@loaders.gl/csv 4.2.0-alpha.3 → 4.2.0-alpha.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/csv-loader.js +235 -186
- package/dist/csv-writer.js +17 -15
- package/dist/dist.dev.js +145 -102
- package/dist/dist.min.js +28 -0
- package/dist/index.cjs +16 -35
- package/dist/index.cjs.map +7 -0
- package/dist/index.d.ts +4 -4
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +3 -1
- package/dist/lib/encoders/encode-csv.d.ts +1 -1
- package/dist/lib/encoders/encode-csv.d.ts.map +1 -1
- package/dist/lib/encoders/encode-csv.js +43 -35
- package/dist/papaparse/async-iterator-streamer.js +52 -25
- package/dist/papaparse/papaparse.js +867 -628
- package/package.json +10 -6
- package/dist/csv-loader.js.map +0 -1
- package/dist/csv-writer.js.map +0 -1
- package/dist/index.js.map +0 -1
- package/dist/lib/encoders/encode-csv.js.map +0 -1
- package/dist/papaparse/async-iterator-streamer.js.map +0 -1
- package/dist/papaparse/papaparse.js.map +0 -1
package/dist/csv-loader.js
CHANGED
|
@@ -1,209 +1,258 @@
|
|
|
1
|
+
// loaders.gl
|
|
2
|
+
// SPDX-License-Identifier: MIT
|
|
3
|
+
// Copyright (c) vis.gl contributors
|
|
1
4
|
import { AsyncQueue, TableBatchBuilder, convertToArrayRow, convertToObjectRow } from '@loaders.gl/schema';
|
|
2
5
|
import Papa from "./papaparse/papaparse.js";
|
|
3
6
|
import AsyncIteratorStreamer from "./papaparse/async-iterator-streamer.js";
|
|
4
|
-
|
|
7
|
+
// __VERSION__ is injected by babel-plugin-version-inline
|
|
8
|
+
// @ts-ignore TS2304: Cannot find name '__VERSION__'.
|
|
9
|
+
const VERSION = typeof "4.2.0-alpha.4" !== 'undefined' ? "4.2.0-alpha.4" : 'latest';
|
|
5
10
|
const DEFAULT_CSV_SHAPE = 'object-row-table';
|
|
6
11
|
export const CSVLoader = {
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
12
|
+
id: 'csv',
|
|
13
|
+
module: 'csv',
|
|
14
|
+
name: 'CSV',
|
|
15
|
+
version: VERSION,
|
|
16
|
+
extensions: ['csv', 'tsv', 'dsv'],
|
|
17
|
+
mimeTypes: ['text/csv', 'text/tab-separated-values', 'text/dsv'],
|
|
18
|
+
category: 'table',
|
|
19
|
+
parse: async (arrayBuffer, options) => parseCSV(new TextDecoder().decode(arrayBuffer), options),
|
|
20
|
+
parseText: (text, options) => parseCSV(text, options),
|
|
21
|
+
parseInBatches: parseCSVInBatches,
|
|
22
|
+
// @ts-ignore
|
|
23
|
+
// testText: null,
|
|
24
|
+
options: {
|
|
25
|
+
csv: {
|
|
26
|
+
shape: DEFAULT_CSV_SHAPE, // 'object-row-table'
|
|
27
|
+
optimizeMemoryUsage: false,
|
|
28
|
+
// CSV options
|
|
29
|
+
header: 'auto',
|
|
30
|
+
columnPrefix: 'column',
|
|
31
|
+
// delimiter: auto
|
|
32
|
+
// newline: auto
|
|
33
|
+
quoteChar: '"',
|
|
34
|
+
escapeChar: '"',
|
|
35
|
+
dynamicTyping: true,
|
|
36
|
+
comments: false,
|
|
37
|
+
skipEmptyLines: true,
|
|
38
|
+
// transform: null?
|
|
39
|
+
delimitersToGuess: [',', '\t', '|', ';']
|
|
40
|
+
// fastMode: auto
|
|
41
|
+
}
|
|
29
42
|
}
|
|
30
|
-
}
|
|
31
43
|
};
|
|
32
44
|
async function parseCSV(csvText, options) {
|
|
33
|
-
|
|
34
|
-
...CSVLoader.options.csv,
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
45
|
+
// Apps can call the parse method directly, we so apply default options here
|
|
46
|
+
const csvOptions = { ...CSVLoader.options.csv, ...options?.csv };
|
|
47
|
+
const firstRow = readFirstRow(csvText);
|
|
48
|
+
const header = csvOptions.header === 'auto' ? isHeaderRow(firstRow) : Boolean(csvOptions.header);
|
|
49
|
+
const parseWithHeader = header;
|
|
50
|
+
const papaparseConfig = {
|
|
51
|
+
// dynamicTyping: true,
|
|
52
|
+
...csvOptions,
|
|
53
|
+
header: parseWithHeader,
|
|
54
|
+
download: false, // We handle loading, no need for papaparse to do it for us
|
|
55
|
+
transformHeader: parseWithHeader ? duplicateColumnTransformer() : undefined,
|
|
56
|
+
error: (e) => {
|
|
57
|
+
throw new Error(e);
|
|
58
|
+
}
|
|
59
|
+
};
|
|
60
|
+
const result = Papa.parse(csvText, papaparseConfig);
|
|
61
|
+
const rows = result.data;
|
|
62
|
+
const headerRow = result.meta.fields || generateHeader(csvOptions.columnPrefix, firstRow.length);
|
|
63
|
+
const shape = csvOptions.shape || DEFAULT_CSV_SHAPE;
|
|
64
|
+
switch (shape) {
|
|
65
|
+
case 'object-row-table':
|
|
66
|
+
return {
|
|
67
|
+
shape: 'object-row-table',
|
|
68
|
+
data: rows.map((row) => (Array.isArray(row) ? convertToObjectRow(row, headerRow) : row))
|
|
69
|
+
};
|
|
70
|
+
case 'array-row-table':
|
|
71
|
+
return {
|
|
72
|
+
shape: 'array-row-table',
|
|
73
|
+
data: rows.map((row) => (Array.isArray(row) ? row : convertToArrayRow(row, headerRow)))
|
|
74
|
+
};
|
|
75
|
+
default:
|
|
76
|
+
throw new Error(shape);
|
|
47
77
|
}
|
|
48
|
-
};
|
|
49
|
-
const result = Papa.parse(csvText, papaparseConfig);
|
|
50
|
-
const rows = result.data;
|
|
51
|
-
const headerRow = result.meta.fields || generateHeader(csvOptions.columnPrefix, firstRow.length);
|
|
52
|
-
const shape = csvOptions.shape || DEFAULT_CSV_SHAPE;
|
|
53
|
-
switch (shape) {
|
|
54
|
-
case 'object-row-table':
|
|
55
|
-
return {
|
|
56
|
-
shape: 'object-row-table',
|
|
57
|
-
data: rows.map(row => Array.isArray(row) ? convertToObjectRow(row, headerRow) : row)
|
|
58
|
-
};
|
|
59
|
-
case 'array-row-table':
|
|
60
|
-
return {
|
|
61
|
-
shape: 'array-row-table',
|
|
62
|
-
data: rows.map(row => Array.isArray(row) ? row : convertToArrayRow(row, headerRow))
|
|
63
|
-
};
|
|
64
|
-
default:
|
|
65
|
-
throw new Error(shape);
|
|
66
|
-
}
|
|
67
78
|
}
|
|
79
|
+
// TODO - support batch size 0 = no batching/single batch?
|
|
68
80
|
function parseCSVInBatches(asyncIterator, options) {
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
...options
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
options.batchSize = 4000;
|
|
75
|
-
}
|
|
76
|
-
const csvOptions = {
|
|
77
|
-
...CSVLoader.options.csv,
|
|
78
|
-
...((_options = options) === null || _options === void 0 ? void 0 : _options.csv)
|
|
79
|
-
};
|
|
80
|
-
const asyncQueue = new AsyncQueue();
|
|
81
|
-
let isFirstRow = true;
|
|
82
|
-
let headerRow = null;
|
|
83
|
-
let tableBatchBuilder = null;
|
|
84
|
-
let schema = null;
|
|
85
|
-
const config = {
|
|
86
|
-
...csvOptions,
|
|
87
|
-
header: false,
|
|
88
|
-
download: false,
|
|
89
|
-
chunkSize: 1024 * 1024 * 5,
|
|
90
|
-
skipEmptyLines: false,
|
|
91
|
-
step(results) {
|
|
92
|
-
let row = results.data;
|
|
93
|
-
if (csvOptions.skipEmptyLines) {
|
|
94
|
-
const collapsedRow = row.flat().join('').trim();
|
|
95
|
-
if (collapsedRow === '') {
|
|
96
|
-
return;
|
|
97
|
-
}
|
|
98
|
-
}
|
|
99
|
-
const bytesUsed = results.meta.cursor;
|
|
100
|
-
if (isFirstRow && !headerRow) {
|
|
101
|
-
const header = csvOptions.header === 'auto' ? isHeaderRow(row) : Boolean(csvOptions.header);
|
|
102
|
-
if (header) {
|
|
103
|
-
headerRow = row.map(duplicateColumnTransformer());
|
|
104
|
-
return;
|
|
105
|
-
}
|
|
106
|
-
}
|
|
107
|
-
if (isFirstRow) {
|
|
108
|
-
isFirstRow = false;
|
|
109
|
-
if (!headerRow) {
|
|
110
|
-
headerRow = generateHeader(csvOptions.columnPrefix, row.length);
|
|
111
|
-
}
|
|
112
|
-
schema = deduceSchema(row, headerRow);
|
|
113
|
-
}
|
|
114
|
-
if (csvOptions.optimizeMemoryUsage) {
|
|
115
|
-
row = JSON.parse(JSON.stringify(row));
|
|
116
|
-
}
|
|
117
|
-
const shape = csvOptions.shape || DEFAULT_CSV_SHAPE;
|
|
118
|
-
tableBatchBuilder = tableBatchBuilder || new TableBatchBuilder(schema, {
|
|
119
|
-
shape,
|
|
120
|
-
...options
|
|
121
|
-
});
|
|
122
|
-
try {
|
|
123
|
-
tableBatchBuilder.addRow(row);
|
|
124
|
-
const batch = tableBatchBuilder && tableBatchBuilder.getFullBatch({
|
|
125
|
-
bytesUsed
|
|
126
|
-
});
|
|
127
|
-
if (batch) {
|
|
128
|
-
asyncQueue.enqueue(batch);
|
|
129
|
-
}
|
|
130
|
-
} catch (error) {
|
|
131
|
-
asyncQueue.enqueue(error);
|
|
132
|
-
}
|
|
133
|
-
},
|
|
134
|
-
complete(results) {
|
|
135
|
-
try {
|
|
136
|
-
const bytesUsed = results.meta.cursor;
|
|
137
|
-
const batch = tableBatchBuilder && tableBatchBuilder.getFinalBatch({
|
|
138
|
-
bytesUsed
|
|
139
|
-
});
|
|
140
|
-
if (batch) {
|
|
141
|
-
asyncQueue.enqueue(batch);
|
|
142
|
-
}
|
|
143
|
-
} catch (error) {
|
|
144
|
-
asyncQueue.enqueue(error);
|
|
145
|
-
}
|
|
146
|
-
asyncQueue.close();
|
|
81
|
+
// Papaparse does not support standard batch size handling
|
|
82
|
+
// TODO - investigate papaparse chunks mode
|
|
83
|
+
options = { ...options };
|
|
84
|
+
if (options.batchSize === 'auto') {
|
|
85
|
+
options.batchSize = 4000;
|
|
147
86
|
}
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
87
|
+
// Apps can call the parse method directly, we so apply default options here
|
|
88
|
+
const csvOptions = { ...CSVLoader.options.csv, ...options?.csv };
|
|
89
|
+
const asyncQueue = new AsyncQueue();
|
|
90
|
+
let isFirstRow = true;
|
|
91
|
+
let headerRow = null;
|
|
92
|
+
let tableBatchBuilder = null;
|
|
93
|
+
let schema = null;
|
|
94
|
+
const config = {
|
|
95
|
+
// dynamicTyping: true, // Convert numbers and boolean values in rows from strings,
|
|
96
|
+
...csvOptions,
|
|
97
|
+
header: false, // Unfortunately, header detection is not automatic and does not infer shapes
|
|
98
|
+
download: false, // We handle loading, no need for papaparse to do it for us
|
|
99
|
+
// chunkSize is set to 5MB explicitly (same as Papaparse default) due to a bug where the
|
|
100
|
+
// streaming parser gets stuck if skipEmptyLines and a step callback are both supplied.
|
|
101
|
+
// See https://github.com/mholt/PapaParse/issues/465
|
|
102
|
+
chunkSize: 1024 * 1024 * 5,
|
|
103
|
+
// skipEmptyLines is set to a boolean value if supplied. Greedy is set to true
|
|
104
|
+
// skipEmptyLines is handled manually given two bugs where the streaming parser gets stuck if
|
|
105
|
+
// both of the skipEmptyLines and step callback options are provided:
|
|
106
|
+
// - true doesn't work unless chunkSize is set: https://github.com/mholt/PapaParse/issues/465
|
|
107
|
+
// - greedy doesn't work: https://github.com/mholt/PapaParse/issues/825
|
|
108
|
+
skipEmptyLines: false,
|
|
109
|
+
// step is called on every row
|
|
110
|
+
// eslint-disable-next-line complexity, max-statements
|
|
111
|
+
step(results) {
|
|
112
|
+
let row = results.data;
|
|
113
|
+
if (csvOptions.skipEmptyLines) {
|
|
114
|
+
// Manually reject lines that are empty
|
|
115
|
+
const collapsedRow = row.flat().join('').trim();
|
|
116
|
+
if (collapsedRow === '') {
|
|
117
|
+
return;
|
|
118
|
+
}
|
|
119
|
+
}
|
|
120
|
+
const bytesUsed = results.meta.cursor;
|
|
121
|
+
// Check if we need to save a header row
|
|
122
|
+
if (isFirstRow && !headerRow) {
|
|
123
|
+
// Auto detects or can be forced with csvOptions.header
|
|
124
|
+
const header = csvOptions.header === 'auto' ? isHeaderRow(row) : Boolean(csvOptions.header);
|
|
125
|
+
if (header) {
|
|
126
|
+
headerRow = row.map(duplicateColumnTransformer());
|
|
127
|
+
return;
|
|
128
|
+
}
|
|
129
|
+
}
|
|
130
|
+
// If first data row, we can deduce the schema
|
|
131
|
+
if (isFirstRow) {
|
|
132
|
+
isFirstRow = false;
|
|
133
|
+
if (!headerRow) {
|
|
134
|
+
headerRow = generateHeader(csvOptions.columnPrefix, row.length);
|
|
135
|
+
}
|
|
136
|
+
schema = deduceSchema(row, headerRow);
|
|
137
|
+
}
|
|
138
|
+
if (csvOptions.optimizeMemoryUsage) {
|
|
139
|
+
// A workaround to allocate new strings and don't retain pointers to original strings.
|
|
140
|
+
// https://bugs.chromium.org/p/v8/issues/detail?id=2869
|
|
141
|
+
row = JSON.parse(JSON.stringify(row));
|
|
142
|
+
}
|
|
143
|
+
const shape = csvOptions.shape || DEFAULT_CSV_SHAPE;
|
|
144
|
+
// Add the row
|
|
145
|
+
tableBatchBuilder =
|
|
146
|
+
tableBatchBuilder ||
|
|
147
|
+
new TableBatchBuilder(
|
|
148
|
+
// @ts-expect-error TODO this is not a proper schema
|
|
149
|
+
schema, {
|
|
150
|
+
shape,
|
|
151
|
+
...options
|
|
152
|
+
});
|
|
153
|
+
try {
|
|
154
|
+
tableBatchBuilder.addRow(row);
|
|
155
|
+
// If a batch has been completed, emit it
|
|
156
|
+
const batch = tableBatchBuilder && tableBatchBuilder.getFullBatch({ bytesUsed });
|
|
157
|
+
if (batch) {
|
|
158
|
+
asyncQueue.enqueue(batch);
|
|
159
|
+
}
|
|
160
|
+
}
|
|
161
|
+
catch (error) {
|
|
162
|
+
asyncQueue.enqueue(error);
|
|
163
|
+
}
|
|
164
|
+
},
|
|
165
|
+
// complete is called when all rows have been read
|
|
166
|
+
complete(results) {
|
|
167
|
+
try {
|
|
168
|
+
const bytesUsed = results.meta.cursor;
|
|
169
|
+
// Ensure any final (partial) batch gets emitted
|
|
170
|
+
const batch = tableBatchBuilder && tableBatchBuilder.getFinalBatch({ bytesUsed });
|
|
171
|
+
if (batch) {
|
|
172
|
+
asyncQueue.enqueue(batch);
|
|
173
|
+
}
|
|
174
|
+
}
|
|
175
|
+
catch (error) {
|
|
176
|
+
asyncQueue.enqueue(error);
|
|
177
|
+
}
|
|
178
|
+
asyncQueue.close();
|
|
179
|
+
}
|
|
180
|
+
};
|
|
181
|
+
Papa.parse(asyncIterator, config, AsyncIteratorStreamer);
|
|
182
|
+
// TODO - Does it matter if we return asyncIterable or asyncIterator
|
|
183
|
+
// return asyncQueue[Symbol.asyncIterator]();
|
|
184
|
+
return asyncQueue;
|
|
151
185
|
}
|
|
186
|
+
/**
|
|
187
|
+
* Checks if a certain row is a header row
|
|
188
|
+
* @param row the row to check
|
|
189
|
+
* @returns true if the row looks like a header
|
|
190
|
+
*/
|
|
152
191
|
function isHeaderRow(row) {
|
|
153
|
-
|
|
192
|
+
return row && row.every((value) => typeof value === 'string');
|
|
154
193
|
}
|
|
194
|
+
/**
|
|
195
|
+
* Reads, parses, and returns the first row of a CSV text
|
|
196
|
+
* @param csvText the csv text to parse
|
|
197
|
+
* @returns the first row
|
|
198
|
+
*/
|
|
155
199
|
function readFirstRow(csvText) {
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
200
|
+
const result = Papa.parse(csvText, {
|
|
201
|
+
download: false,
|
|
202
|
+
dynamicTyping: true,
|
|
203
|
+
preview: 1
|
|
204
|
+
});
|
|
205
|
+
return result.data[0];
|
|
162
206
|
}
|
|
207
|
+
/**
|
|
208
|
+
* Creates a transformer that renames duplicate columns. This is needed as Papaparse doesn't handle
|
|
209
|
+
* duplicate header columns and would use the latest occurrence by default.
|
|
210
|
+
* See the header option in https://www.papaparse.com/docs#config
|
|
211
|
+
* @returns a transform function that returns sanitized names for duplicate fields
|
|
212
|
+
*/
|
|
163
213
|
function duplicateColumnTransformer() {
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
214
|
+
const observedColumns = new Set();
|
|
215
|
+
return (col) => {
|
|
216
|
+
let colName = col;
|
|
217
|
+
let counter = 1;
|
|
218
|
+
while (observedColumns.has(colName)) {
|
|
219
|
+
colName = `${col}.${counter}`;
|
|
220
|
+
counter++;
|
|
221
|
+
}
|
|
222
|
+
observedColumns.add(colName);
|
|
223
|
+
return colName;
|
|
224
|
+
};
|
|
175
225
|
}
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
226
|
+
/**
|
|
227
|
+
* Generates the header of a CSV given a prefix and a column count
|
|
228
|
+
* @param columnPrefix the columnPrefix to use
|
|
229
|
+
* @param count the count of column names to generate
|
|
230
|
+
* @returns an array of column names
|
|
231
|
+
*/
|
|
232
|
+
function generateHeader(columnPrefix, count = 0) {
|
|
233
|
+
const headers = [];
|
|
234
|
+
for (let i = 0; i < count; i++) {
|
|
235
|
+
headers.push(`${columnPrefix}${i + 1}`);
|
|
236
|
+
}
|
|
237
|
+
return headers;
|
|
183
238
|
}
|
|
184
239
|
function deduceSchema(row, headerRow) {
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
name: String(columnName),
|
|
202
|
-
index: i,
|
|
203
|
-
type: Array
|
|
204
|
-
};
|
|
240
|
+
const schema = headerRow ? {} : [];
|
|
241
|
+
for (let i = 0; i < row.length; i++) {
|
|
242
|
+
const columnName = (headerRow && headerRow[i]) || i;
|
|
243
|
+
const value = row[i];
|
|
244
|
+
switch (typeof value) {
|
|
245
|
+
case 'number':
|
|
246
|
+
case 'boolean':
|
|
247
|
+
// TODO - booleans could be handled differently...
|
|
248
|
+
schema[columnName] = { name: String(columnName), index: i, type: Float32Array };
|
|
249
|
+
break;
|
|
250
|
+
case 'string':
|
|
251
|
+
default:
|
|
252
|
+
schema[columnName] = { name: String(columnName), index: i, type: Array };
|
|
253
|
+
// We currently only handle numeric rows
|
|
254
|
+
// TODO we could offer a function to map strings to numbers?
|
|
255
|
+
}
|
|
205
256
|
}
|
|
206
|
-
|
|
207
|
-
return schema;
|
|
257
|
+
return schema;
|
|
208
258
|
}
|
|
209
|
-
//# sourceMappingURL=csv-loader.js.map
|
package/dist/csv-writer.js
CHANGED
|
@@ -1,18 +1,20 @@
|
|
|
1
|
+
// loaders.gl
|
|
2
|
+
// SPDX-License-Identifier: MIT
|
|
3
|
+
// Copyright (c) vis.gl contributors
|
|
1
4
|
import { encodeTableAsCSV } from "./lib/encoders/encode-csv.js";
|
|
2
5
|
export const CSVWriter = {
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
6
|
+
id: 'csv',
|
|
7
|
+
version: 'latest',
|
|
8
|
+
module: 'csv',
|
|
9
|
+
name: 'CSV',
|
|
10
|
+
extensions: ['csv'],
|
|
11
|
+
mimeTypes: ['text/csv'],
|
|
12
|
+
options: {
|
|
13
|
+
csv: {
|
|
14
|
+
useDisplayNames: false
|
|
15
|
+
}
|
|
16
|
+
},
|
|
17
|
+
text: true,
|
|
18
|
+
encode: async (table, options) => new TextEncoder().encode(encodeTableAsCSV(table, options)).buffer,
|
|
19
|
+
encodeTextSync: (table, options) => encodeTableAsCSV(table, options)
|
|
17
20
|
};
|
|
18
|
-
//# sourceMappingURL=csv-writer.js.map
|