
20
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
21
|
+
|
22
|
+
#### What's fixed
|
23
|
+
|
24
|
+
- **misc**: Fix mcp calling missing array content, closes [#8615](https://github.com/lobehub/lobe-chat/issues/8615) ([b7f8e6e](https://github.com/lobehub/lobe-chat/commit/b7f8e6e))
|
25
|
+
|
26
|
+
#### Styles
|
27
|
+
|
28
|
+
- **misc**: Update i18n, closes [#8609](https://github.com/lobehub/lobe-chat/issues/8609) ([21cac39](https://github.com/lobehub/lobe-chat/commit/21cac39))
|
29
|
+
|
30
|
+
</details>
|
31
|
+
|
32
|
+
<div align="right">
|
33
|
+
|
34
|
+
[](#readme-top)
|
35
|
+
|
36
|
+
</div>
|
37
|
+
|
38
|
+
### [Version 1.106.3](https://github.com/lobehub/lobe-chat/compare/v1.106.2...v1.106.3)
|
39
|
+
|
40
|
+
<sup>Released on **2025-07-29**</sup>
|
41
|
+
|
42
|
+
#### 🐛 Bug Fixes
|
43
|
+
|
44
|
+
- **misc**: Moonshot assistant messages must not be empty.
|
45
|
+
|
46
|
+
#### 💄 Styles
|
47
|
+
|
48
|
+
- **misc**: Add volcengine kimi-k2 model, Add Zhipu GLM-4.5 models.
|
49
|
+
|
50
|
+
<br/>
|
51
|
+
|
52
|
+
<details>
|
53
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
54
|
+
|
55
|
+
#### What's fixed
|
56
|
+
|
57
|
+
- **misc**: Moonshot assistant messages must not be empty, closes [#8419](https://github.com/lobehub/lobe-chat/issues/8419) ([a796495](https://github.com/lobehub/lobe-chat/commit/a796495))
|
58
|
+
|
59
|
+
#### Styles
|
60
|
+
|
61
|
+
- **misc**: Add volcengine kimi-k2 model, closes [#8591](https://github.com/lobehub/lobe-chat/issues/8591) ([9630167](https://github.com/lobehub/lobe-chat/commit/9630167))
|
62
|
+
- **misc**: Add Zhipu GLM-4.5 models, closes [#8590](https://github.com/lobehub/lobe-chat/issues/8590) ([4f4620c](https://github.com/lobehub/lobe-chat/commit/4f4620c))
|
63
|
+
|
64
|
+
</details>
|
65
|
+
|
66
|
+
<div align="right">
|
67
|
+
|
68
|
+
[](#readme-top)
|
69
|
+
|
70
|
+
</div>
|
71
|
+
|
5
72
|
### [Version 1.106.2](https://github.com/lobehub/lobe-chat/compare/v1.106.1...v1.106.2)
|
6
73
|
|
7
74
|
<sup>Released on **2025-07-29**</sup>
|
@@ -25,6 +25,34 @@ export const setupRouteInterceptors = function () {
|
|
25
25
|
// 存储被阻止的路径,避免pushState重复触发
|
26
26
|
const preventedPaths = new Set<string>();
|
27
27
|
|
28
|
+
// 重写 window.open 方法来拦截 JavaScript 调用
|
29
|
+
const originalWindowOpen = window.open;
|
30
|
+
window.open = function (url?: string | URL, target?: string, features?: string) {
|
31
|
+
if (url) {
|
32
|
+
try {
|
33
|
+
const urlString = typeof url === 'string' ? url : url.toString();
|
34
|
+
const urlObj = new URL(urlString, window.location.href);
|
35
|
+
|
36
|
+
// 检查是否为外部链接
|
37
|
+
if (urlObj.origin !== window.location.origin) {
|
38
|
+
console.log(`[preload] Intercepted window.open for external URL:`, urlString);
|
39
|
+
// 调用主进程处理外部链接
|
40
|
+
invoke('openExternalLink', urlString);
|
41
|
+
return null; // 返回 null 表示没有打开新窗口
|
42
|
+
}
|
43
|
+
} catch (error) {
|
44
|
+
// 处理无效 URL 或特殊协议
|
45
|
+
console.error(`[preload] Intercepted window.open for special protocol:`, url);
|
46
|
+
console.error(error);
|
47
|
+
invoke('openExternalLink', typeof url === 'string' ? url : url.toString());
|
48
|
+
return null;
|
49
|
+
}
|
50
|
+
}
|
51
|
+
|
52
|
+
// 对于内部链接,调用原始的 window.open
|
53
|
+
return originalWindowOpen.call(window, url, target, features);
|
54
|
+
};
|
55
|
+
|
28
56
|
// 拦截所有a标签的点击事件 - 针对Next.js的Link组件
|
29
57
|
document.addEventListener(
|
30
58
|
'click',
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,28 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"fixes": [
|
5
|
+
"Fix mcp calling missing array content."
|
6
|
+
],
|
7
|
+
"improvements": [
|
8
|
+
"Update i18n."
|
9
|
+
]
|
10
|
+
},
|
11
|
+
"date": "2025-07-30",
|
12
|
+
"version": "1.106.4"
|
13
|
+
},
|
14
|
+
{
|
15
|
+
"children": {
|
16
|
+
"fixes": [
|
17
|
+
"Moonshot assistant messages must not be empty."
|
18
|
+
],
|
19
|
+
"improvements": [
|
20
|
+
"Add volcengine kimi-k2 model, Add Zhipu GLM-4.5 models."
|
21
|
+
]
|
22
|
+
},
|
23
|
+
"date": "2025-07-29",
|
24
|
+
"version": "1.106.3"
|
25
|
+
},
|
2
26
|
{
|
3
27
|
"children": {
|
4
28
|
"fixes": [
|
package/locales/ar/models.json
CHANGED
@@ -32,6 +32,9 @@
|
|
32
32
|
"4.0Ultra": {
|
33
33
|
"description": "Spark4.0 Ultra هو أقوى إصدار في سلسلة نماذج Spark، حيث يعزز فهم النصوص وقدرات التلخيص مع تحسين روابط البحث عبر الإنترنت. إنه حل شامل يهدف إلى تعزيز إنتاجية المكتب والاستجابة الدقيقة للاحتياجات، ويعتبر منتجًا ذكيًا رائدًا في الصناعة."
|
34
34
|
},
|
35
|
+
"AnimeSharp": {
|
36
|
+
"description": "AnimeSharp (المعروف أيضًا باسم \"4x‑AnimeSharp\") هو نموذج مفتوح المصدر للتكبير الفائق الدقة طوره Kim2091 استنادًا إلى بنية ESRGAN، يركز على تكبير وتوضيح الصور بأسلوب الأنمي. تم إعادة تسميته في فبراير 2022 من \"4x-TextSharpV1\"، وكان في الأصل مناسبًا أيضًا لصور النصوص لكنه تم تحسين أداؤه بشكل كبير لمحتوى الأنمي."
|
37
|
+
},
|
35
38
|
"Baichuan2-Turbo": {
|
36
39
|
"description": "يستخدم تقنية تعزيز البحث لتحقيق الربط الشامل بين النموذج الكبير والمعرفة الميدانية والمعرفة من جميع أنحاء الشبكة. يدعم تحميل مستندات PDF وWord وغيرها من المدخلات، مما يضمن الحصول على المعلومات بشكل سريع وشامل، ويقدم نتائج دقيقة واحترافية."
|
37
40
|
},
|
@@ -89,6 +92,9 @@
|
|
89
92
|
"Doubao-pro-4k": {
|
90
93
|
"description": "النموذج الرئيسي الأكثر فعالية، مناسب لمعالجة المهام المعقدة، ويحقق أداءً ممتازًا في سيناريوهات مثل الأسئلة المرجعية، التلخيص، الإبداع، تصنيف النصوص، ولعب الأدوار. يدعم الاستدلال والتخصيص مع نافذة سياق 4k."
|
91
94
|
},
|
95
|
+
"DreamO": {
|
96
|
+
"description": "DreamO هو نموذج توليد صور مخصص مفتوح المصدر تم تطويره بالتعاون بين ByteDance وجامعة بكين، يهدف إلى دعم مهام توليد الصور المتعددة من خلال بنية موحدة. يستخدم طريقة نمذجة مركبة فعالة لتوليد صور متسقة ومخصصة بناءً على شروط متعددة مثل الهوية، الموضوع، الأسلوب، والخلفية التي يحددها المستخدم."
|
97
|
+
},
|
92
98
|
"ERNIE-3.5-128K": {
|
93
99
|
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، يغطي كمية هائلة من البيانات باللغة الصينية والإنجليزية، ويتميز بقدرات عامة قوية، يمكنه تلبية معظم متطلبات الحوار، والإجابة على الأسئلة، وإنشاء المحتوى، وتطبيقات الإضافات؛ يدعم الاتصال التلقائي بإضافات بحث بايدو، مما يضمن تحديث معلومات الإجابة."
|
94
100
|
},
|
@@ -122,15 +128,39 @@
|
|
122
128
|
"ERNIE-Speed-Pro-128K": {
|
123
129
|
"description": "نموذج اللغة الكبير عالي الأداء الذي طورته بايدو، والذي تم إصداره في عام 2024، يتمتع بقدرات عامة ممتازة، ويتميز بأداء أفضل من ERNIE Speed، مناسب كنموذج أساسي للتعديل الدقيق، مما يساعد على معالجة مشكلات السيناريوهات المحددة بشكل أفضل، مع أداء استدلال ممتاز."
|
124
130
|
},
|
131
|
+
"FLUX.1-Kontext-dev": {
|
132
|
+
"description": "FLUX.1-Kontext-dev هو نموذج متعدد الوسائط لتوليد وتحرير الصور طورته Black Forest Labs، يعتمد على بنية Rectified Flow Transformer ويحتوي على 12 مليار معلمة، يركز على توليد وإعادة بناء وتعزيز أو تحرير الصور بناءً على شروط سياقية محددة. يجمع النموذج بين مزايا التوليد القابل للتحكم في نماذج الانتشار وقدرات نمذجة السياق في Transformer، ويدعم إخراج صور عالية الجودة، ويستخدم على نطاق واسع في إصلاح الصور، إكمال الصور، وإعادة بناء المشاهد البصرية."
|
133
|
+
},
|
134
|
+
"FLUX.1-dev": {
|
135
|
+
"description": "FLUX.1-dev هو نموذج لغة متعدد الوسائط مفتوح المصدر طورته Black Forest Labs، مُحسّن لمهام النص والصورة، يدمج قدرات فهم وتوليد الصور والنصوص. يعتمد على نماذج اللغة الكبيرة المتقدمة مثل Mistral-7B، ويحقق معالجة متزامنة للنص والصورة واستدلالًا معقدًا من خلال مشفر بصري مصمم بعناية وضبط دقيق متعدد المراحل."
|
136
|
+
},
|
125
137
|
"Gryphe/MythoMax-L2-13b": {
|
126
138
|
"description": "MythoMax-L2 (13B) هو نموذج مبتكر، مناسب لتطبيقات متعددة المجالات والمهام المعقدة."
|
127
139
|
},
|
140
|
+
"HelloMeme": {
|
141
|
+
"description": "HelloMeme هو أداة ذكاء اصطناعي يمكنها تلقائيًا إنشاء ملصقات تعبيرية، صور متحركة أو مقاطع فيديو قصيرة بناءً على الصور أو الحركات التي تقدمها. لا تحتاج إلى مهارات رسم أو برمجة، فقط قدم صورة مرجعية، وستساعدك في إنشاء محتوى جميل، ممتع ومتناسق في الأسلوب."
|
142
|
+
},
|
143
|
+
"HiDream-I1-Full": {
|
144
|
+
"description": "HiDream-E1-Full هو نموذج تحرير صور متعدد الوسائط مفتوح المصدر أطلقته HiDream.ai، يعتمد على بنية Diffusion Transformer المتقدمة، ويجمع بين قدرات فهم اللغة القوية (مضمن LLaMA 3.1-8B-Instruct)، يدعم توليد الصور، نقل الأسلوب، التحرير الجزئي وإعادة رسم المحتوى عبر أوامر اللغة الطبيعية، ويتميز بفهم وتنفيذ ممتاز للنص والصورة."
|
145
|
+
},
|
146
|
+
"HunyuanDiT-v1.2-Diffusers-Distilled": {
|
147
|
+
"description": "hunyuandit-v1.2-distilled هو نموذج توليد صور نصية خفيف الوزن، محسن بالتقطير، قادر على توليد صور عالية الجودة بسرعة، ومناسب بشكل خاص للبيئات ذات الموارد المحدودة والمهام التي تتطلب توليدًا فوريًا."
|
148
|
+
},
|
149
|
+
"InstantCharacter": {
|
150
|
+
"description": "InstantCharacter هو نموذج توليد شخصيات مخصص بدون ضبط دقيق أصدره فريق Tencent AI في 2025، يهدف إلى تحقيق توليد شخصيات متسقة وعالية الدقة عبر مشاهد مختلفة. يدعم بناء نموذج الشخصية استنادًا إلى صورة مرجعية واحدة فقط، ويمكن نقل الشخصية بمرونة إلى أنماط، حركات وخلفيات متنوعة."
|
151
|
+
},
|
128
152
|
"InternVL2-8B": {
|
129
153
|
"description": "InternVL2-8B هو نموذج قوي للغة البصرية، يدعم المعالجة متعددة الوسائط للصورة والنص، قادر على التعرف بدقة على محتوى الصورة وتوليد أوصاف أو إجابات ذات صلة."
|
130
154
|
},
|
131
155
|
"InternVL2.5-26B": {
|
132
156
|
"description": "InternVL2.5-26B هو نموذج قوي للغة البصرية، يدعم المعالجة متعددة الوسائط للصورة والنص، قادر على التعرف بدقة على محتوى الصورة وتوليد أوصاف أو إجابات ذات صلة."
|
133
157
|
},
|
158
|
+
"Kolors": {
|
159
|
+
"description": "Kolors هو نموذج توليد صور نصية طوره فريق Kolors في Kuaishou. تم تدريبه على مليارات المعلمات، ويتميز بجودة بصرية عالية، وفهم دقيق للغة الصينية، وقدرة ممتازة على عرض النصوص."
|
160
|
+
},
|
161
|
+
"Kwai-Kolors/Kolors": {
|
162
|
+
"description": "Kolors هو نموذج توليد صور نصية واسع النطاق يعتمد على الانتشار الكامن طوره فريق Kolors في Kuaishou. تم تدريبه على مليارات أزواج نص-صورة، ويظهر تفوقًا ملحوظًا في جودة الصور، دقة الفهم الدلالي المعقد، وعرض الأحرف الصينية والإنجليزية. يدعم الإدخال باللغتين الصينية والإنجليزية، ويبرع في فهم وتوليد المحتوى الخاص باللغة الصينية."
|
163
|
+
},
|
134
164
|
"Llama-3.2-11B-Vision-Instruct": {
|
135
165
|
"description": "قدرات استدلال الصور الممتازة على الصور عالية الدقة، مناسبة لتطبيقات الفهم البصري."
|
136
166
|
},
|
@@ -164,9 +194,15 @@
|
|
164
194
|
"MiniMaxAI/MiniMax-M1-80k": {
|
165
195
|
"description": "MiniMax-M1 هو نموذج استدلال كبير الحجم مفتوح المصدر يعتمد على الانتباه المختلط، يحتوي على 456 مليار معلمة، حيث يمكن لكل رمز تفعيل حوالي 45.9 مليار معلمة. يدعم النموذج أصلاً سياقًا فائق الطول يصل إلى مليون رمز، ومن خلال آلية الانتباه السريع، يوفر 75% من العمليات الحسابية العائمة في مهام التوليد التي تصل إلى 100 ألف رمز مقارنة بـ DeepSeek R1. بالإضافة إلى ذلك، يعتمد MiniMax-M1 على بنية MoE (الخبراء المختلطون)، ويجمع بين خوارزمية CISPO وتصميم الانتباه المختلط لتدريب تعلم معزز فعال، محققًا أداءً رائدًا في الصناعة في استدلال الإدخالات الطويلة وسيناريوهات هندسة البرمجيات الحقيقية."
|
166
196
|
},
|
197
|
+
"Moonshot-Kimi-K2-Instruct": {
|
198
|
+
"description": "يحتوي على 1 تريليون معلمة و32 مليار معلمة مفعلة. من بين النماذج غير المعتمدة على التفكير، يحقق مستويات متقدمة في المعرفة الحديثة، الرياضيات والبرمجة، ويتفوق في مهام الوكيل العامة. تم تحسينه بعناية لمهام الوكيل، لا يجيب فقط على الأسئلة بل يتخذ إجراءات. مثالي للدردشة العفوية، التجارب العامة والوكيل، وهو نموذج سريع الاستجابة لا يتطلب تفكيرًا طويلًا."
|
199
|
+
},
|
167
200
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
168
201
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) هو نموذج تعليمات عالي الدقة، مناسب للحسابات المعقدة."
|
169
202
|
},
|
203
|
+
"OmniConsistency": {
|
204
|
+
"description": "يعزز OmniConsistency اتساق الأسلوب والقدرة على التعميم في مهام تحويل الصور إلى صور من خلال إدخال Transformers الانتشارية واسعة النطاق (DiTs) وبيانات نمطية مزدوجة، مما يمنع تدهور الأسلوب."
|
205
|
+
},
|
170
206
|
"Phi-3-medium-128k-instruct": {
|
171
207
|
"description": "نموذج Phi-3-medium نفسه، ولكن مع حجم سياق أكبر لـ RAG أو التوجيه القليل."
|
172
208
|
},
|
@@ -218,6 +254,9 @@
|
|
218
254
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
255
|
"description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، يستخدم الانتباه المتعدد الرؤوس (MLA) وهيكل DeepSeekMoE، ويجمع بين استراتيجيات توازن الحمل بدون خسائر مساعدة، مما يحسن كفاءة الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون توكن عالية الجودة، وتم إجراء تعديل دقيق تحت الإشراف والتعلم المعزز، مما يجعل DeepSeek-V3 يتفوق على نماذج مفتوحة المصدر الأخرى، ويقترب من النماذج المغلقة الرائدة."
|
220
256
|
},
|
257
|
+
"Pro/moonshotai/Kimi-K2-Instruct": {
|
258
|
+
"description": "Kimi K2 هو نموذج أساسي يعتمد على بنية MoE مع قدرات قوية في البرمجة والوكيل، يحتوي على 1 تريليون معلمة و32 مليار معلمة مفعلة. يتفوق نموذج K2 في اختبارات الأداء الأساسية في مجالات المعرفة العامة، البرمجة، الرياضيات والوكيل مقارنة بالنماذج المفتوحة المصدر الأخرى."
|
259
|
+
},
|
221
260
|
"QwQ-32B-Preview": {
|
222
261
|
"description": "QwQ-32B-Preview هو نموذج معالجة اللغة الطبيعية المبتكر، قادر على معالجة مهام توليد الحوار وفهم السياق بشكل فعال."
|
223
262
|
},
|
@@ -278,6 +317,12 @@
|
|
278
317
|
"Qwen/Qwen3-235B-A22B": {
|
279
318
|
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
280
319
|
},
|
320
|
+
"Qwen/Qwen3-235B-A22B-Instruct-2507": {
|
321
|
+
"description": "Qwen3-235B-A22B-Instruct-2507 هو نموذج لغة كبير من سلسلة Qwen3 طوره فريق Alibaba Tongyi Qianwen، وهو نموذج خبير مختلط (MoE) رائد. يحتوي على 235 مليار معلمة إجمالية و22 مليار معلمة مفعلة في كل استدلال. تم إصداره كنسخة محدثة من Qwen3-235B-A22B غير التفكير، مع تحسينات كبيرة في اتباع التعليمات، الاستدلال المنطقي، فهم النصوص، الرياضيات، العلوم، البرمجة واستخدام الأدوات. يعزز التغطية المعرفية متعددة اللغات ويدعم التوافق الأفضل مع تفضيلات المستخدم في المهام الذاتية والمفتوحة لتوليد نصوص أكثر فائدة وجودة."
|
322
|
+
},
|
323
|
+
"Qwen/Qwen3-235B-A22B-Thinking-2507": {
|
324
|
+
"description": "Qwen3-235B-A22B-Thinking-2507 هو نموذج لغة كبير من سلسلة Qwen3 طوره فريق Alibaba Tongyi Qianwen، يركز على مهام الاستدلال المعقدة عالية الصعوبة. يعتمد على بنية MoE ويحتوي على 235 مليار معلمة إجمالية مع تفعيل حوالي 22 مليار معلمة لكل رمز، مما يحسن الكفاءة الحسابية مع الحفاظ على الأداء القوي. كنموذج \"تفكير\" متخصص، يظهر تحسينات كبيرة في الاستدلال المنطقي، الرياضيات، العلوم، البرمجة والاختبارات الأكاديمية، ويصل إلى مستوى رائد بين نماذج التفكير المفتوحة المصدر. يعزز القدرات العامة مثل اتباع التعليمات، استخدام الأدوات وتوليد النصوص، ويدعم فهم سياق طويل يصل إلى 256 ألف رمز، مما يجعله مناسبًا للمهام التي تتطلب استدلالًا عميقًا ومعالجة مستندات طويلة."
|
325
|
+
},
|
281
326
|
"Qwen/Qwen3-30B-A3B": {
|
282
327
|
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
283
328
|
},
|
@@ -944,6 +989,9 @@
|
|
944
989
|
"doubao-seed-1.6-thinking": {
|
945
990
|
"description": "نموذج Doubao-Seed-1.6-thinking يعزز قدرات التفكير بشكل كبير، مقارنة بـ Doubao-1.5-thinking-pro، مع تحسينات إضافية في القدرات الأساسية مثل البرمجة والرياضيات والاستدلال المنطقي، ويدعم الفهم البصري. يدعم نافذة سياق بحجم 256k وطول إخراج يصل إلى 16k رمز."
|
946
991
|
},
|
992
|
+
"doubao-seedream-3-0-t2i-250415": {
|
993
|
+
"description": "نموذج توليد الصور Doubao طوره فريق Seed في ByteDance، يدعم إدخال النص والصورة، ويوفر تجربة توليد صور عالية الجودة وقابلة للتحكم. يولد الصور بناءً على أوامر نصية."
|
994
|
+
},
|
947
995
|
"doubao-vision-lite-32k": {
|
948
996
|
"description": "نموذج Doubao-vision هو نموذج متعدد الوسائط أطلقته Doubao، يتمتع بقدرات قوية في فهم الصور والاستدلال، بالإضافة إلى دقة عالية في فهم التعليمات. أظهر النموذج أداءً قويًا في استخراج المعلومات من النصوص والصور، والمهام الاستدلالية القائمة على الصور، مما يجعله مناسبًا لمهام الأسئلة البصرية المعقدة والواسعة."
|
949
997
|
},
|
@@ -995,6 +1043,9 @@
|
|
995
1043
|
"ernie-char-fiction-8k": {
|
996
1044
|
"description": "نموذج اللغة الكبير المخصص الذي طورته بايدو، مناسب لتطبيقات مثل NPC في الألعاب، محادثات خدمة العملاء، وأدوار الحوار، حيث يتميز بأسلوب شخصيات واضح ومتسق، وقدرة قوية على اتباع التعليمات، وأداء استدلال ممتاز."
|
997
1045
|
},
|
1046
|
+
"ernie-irag-edit": {
|
1047
|
+
"description": "نموذج تحرير الصور ERNIE iRAG المطور ذاتيًا من Baidu يدعم عمليات مثل المسح (إزالة الكائنات)، إعادة الرسم (إعادة رسم الكائنات)، والتنوع (توليد متغيرات) بناءً على الصور."
|
1048
|
+
},
|
998
1049
|
"ernie-lite-8k": {
|
999
1050
|
"description": "ERNIE Lite هو نموذج اللغة الكبير الخفيف الذي طورته بايدو، يجمع بين أداء النموذج الممتاز وأداء الاستدلال، مناسب للاستخدام مع بطاقات تسريع الذكاء الاصطناعي ذات القدرة الحاسوبية المنخفضة."
|
1000
1051
|
},
|
@@ -1022,12 +1073,27 @@
|
|
1022
1073
|
"ernie-x1-turbo-32k": {
|
1023
1074
|
"description": "يتميز هذا النموذج بأداء أفضل مقارنةً بـ ERNIE-X1-32K."
|
1024
1075
|
},
|
1076
|
+
"flux-1-schnell": {
|
1077
|
+
"description": "نموذج توليد صور نصية يحتوي على 12 مليار معلمة طورته Black Forest Labs، يستخدم تقنية تقطير الانتشار التنافسي الكامن، قادر على توليد صور عالية الجودة في 1 إلى 4 خطوات. أداء النموذج يضاهي البدائل المغلقة المصدر، ومتاح بموجب ترخيص Apache-2.0 للاستخدام الشخصي، البحثي والتجاري."
|
1078
|
+
},
|
1079
|
+
"flux-dev": {
|
1080
|
+
"description": "FLUX.1 [dev] هو نموذج مفتوح المصدر للأوزان المكررة موجه للتطبيقات غير التجارية. يحافظ على جودة الصور وقدرة اتباع التعليمات مماثلة لإصدار FLUX الاحترافي، مع كفاءة تشغيل أعلى. مقارنة بالنماذج القياسية ذات الحجم المماثل، يستخدم الموارد بشكل أكثر فعالية."
|
1081
|
+
},
|
1025
1082
|
"flux-kontext/dev": {
|
1026
1083
|
"description": "نموذج تحرير الصور Frontier."
|
1027
1084
|
},
|
1085
|
+
"flux-merged": {
|
1086
|
+
"description": "نموذج FLUX.1-merged يجمع بين ميزات العمق التي استكشفتها نسخة \"DEV\" أثناء التطوير ومزايا التنفيذ السريع التي تمثلها نسخة \"Schnell\". من خلال هذا الدمج، يعزز FLUX.1-merged حدود أداء النموذج ويوسع نطاق تطبيقاته."
|
1087
|
+
},
|
1028
1088
|
"flux-pro/kontext": {
|
1029
1089
|
"description": "FLUX.1 Kontext [pro] قادر على معالجة النصوص والصور المرجعية كمدخلات، مما يتيح تحريرًا محليًا مستهدفًا وتحولات معقدة للمشهد الكلي بسلاسة."
|
1030
1090
|
},
|
1091
|
+
"flux-schnell": {
|
1092
|
+
"description": "FLUX.1 [schnell] هو النموذج المفتوح المصدر الأكثر تقدمًا حاليًا في فئة النماذج قليلة الخطوات، متفوقًا على المنافسين وحتى على نماذج غير مكررة قوية مثل Midjourney v6.0 وDALL·E 3 (HD). تم ضبط النموذج خصيصًا للحفاظ على تنوع المخرجات الكامل من مرحلة ما قبل التدريب، ويحقق تحسينات ملحوظة في جودة الصورة، الالتزام بالتعليمات، التغيرات في الحجم/النسبة، معالجة الخطوط وتنوع المخرجات مقارنة بأحدث النماذج في السوق، مما يوفر تجربة توليد صور إبداعية أكثر ثراءً وتنوعًا للمستخدمين."
|
1093
|
+
},
|
1094
|
+
"flux.1-schnell": {
|
1095
|
+
"description": "محول تدفق مصحح يحتوي على 12 مليار معلمة، قادر على توليد الصور بناءً على الوصف النصي."
|
1096
|
+
},
|
1031
1097
|
"flux/schnell": {
|
1032
1098
|
"description": "FLUX.1 [schnell] هو نموذج محول متدفق يحتوي على 12 مليار معلمة، قادر على توليد صور عالية الجودة من النص في 1 إلى 4 خطوات، مناسب للاستخدام الشخصي والتجاري."
|
1033
1099
|
},
|
@@ -1109,9 +1175,6 @@
|
|
1109
1175
|
"gemini-2.5-flash-preview-04-17": {
|
1110
1176
|
"description": "معاينة فلاش جمنّي 2.5 هي النموذج الأكثر كفاءة من جوجل، حيث تقدم مجموعة شاملة من الميزات."
|
1111
1177
|
},
|
1112
|
-
"gemini-2.5-flash-preview-04-17-thinking": {
|
1113
|
-
"description": "Gemini 2.5 Flash Preview هو نموذج Google الأكثر فعالية من حيث التكلفة، يقدم وظائف شاملة."
|
1114
|
-
},
|
1115
1178
|
"gemini-2.5-flash-preview-05-20": {
|
1116
1179
|
"description": "Gemini 2.5 Flash Preview هو نموذج Google الأكثر فعالية من حيث التكلفة، يقدم وظائف شاملة."
|
1117
1180
|
},
|
@@ -1190,6 +1253,21 @@
|
|
1190
1253
|
"glm-4.1v-thinking-flashx": {
|
1191
1254
|
"description": "سلسلة نماذج GLM-4.1V-Thinking هي أقوى نماذج اللغة البصرية المعروفة على مستوى 10 مليارات معلمة، وتدمج مهام اللغة البصرية المتقدمة من نفس المستوى، بما في ذلك فهم الفيديو، الأسئلة والأجوبة على الصور، حل المسائل العلمية، التعرف على النصوص OCR، تفسير الوثائق والرسوم البيانية، وكلاء واجهة المستخدم الرسومية، ترميز صفحات الويب الأمامية، والتثبيت الأرضي، وغيرها. تتفوق قدرات هذه المهام على نموذج Qwen2.5-VL-72B الذي يحتوي على أكثر من 8 أضعاف عدد المعلمات. من خلال تقنيات التعلم المعزز الرائدة، يتقن النموذج تحسين دقة وإثراء الإجابات عبر استدلال سلسلة التفكير، متفوقًا بشكل ملحوظ على النماذج التقليدية غير المعتمدة على التفكير من حيث النتائج النهائية وقابلية التفسير."
|
1192
1255
|
},
|
1256
|
+
"glm-4.5": {
|
1257
|
+
"description": "أحدث نموذج رائد من Zhizhu، يدعم تبديل وضع التفكير، ويحقق مستوى SOTA بين النماذج المفتوحة المصدر في القدرات الشاملة، مع طول سياق يصل إلى 128 ألف رمز."
|
1258
|
+
},
|
1259
|
+
"glm-4.5-air": {
|
1260
|
+
"description": "نسخة خفيفة من GLM-4.5، تجمع بين الأداء والقيمة، وتدعم التبديل المرن بين نماذج التفكير المختلطة."
|
1261
|
+
},
|
1262
|
+
"glm-4.5-airx": {
|
1263
|
+
"description": "نسخة فائقة السرعة من GLM-4.5-Air، تستجيب بسرعة أكبر، مصممة لتلبية الطلبات الكبيرة عالية السرعة."
|
1264
|
+
},
|
1265
|
+
"glm-4.5-flash": {
|
1266
|
+
"description": "نسخة مجانية من GLM-4.5، تقدم أداءً ممتازًا في الاستدلال، البرمجة، والوكيل."
|
1267
|
+
},
|
1268
|
+
"glm-4.5-x": {
|
1269
|
+
"description": "نسخة فائقة السرعة من GLM-4.5، تجمع بين أداء قوي وسرعة توليد تصل إلى 100 رمز في الثانية."
|
1270
|
+
},
|
1193
1271
|
"glm-4v": {
|
1194
1272
|
"description": "GLM-4V يوفر قدرات قوية في فهم الصور والاستدلال، ويدعم مجموعة متنوعة من المهام البصرية."
|
1195
1273
|
},
|
@@ -1209,7 +1287,7 @@
|
|
1209
1287
|
"description": "استدلال فائق السرعة: يتمتع بسرعة استدلال فائقة وأداء استدلال قوي."
|
1210
1288
|
},
|
1211
1289
|
"glm-z1-flash": {
|
1212
|
-
"description": "سلسلة GLM-Z1
|
1290
|
+
"description": "سلسلة GLM-Z1 تتميز بقدرات استدلال معقدة قوية، وتتفوق في مجالات الاستدلال المنطقي، الرياضيات، والبرمجة."
|
1213
1291
|
},
|
1214
1292
|
"glm-z1-flashx": {
|
1215
1293
|
"description": "سرعة عالية وتكلفة منخفضة: نسخة محسنة من Flash، سرعة استدلال فائقة، وضمان تزامن أسرع."
|
@@ -1385,6 +1463,9 @@
|
|
1385
1463
|
"grok-2-1212": {
|
1386
1464
|
"description": "لقد تم تحسين هذا النموذج في الدقة، والامتثال للتعليمات، والقدرة على التعامل مع لغات متعددة."
|
1387
1465
|
},
|
1466
|
+
"grok-2-image-1212": {
|
1467
|
+
"description": "نموذج توليد الصور الأحدث لدينا قادر على توليد صور حيوية وواقعية بناءً على الأوامر النصية. يبرع في مجالات التسويق، وسائل التواصل الاجتماعي، والترفيه."
|
1468
|
+
},
|
1388
1469
|
"grok-2-vision-1212": {
|
1389
1470
|
"description": "لقد تم تحسين هذا النموذج في الدقة، والامتثال للتعليمات، والقدرة على التعامل مع لغات متعددة."
|
1390
1471
|
},
|
@@ -1454,6 +1535,9 @@
|
|
1454
1535
|
"hunyuan-t1-20250529": {
|
1455
1536
|
"description": "محسن لإنشاء النصوص وكتابة المقالات، مع تحسين القدرات في البرمجة الأمامية، الرياضيات، والمنطق العلمي، بالإضافة إلى تعزيز القدرة على اتباع التعليمات."
|
1456
1537
|
},
|
1538
|
+
"hunyuan-t1-20250711": {
|
1539
|
+
"description": "تحسين كبير في القدرات الرياضية، المنطقية والبرمجية عالية الصعوبة، مع تحسين استقرار مخرجات النموذج وتعزيز قدرات النصوص الطويلة."
|
1540
|
+
},
|
1457
1541
|
"hunyuan-t1-latest": {
|
1458
1542
|
"description": "أول نموذج استدلال هجين ضخم في الصناعة، يوسع قدرات الاستدلال، بسرعة فك تشفير فائقة، ويعزز التوافق مع تفضيلات البشر."
|
1459
1543
|
},
|
@@ -1502,6 +1586,12 @@
|
|
1502
1586
|
"hunyuan-vision": {
|
1503
1587
|
"description": "نموذج Hunyuan الأحدث متعدد الوسائط، يدعم إدخال الصور والنصوص لتوليد محتوى نصي."
|
1504
1588
|
},
|
1589
|
+
"image-01": {
|
1590
|
+
"description": "نموذج توليد صور جديد يقدم تفاصيل دقيقة، يدعم توليد الصور من النصوص والصور."
|
1591
|
+
},
|
1592
|
+
"image-01-live": {
|
1593
|
+
"description": "نموذج توليد صور يقدم تفاصيل دقيقة، يدعم توليد الصور من النصوص مع إمكانية ضبط الأسلوب الفني."
|
1594
|
+
},
|
1505
1595
|
"imagen-4.0-generate-preview-06-06": {
|
1506
1596
|
"description": "سلسلة نموذج Imagen للجيل الرابع لتحويل النص إلى صورة"
|
1507
1597
|
},
|
@@ -1526,6 +1616,9 @@
|
|
1526
1616
|
"internvl3-latest": {
|
1527
1617
|
"description": "أحدث نموذج متعدد الوسائط تم إصداره، يتمتع بقدرات فهم أقوى للنصوص والصور، وفهم الصور على المدى الطويل، وأدائه يتساوى مع النماذج المغلقة الرائدة. يشير بشكل افتراضي إلى أحدث نموذج من سلسلة InternVL، الحالي هو internvl3-78b."
|
1528
1618
|
},
|
1619
|
+
"irag-1.0": {
|
1620
|
+
"description": "نموذج iRAG (استرجاع معزز بالصور) المطور ذاتيًا من Baidu، يجمع بين موارد صور بحث Baidu الضخمة وقدرات النموذج الأساسي القوية لتوليد صور فائقة الواقعية، متفوقًا بشكل كبير على أنظمة توليد الصور النصية الأصلية، مع إزالة الطابع الاصطناعي وتقليل التكلفة. يتميز iRAG بعدم وجود هلوسة، واقعية فائقة، وسرعة في الحصول على النتائج."
|
1621
|
+
},
|
1529
1622
|
"jamba-large": {
|
1530
1623
|
"description": "أقوى وأحدث نموذج لدينا، مصمم لمعالجة المهام المعقدة على مستوى المؤسسات، ويتميز بأداء استثنائي."
|
1531
1624
|
},
|
@@ -1535,6 +1628,9 @@
|
|
1535
1628
|
"jina-deepsearch-v1": {
|
1536
1629
|
"description": "البحث العميق يجمع بين البحث عبر الإنترنت، والقراءة، والاستدلال، مما يتيح إجراء تحقيق شامل. يمكنك اعتباره وكيلًا يتولى مهام البحث الخاصة بك - حيث يقوم بإجراء بحث واسع النطاق ويخضع لعدة تكرارات قبل تقديم الإجابة. تتضمن هذه العملية بحثًا مستمرًا، واستدلالًا، وحل المشكلات من زوايا متعددة. وهذا يختلف اختلافًا جوهريًا عن النماذج الكبيرة القياسية التي تولد الإجابات مباشرة من البيانات المدربة مسبقًا، وكذلك عن أنظمة RAG التقليدية التي تعتمد على البحث السطحي لمرة واحدة."
|
1537
1630
|
},
|
1631
|
+
"kimi-k2": {
|
1632
|
+
"description": "Kimi-K2 هو نموذج أساسي يعتمد على بنية MoE أطلقته Moonshot AI، يتمتع بقدرات قوية في البرمجة والوكيل، يحتوي على 1 تريليون معلمة و32 مليار معلمة مفعلة. يتفوق نموذج K2 في اختبارات الأداء الأساسية في مجالات المعرفة العامة، البرمجة، الرياضيات والوكيل مقارنة بالنماذج المفتوحة المصدر الأخرى."
|
1633
|
+
},
|
1538
1634
|
"kimi-k2-0711-preview": {
|
1539
1635
|
"description": "kimi-k2 هو نموذج أساسي بمعمارية MoE يتمتع بقدرات فائقة في البرمجة والوكيل، مع إجمالي 1 تريليون معلمة و32 مليار معلمة مفعلة. في اختبارات الأداء الأساسية في مجالات المعرفة العامة، البرمجة، الرياضيات، والوكيل، يتفوق نموذج K2 على النماذج المفتوحة المصدر الرئيسية الأخرى."
|
1540
1636
|
},
|
@@ -1928,6 +2024,9 @@
|
|
1928
2024
|
"moonshotai/Kimi-Dev-72B": {
|
1929
2025
|
"description": "Kimi-Dev-72B هو نموذج مفتوح المصدر للبرمجة، تم تحسينه عبر تعلم معزز واسع النطاق، قادر على إنتاج تصحيحات مستقرة وجاهزة للإنتاج مباشرة. حقق هذا النموذج نتيجة قياسية جديدة بنسبة 60.4% على SWE-bench Verified، محطماً الأرقام القياسية للنماذج المفتوحة المصدر في مهام هندسة البرمجيات الآلية مثل إصلاح العيوب ومراجعة الشيفرة."
|
1930
2026
|
},
|
2027
|
+
"moonshotai/Kimi-K2-Instruct": {
|
2028
|
+
"description": "Kimi K2 هو نموذج أساسي يعتمد على بنية MoE يتمتع بقدرات قوية في البرمجة والوكيل، يحتوي على 1 تريليون معلمة و32 مليار معلمة مفعلة. يتفوق نموذج K2 في اختبارات الأداء الأساسية في مجالات المعرفة العامة، البرمجة، الرياضيات والوكيل مقارنة بالنماذج المفتوحة المصدر الأخرى."
|
2029
|
+
},
|
1931
2030
|
"moonshotai/kimi-k2-instruct": {
|
1932
2031
|
"description": "kimi-k2 هو نموذج أساسي مبني على بنية MoE يتمتع بقدرات فائقة في البرمجة والوكيل، مع إجمالي 1 تريليون معلمة و32 مليار معلمة مفعلة. في اختبارات الأداء المعيارية في مجالات المعرفة العامة، البرمجة، الرياضيات، والوكيل، يتفوق نموذج K2 على النماذج المفتوحة المصدر الرئيسية الأخرى."
|
1933
2032
|
},
|
@@ -2264,6 +2363,12 @@
|
|
2264
2363
|
"qwen3-235b-a22b": {
|
2265
2364
|
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
2266
2365
|
},
|
2366
|
+
"qwen3-235b-a22b-instruct-2507": {
|
2367
|
+
"description": "نموذج مفتوح المصدر غير تفكيري مبني على Qwen3، مع تحسينات طفيفة في القدرات الإبداعية والسلامة مقارنة بالإصدار السابق (Tongyi Qianwen 3-235B-A22B)."
|
2368
|
+
},
|
2369
|
+
"qwen3-235b-a22b-thinking-2507": {
|
2370
|
+
"description": "نموذج مفتوح المصدر تفكيري مبني على Qwen3، مع تحسينات كبيرة في القدرات المنطقية، العامة، تعزيز المعرفة والإبداع مقارنة بالإصدار السابق (Tongyi Qianwen 3-235B-A22B)، مناسب للمهام المعقدة التي تتطلب استدلالًا قويًا."
|
2371
|
+
},
|
2267
2372
|
"qwen3-30b-a3b": {
|
2268
2373
|
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
2269
2374
|
},
|
@@ -2276,6 +2381,12 @@
|
|
2276
2381
|
"qwen3-8b": {
|
2277
2382
|
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
2278
2383
|
},
|
2384
|
+
"qwen3-coder-480b-a35b-instruct": {
|
2385
|
+
"description": "نسخة مفتوحة المصدر من نموذج كود Tongyi Qianwen. أحدث نموذج qwen3-coder-480b-a35b-instruct مبني على Qwen3 لتوليد الكود، يتمتع بقدرات قوية كوكيل برمجي، بارع في استدعاء الأدوات والتفاعل مع البيئة، قادر على البرمجة الذاتية مع أداء برمجي ممتاز وقدرات عامة."
|
2386
|
+
},
|
2387
|
+
"qwen3-coder-plus": {
|
2388
|
+
"description": "نموذج كود Tongyi Qianwen. أحدث سلسلة Qwen3-Coder-Plus مبنية على Qwen3 لتوليد الكود، تتمتع بقدرات قوية كوكيل برمجي، بارعة في استدعاء الأدوات والتفاعل مع البيئة، قادرة على البرمجة الذاتية مع أداء برمجي ممتاز وقدرات عامة."
|
2389
|
+
},
|
2279
2390
|
"qwq": {
|
2280
2391
|
"description": "QwQ هو نموذج بحث تجريبي يركز على تحسين قدرات الاستدلال للذكاء الاصطناعي."
|
2281
2392
|
},
|
@@ -2318,6 +2429,24 @@
|
|
2318
2429
|
"sonar-reasoning-pro": {
|
2319
2430
|
"description": "منتج API جديد مدعوم من نموذج الاستدلال DeepSeek."
|
2320
2431
|
},
|
2432
|
+
"stable-diffusion-3-medium": {
|
2433
|
+
"description": "نموذج توليد صور نصية كبير أحدث من Stability AI. هذا الإصدار يحسن جودة الصور، فهم النصوص وتنوع الأساليب بشكل ملحوظ مقارنة بالأجيال السابقة، قادر على تفسير أوامر اللغة الطبيعية المعقدة بدقة وتوليد صور أكثر دقة وتنوعًا."
|
2434
|
+
},
|
2435
|
+
"stable-diffusion-3.5-large": {
|
2436
|
+
"description": "stable-diffusion-3.5-large هو نموذج مولد صور نصية متعدد الوسائط (MMDiT) يحتوي على 800 مليون معلمة، يتميز بجودة صور ممتازة وتوافق عالي مع الأوامر النصية، يدعم توليد صور عالية الدقة تصل إلى مليون بكسل، ويعمل بكفاءة على الأجهزة الاستهلاكية العادية."
|
2437
|
+
},
|
2438
|
+
"stable-diffusion-3.5-large-turbo": {
|
2439
|
+
"description": "stable-diffusion-3.5-large-turbo هو نموذج مبني على stable-diffusion-3.5-large يستخدم تقنية تقطير الانتشار التنافسي (ADD) لتحقيق سرعة أعلى."
|
2440
|
+
},
|
2441
|
+
"stable-diffusion-v1.5": {
|
2442
|
+
"description": "stable-diffusion-v1.5 تم تهيئته باستخدام أوزان نقطة التحقق stable-diffusion-v1.2، وتم ضبطه بدقة على \"laion-aesthetics v2 5+\" بدقة 512x512 عبر 595 ألف خطوة، مع تقليل شرطية النص بنسبة 10% لتحسين التوليد بدون مصنف."
|
2443
|
+
},
|
2444
|
+
"stable-diffusion-xl": {
|
2445
|
+
"description": "stable-diffusion-xl يحتوي على تحسينات كبيرة مقارنة بالإصدار v1.5، ويعادل أداء نموذج midjourney المفتوح المصدر الرائد. تشمل التحسينات: بنية unet أكبر بثلاثة أضعاف، إضافة وحدة تحسين لتحسين جودة الصور المولدة، وتقنيات تدريب أكثر كفاءة."
|
2446
|
+
},
|
2447
|
+
"stable-diffusion-xl-base-1.0": {
|
2448
|
+
"description": "نموذج توليد صور نصية كبير طورته Stability AI ومفتوح المصدر، يتميز بقدرات توليد صور إبداعية رائدة في الصناعة. يمتلك فهمًا ممتازًا للتعليمات ويدعم تعريف العكس (Reverse Prompt) لتوليد محتوى دقيق."
|
2449
|
+
},
|
2321
2450
|
"step-1-128k": {
|
2322
2451
|
"description": "يوفر توازنًا بين الأداء والتكلفة، مناسب لمجموعة متنوعة من السيناريوهات."
|
2323
2452
|
},
|
@@ -2348,6 +2477,12 @@
|
|
2348
2477
|
"step-1v-8k": {
|
2349
2478
|
"description": "نموذج بصري صغير، مناسب للمهام الأساسية المتعلقة بالنصوص والصور."
|
2350
2479
|
},
|
2480
|
+
"step-1x-edit": {
|
2481
|
+
"description": "نموذج متخصص في مهام تحرير الصور، قادر على تعديل وتعزيز الصور بناءً على الصور والأوصاف النصية التي يقدمها المستخدم. يدعم تنسيقات إدخال متعددة، بما في ذلك الأوصاف النصية والصور النموذجية. يفهم نية المستخدم ويولد نتائج تحرير صور متوافقة مع المتطلبات."
|
2482
|
+
},
|
2483
|
+
"step-1x-medium": {
|
2484
|
+
"description": "نموذج قوي لتوليد الصور يدعم الإدخال عبر الأوصاف النصية. يدعم اللغة الصينية بشكل أصلي، قادر على فهم ومعالجة الأوصاف النصية الصينية بدقة، والتقاط المعاني الدلالية وتحويلها إلى ميزات صور لتحقيق توليد صور أكثر دقة. يولد صورًا عالية الدقة والجودة، ويمتلك قدرات نقل الأسلوب."
|
2485
|
+
},
|
2351
2486
|
"step-2-16k": {
|
2352
2487
|
"description": "يدعم تفاعلات سياق كبيرة، مناسب لمشاهد الحوار المعقدة."
|
2353
2488
|
},
|
@@ -2357,6 +2492,9 @@
|
|
2357
2492
|
"step-2-mini": {
|
2358
2493
|
"description": "نموذج كبير سريع يعتمد على بنية الانتباه الجديدة MFA، يحقق نتائج مشابهة لـ step1 بتكلفة منخفضة جداً، مع الحفاظ على قدرة أعلى على المعالجة وزمن استجابة أسرع. يمكنه التعامل مع المهام العامة، ويتميز بقدرات قوية في البرمجة."
|
2359
2494
|
},
|
2495
|
+
"step-2x-large": {
|
2496
|
+
"description": "نموذج الجيل الجديد من Step Star، يركز على مهام توليد الصور، قادر على توليد صور عالية الجودة بناءً على الأوصاف النصية المقدمة من المستخدم. يتميز النموذج الجديد بجودة صور أكثر واقعية وقدرات أفضل في توليد النصوص الصينية والإنجليزية."
|
2497
|
+
},
|
2360
2498
|
"step-r1-v-mini": {
|
2361
2499
|
"description": "هذا النموذج هو نموذج استدلال كبير يتمتع بقدرة قوية على فهم الصور، يمكنه معالجة المعلومات النصية والصورية، ويخرج نصوصًا بعد تفكير عميق. يظهر هذا النموذج أداءً بارزًا في مجال الاستدلال البصري، كما يمتلك قدرات رياضية، برمجية، ونصية من الدرجة الأولى. طول السياق هو 100k."
|
2362
2500
|
},
|
@@ -2432,8 +2570,23 @@
|
|
2432
2570
|
"v0-1.5-md": {
|
2433
2571
|
"description": "نموذج v0-1.5-md مناسب للمهام اليومية وتوليد واجهات المستخدم (UI)"
|
2434
2572
|
},
|
2573
|
+
"wan2.2-t2i-flash": {
|
2574
|
+
"description": "نسخة Wanxiang 2.2 فائقة السرعة، أحدث نموذج حاليًا. تم تحسين الإبداع، الاستقرار، والواقعية بشكل شامل، مع سرعة توليد عالية وقيمة ممتازة مقابل التكلفة."
|
2575
|
+
},
|
2576
|
+
"wan2.2-t2i-plus": {
|
2577
|
+
"description": "نسخة Wanxiang 2.2 الاحترافية، أحدث نموذج حاليًا. تم تحسين الإبداع، الاستقرار، والواقعية بشكل شامل، مع تفاصيل توليد غنية."
|
2578
|
+
},
|
2579
|
+
"wanx-v1": {
|
2580
|
+
"description": "نموذج أساسي لتوليد الصور النصية. يتوافق مع نموذج Tongyi Wanxiang 1.0 الرسمي."
|
2581
|
+
},
|
2582
|
+
"wanx2.0-t2i-turbo": {
|
2583
|
+
"description": "متخصص في توليد صور بورتريه واقعية، سرعة متوسطة وتكلفة منخفضة. يتوافق مع نموذج Tongyi Wanxiang 2.0 السريع الرسمي."
|
2584
|
+
},
|
2585
|
+
"wanx2.1-t2i-plus": {
|
2586
|
+
"description": "نسخة مطورة شاملة. توليد صور بتفاصيل أكثر ثراءً، سرعة أقل قليلاً. يتوافق مع نموذج Tongyi Wanxiang 2.1 الاحترافي الرسمي."
|
2587
|
+
},
|
2435
2588
|
"wanx2.1-t2i-turbo": {
|
2436
|
-
"description": "
|
2589
|
+
"description": "نسخة مطورة شاملة. سرعة توليد عالية، أداء شامل، وقيمة ممتازة مقابل التكلفة. يتوافق مع نموذج Tongyi Wanxiang 2.1 السريع الرسمي."
|
2437
2590
|
},
|
2438
2591
|
"whisper-1": {
|
2439
2592
|
"description": "نموذج التعرف على الصوت العام، يدعم التعرف على الصوت بعدة لغات، الترجمة الصوتية، والتعرف على اللغة."
|
@@ -2485,5 +2638,11 @@
|
|
2485
2638
|
},
|
2486
2639
|
"yi-vision-v2": {
|
2487
2640
|
"description": "نموذج مهام بصرية معقدة، يوفر فهمًا عالي الأداء وقدرات تحليلية بناءً على صور متعددة."
|
2641
|
+
},
|
2642
|
+
"zai-org/GLM-4.5": {
|
2643
|
+
"description": "GLM-4.5 هو نموذج أساسي مصمم لتطبيقات الوكلاء الذكية، يستخدم بنية Mixture-of-Experts (MoE). تم تحسينه بعمق في مجالات استدعاء الأدوات، تصفح الويب، هندسة البرمجيات، وبرمجة الواجهة الأمامية، ويدعم التكامل السلس مع وكلاء الكود مثل Claude Code وRoo Code. يستخدم وضع استدلال مختلط ليتكيف مع سيناريوهات الاستدلال المعقدة والاستخدام اليومي."
|
2644
|
+
},
|
2645
|
+
"zai-org/GLM-4.5-Air": {
|
2646
|
+
"description": "GLM-4.5-Air هو نموذج أساسي مصمم لتطبيقات الوكلاء الذكية، يستخدم بنية Mixture-of-Experts (MoE). تم تحسينه بعمق في مجالات استدعاء الأدوات، تصفح الويب، هندسة البرمجيات، وبرمجة الواجهة الأمامية، ويدعم التكامل السلس مع وكلاء الكود مثل Claude Code وRoo Code. يستخدم وضع استدلال مختلط ليتكيف مع سيناريوهات الاستدلال المعقدة والاستخدام اليومي."
|
2488
2647
|
}
|
2489
2648
|
}
|