@librechat/agents 3.0.1 → 3.0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/dist/cjs/common/enum.cjs +0 -1
  2. package/dist/cjs/common/enum.cjs.map +1 -1
  3. package/dist/cjs/llm/providers.cjs +0 -2
  4. package/dist/cjs/llm/providers.cjs.map +1 -1
  5. package/dist/cjs/main.cjs +2 -0
  6. package/dist/cjs/main.cjs.map +1 -1
  7. package/dist/cjs/tools/Calculator.cjs +45 -0
  8. package/dist/cjs/tools/Calculator.cjs.map +1 -0
  9. package/dist/esm/common/enum.mjs +0 -1
  10. package/dist/esm/common/enum.mjs.map +1 -1
  11. package/dist/esm/llm/providers.mjs +0 -2
  12. package/dist/esm/llm/providers.mjs.map +1 -1
  13. package/dist/esm/main.mjs +1 -0
  14. package/dist/esm/main.mjs.map +1 -1
  15. package/dist/esm/tools/Calculator.mjs +24 -0
  16. package/dist/esm/tools/Calculator.mjs.map +1 -0
  17. package/dist/types/common/enum.d.ts +0 -1
  18. package/dist/types/index.d.ts +1 -0
  19. package/dist/types/tools/Calculator.d.ts +8 -0
  20. package/dist/types/types/llm.d.ts +1 -6
  21. package/package.json +6 -4
  22. package/src/common/enum.ts +0 -1
  23. package/src/index.ts +1 -0
  24. package/src/llm/providers.ts +0 -2
  25. package/src/scripts/abort.ts +34 -15
  26. package/src/scripts/cli.ts +25 -20
  27. package/src/scripts/cli2.ts +23 -15
  28. package/src/scripts/cli3.ts +35 -29
  29. package/src/scripts/cli4.ts +1 -2
  30. package/src/scripts/cli5.ts +1 -2
  31. package/src/scripts/code_exec.ts +1 -2
  32. package/src/scripts/code_exec_simple.ts +1 -2
  33. package/src/scripts/content.ts +33 -15
  34. package/src/scripts/simple.ts +1 -2
  35. package/src/scripts/stream.ts +33 -15
  36. package/src/scripts/test-tools-before-handoff.ts +17 -28
  37. package/src/scripts/tools.ts +4 -6
  38. package/src/specs/anthropic.simple.test.ts +1 -1
  39. package/src/specs/azure.simple.test.ts +1 -1
  40. package/src/specs/openai.simple.test.ts +1 -1
  41. package/src/specs/openrouter.simple.test.ts +1 -1
  42. package/src/tools/Calculator.test.ts +278 -0
  43. package/src/tools/Calculator.ts +25 -0
  44. package/src/types/llm.ts +0 -6
  45. package/dist/types/tools/example.d.ts +0 -78
  46. package/src/proto/CollabGraph.ts +0 -269
  47. package/src/proto/TaskManager.ts +0 -243
  48. package/src/proto/collab.ts +0 -200
  49. package/src/proto/collab_design.ts +0 -184
  50. package/src/proto/collab_design_v2.ts +0 -224
  51. package/src/proto/collab_design_v3.ts +0 -255
  52. package/src/proto/collab_design_v4.ts +0 -220
  53. package/src/proto/collab_design_v5.ts +0 -251
  54. package/src/proto/collab_graph.ts +0 -181
  55. package/src/proto/collab_original.ts +0 -123
  56. package/src/proto/example.ts +0 -93
  57. package/src/proto/example_new.ts +0 -68
  58. package/src/proto/example_old.ts +0 -201
  59. package/src/proto/example_test.ts +0 -152
  60. package/src/proto/example_test_anthropic.ts +0 -100
  61. package/src/proto/log_stream.ts +0 -202
  62. package/src/proto/main_collab_community_event.ts +0 -133
  63. package/src/proto/main_collab_design_v2.ts +0 -96
  64. package/src/proto/main_collab_design_v4.ts +0 -100
  65. package/src/proto/main_collab_design_v5.ts +0 -135
  66. package/src/proto/main_collab_global_analysis.ts +0 -122
  67. package/src/proto/main_collab_hackathon_event.ts +0 -153
  68. package/src/proto/main_collab_space_mission.ts +0 -153
  69. package/src/proto/main_philosophy.ts +0 -210
  70. package/src/proto/original_script.ts +0 -126
  71. package/src/proto/standard.ts +0 -100
  72. package/src/proto/stream.ts +0 -56
  73. package/src/proto/tasks.ts +0 -118
  74. package/src/proto/tools/global_analysis_tools.ts +0 -86
  75. package/src/proto/tools/space_mission_tools.ts +0 -60
  76. package/src/proto/vertexai.ts +0 -54
  77. package/src/tools/example.ts +0 -129
@@ -1,200 +0,0 @@
1
- // src/collab.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { chartTool, tavilyTool } from '@/tools/example';
6
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
7
- import {
8
- ChatPromptTemplate,
9
- MessagesPlaceholder,
10
- } from '@langchain/core/prompts';
11
- import { ChatOpenAI } from '@langchain/openai';
12
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
13
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
14
- import { HandlerRegistry } from '@/events';
15
-
16
- interface AgentStateChannels {
17
- messages: BaseMessage[];
18
- next: string;
19
- }
20
-
21
- export class CollaborativeProcessor {
22
- private graph: Runnable | null = null;
23
- private handlerRegistry: HandlerRegistry;
24
-
25
- constructor(customHandlers?: Record<string, any>) {
26
- this.handlerRegistry = new HandlerRegistry();
27
- if (customHandlers) {
28
- for (const [eventType, handler] of Object.entries(customHandlers)) {
29
- this.handlerRegistry.register(eventType, handler);
30
- }
31
- }
32
- }
33
-
34
- async initialize(): Promise<void> {
35
- this.graph = await this.createGraph();
36
- }
37
-
38
- private async createGraph(): Promise<Runnable> {
39
- const agentStateChannels: StateGraphArgs['channels'] = {
40
- messages: {
41
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
42
- default: () => [],
43
- },
44
- next: {
45
- value: (x?: string, y?: string) => y ?? x ?? END,
46
- default: () => END,
47
- },
48
- };
49
-
50
- async function createAgent(
51
- llm: ChatOpenAI,
52
- tools: any[],
53
- systemPrompt: string
54
- ): Promise<AgentExecutor> {
55
- const prompt = await ChatPromptTemplate.fromMessages([
56
- ['system', systemPrompt],
57
- new MessagesPlaceholder('messages'),
58
- new MessagesPlaceholder('agent_scratchpad'),
59
- ]);
60
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
61
- return new AgentExecutor({ agent, tools });
62
- }
63
-
64
- const members = ['researcher', 'chart_generator'];
65
-
66
- const systemPrompt =
67
- 'You are a supervisor tasked with managing a conversation between the' +
68
- ' following workers: {members}. Given the following user request,' +
69
- ' respond with the worker to act next. Each worker will perform a' +
70
- ' task and respond with their results and status. When finished,' +
71
- ' respond with FINISH.';
72
- const options = [END, ...members];
73
-
74
- const functionDef = {
75
- name: 'route',
76
- description: 'Select the next role.',
77
- parameters: {
78
- title: 'routeSchema',
79
- type: 'object',
80
- properties: {
81
- next: {
82
- title: 'Next',
83
- anyOf: [
84
- { enum: options },
85
- ],
86
- },
87
- },
88
- required: ['next'],
89
- },
90
- };
91
-
92
- const toolDef = {
93
- type: 'function',
94
- function: functionDef,
95
- } as const;
96
-
97
- const prompt = ChatPromptTemplate.fromMessages([
98
- ['system', systemPrompt],
99
- new MessagesPlaceholder('messages'),
100
- [
101
- 'system',
102
- 'Given the conversation above, who should act next?' +
103
- ' Or should we FINISH? Select one of: {options}',
104
- ],
105
- ]);
106
-
107
- const formattedPrompt = await prompt.partial({
108
- options: options.join(', '),
109
- members: members.join(', '),
110
- });
111
-
112
- const llm = new ChatOpenAI({
113
- modelName: 'gpt-4',
114
- temperature: 0,
115
- });
116
-
117
- const supervisorChain = formattedPrompt
118
- .pipe(llm.bindTools(
119
- [toolDef],
120
- {
121
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
122
- },
123
- ))
124
- .pipe(new JsonOutputToolsParser())
125
- .pipe((x) => (x[0].args));
126
-
127
- const researcherAgent = await createAgent(
128
- llm,
129
- [tavilyTool],
130
- 'You are a web researcher. You may use the Tavily search engine to search the web for' +
131
- ' important information, so the Chart Generator in your team can make useful plots.',
132
- );
133
-
134
- const researcherNode = async (
135
- state: AgentStateChannels,
136
- config?: RunnableConfig,
137
- ) => {
138
- const result = await researcherAgent.invoke(state, config);
139
- return {
140
- messages: [
141
- new HumanMessage({ content: result.output, name: 'Researcher' }),
142
- ],
143
- };
144
- };
145
-
146
- const chartGenAgent = await createAgent(
147
- llm,
148
- [chartTool],
149
- 'You excel at generating bar charts. Use the researcher\'s information to generate the charts.',
150
- );
151
-
152
- const chartGenNode = async (
153
- state: AgentStateChannels,
154
- config?: RunnableConfig,
155
- ) => {
156
- const result = await chartGenAgent.invoke(state, config);
157
- return {
158
- messages: [
159
- new HumanMessage({ content: result.output, name: 'ChartGenerator' }),
160
- ],
161
- };
162
- };
163
-
164
- const workflow = new StateGraph({
165
- channels: agentStateChannels,
166
- })
167
- .addNode('researcher', researcherNode)
168
- .addNode('chart_generator', chartGenNode)
169
- .addNode('supervisor', supervisorChain);
170
-
171
- members.forEach((member) => {
172
- workflow.addEdge(member, 'supervisor');
173
- });
174
-
175
- workflow.addConditionalEdges(
176
- 'supervisor',
177
- (x: AgentStateChannels) => x.next,
178
- );
179
-
180
- workflow.addEdge(START, 'supervisor');
181
-
182
- return workflow.compile();
183
- }
184
-
185
- async processStream(
186
- inputs: { messages: BaseMessage[] },
187
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
188
- ) {
189
- if (!this.graph) {
190
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
191
- }
192
- const stream = await this.graph.streamEvents(inputs, config);
193
- for await (const event of stream) {
194
- const handler = this.handlerRegistry.getHandler(event.event);
195
- if (handler) {
196
- handler.handle(event.event, event.data);
197
- }
198
- }
199
- }
200
- }
@@ -1,184 +0,0 @@
1
- // src/collab.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { chartTool, tavilyTool } from '@/tools/example';
6
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
7
- import {
8
- ChatPromptTemplate,
9
- MessagesPlaceholder,
10
- } from '@langchain/core/prompts';
11
- import { ChatOpenAI } from '@langchain/openai';
12
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
13
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
14
- import { HandlerRegistry } from '@/events';
15
-
16
- interface AgentStateChannels {
17
- messages: BaseMessage[];
18
- next: string;
19
- }
20
-
21
- interface Member {
22
- name: string;
23
- systemPrompt: string;
24
- tools: any[];
25
- }
26
-
27
- export class CollaborativeProcessor {
28
- private graph: Runnable | null = null;
29
- private handlerRegistry: HandlerRegistry;
30
- private members: Member[];
31
-
32
- constructor(members: Member[], customHandlers?: Record<string, any>) {
33
- this.members = members;
34
- this.handlerRegistry = new HandlerRegistry();
35
- if (customHandlers) {
36
- for (const [eventType, handler] of Object.entries(customHandlers)) {
37
- this.handlerRegistry.register(eventType, handler);
38
- }
39
- }
40
- }
41
-
42
- async initialize(): Promise<void> {
43
- this.graph = await this.createGraph();
44
- }
45
-
46
- private async createGraph(): Promise<Runnable> {
47
- const agentStateChannels: StateGraphArgs['channels'] = {
48
- messages: {
49
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
50
- default: () => [],
51
- },
52
- next: {
53
- value: (x?: string, y?: string) => y ?? x ?? END,
54
- default: () => END,
55
- },
56
- };
57
-
58
- async function createAgent(
59
- llm: ChatOpenAI,
60
- tools: any[],
61
- systemPrompt: string
62
- ): Promise<AgentExecutor> {
63
- const prompt = await ChatPromptTemplate.fromMessages([
64
- ['system', systemPrompt],
65
- new MessagesPlaceholder('messages'),
66
- new MessagesPlaceholder('agent_scratchpad'),
67
- ]);
68
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
69
- return new AgentExecutor({ agent, tools });
70
- }
71
-
72
- const memberNames = this.members.map(member => member.name);
73
-
74
- const systemPrompt =
75
- 'You are a supervisor tasked with managing a conversation between the' +
76
- ' following workers: {members}. Given the following user request,' +
77
- ' respond with the worker to act next. Each worker will perform a' +
78
- ' task and respond with their results and status. When finished,' +
79
- ' respond with FINISH.';
80
- const options = [END, ...memberNames];
81
-
82
- const functionDef = {
83
- name: 'route',
84
- description: 'Select the next role.',
85
- parameters: {
86
- title: 'routeSchema',
87
- type: 'object',
88
- properties: {
89
- next: {
90
- title: 'Next',
91
- anyOf: [
92
- { enum: options },
93
- ],
94
- },
95
- },
96
- required: ['next'],
97
- },
98
- };
99
-
100
- const toolDef = {
101
- type: 'function',
102
- function: functionDef,
103
- } as const;
104
-
105
- const prompt = ChatPromptTemplate.fromMessages([
106
- ['system', systemPrompt],
107
- new MessagesPlaceholder('messages'),
108
- [
109
- 'system',
110
- 'Given the conversation above, who should act next?' +
111
- ' Or should we FINISH? Select one of: {options}',
112
- ],
113
- ]);
114
-
115
- const formattedPrompt = await prompt.partial({
116
- options: options.join(', '),
117
- members: memberNames.join(', '),
118
- });
119
-
120
- const llm = new ChatOpenAI({
121
- modelName: 'gpt-4',
122
- temperature: 0,
123
- });
124
-
125
- const supervisorChain = formattedPrompt
126
- .pipe(llm.bindTools(
127
- [toolDef],
128
- {
129
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
130
- },
131
- ))
132
- .pipe(new JsonOutputToolsParser())
133
- .pipe((x) => (x[0].args));
134
-
135
- const workflow = new StateGraph({
136
- channels: agentStateChannels,
137
- });
138
-
139
- // Dynamically create agents and add nodes for each member
140
- for (const member of this.members) {
141
- const agent = await createAgent(llm, member.tools, member.systemPrompt);
142
- const node = async (
143
- state: AgentStateChannels,
144
- config?: RunnableConfig,
145
- ) => {
146
- const result = await agent.invoke(state, config);
147
- return {
148
- messages: [
149
- new HumanMessage({ content: result.output, name: member.name }),
150
- ],
151
- };
152
- };
153
- workflow.addNode(member.name, node);
154
- workflow.addEdge(member.name, 'supervisor');
155
- }
156
-
157
- workflow.addNode('supervisor', supervisorChain);
158
-
159
- workflow.addConditionalEdges(
160
- 'supervisor',
161
- (x: AgentStateChannels) => x.next,
162
- );
163
-
164
- workflow.addEdge(START, 'supervisor');
165
-
166
- return workflow.compile();
167
- }
168
-
169
- async processStream(
170
- inputs: { messages: BaseMessage[] },
171
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
172
- ) {
173
- if (!this.graph) {
174
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
175
- }
176
- const stream = this.graph.streamEvents(inputs, config);
177
- for await (const event of stream) {
178
- const handler = this.handlerRegistry.getHandler(event.event);
179
- if (handler) {
180
- handler.handle(event.event, event.data);
181
- }
182
- }
183
- }
184
- }
@@ -1,224 +0,0 @@
1
- // src/collab.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
6
- import {
7
- ChatPromptTemplate,
8
- MessagesPlaceholder,
9
- } from '@langchain/core/prompts';
10
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
11
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
12
- import { HandlerRegistry } from '@/events';
13
- import { ChatOpenAI } from '@langchain/openai';
14
- import { ChatBedrockConverse } from '@langchain/aws';
15
- import { ChatAnthropic } from '@langchain/anthropic';
16
- import { ChatMistralAI } from '@langchain/mistralai';
17
- import { ChatVertexAI } from '@langchain/google-vertexai';
18
- import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
19
- import { Providers } from '@/common';
20
-
21
- interface AgentStateChannels {
22
- messages: BaseMessage[];
23
- next: string;
24
- }
25
-
26
- export interface Member {
27
- name: string;
28
- systemPrompt: string;
29
- tools: any[];
30
- llmConfig: LLMConfig;
31
- }
32
-
33
- interface LLMConfig {
34
- provider: Providers;
35
- [key: string]: any;
36
- }
37
-
38
- interface SupervisorConfig {
39
- systemPrompt?: string;
40
- llmConfig: LLMConfig;
41
- }
42
-
43
- const llmProviders: Record<Providers, any> = {
44
- [Providers.OPENAI]: ChatOpenAI,
45
- [Providers.VERTEXAI]: ChatVertexAI,
46
- [Providers.BEDROCK_LEGACY]: BedrockChat,
47
- [Providers.MISTRALAI]: ChatMistralAI,
48
- [Providers.BEDROCK]: ChatBedrockConverse,
49
- [Providers.ANTHROPIC]: ChatAnthropic,
50
- };
51
-
52
- export class CollaborativeProcessor {
53
- private graph: Runnable | null = null;
54
- private handlerRegistry: HandlerRegistry;
55
- private members: Member[];
56
- private supervisorConfig: SupervisorConfig;
57
-
58
- constructor(
59
- members: Member[],
60
- supervisorConfig: SupervisorConfig,
61
- customHandlers?: Record<string, any>
62
- ) {
63
- this.members = members;
64
- this.supervisorConfig = supervisorConfig;
65
- this.handlerRegistry = new HandlerRegistry();
66
- if (customHandlers) {
67
- for (const [eventType, handler] of Object.entries(customHandlers)) {
68
- this.handlerRegistry.register(eventType, handler);
69
- }
70
- }
71
- }
72
-
73
- async initialize(): Promise<void> {
74
- this.graph = await this.createGraph();
75
- }
76
-
77
- private async createGraph(): Promise<Runnable> {
78
- const agentStateChannels: StateGraphArgs['channels'] = {
79
- messages: {
80
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
81
- default: () => [],
82
- },
83
- next: {
84
- value: (x?: string, y?: string) => y ?? x ?? END,
85
- default: () => END,
86
- },
87
- };
88
-
89
- async function createAgent(
90
- llmConfig: LLMConfig,
91
- tools: any[],
92
- systemPrompt: string
93
- ): Promise<AgentExecutor> {
94
- const { provider, ...clientOptions } = llmConfig;
95
- const LLMClass = llmProviders[provider];
96
- if (!LLMClass) {
97
- throw new Error(`Unsupported LLM provider: ${provider}`);
98
- }
99
- const llm = new LLMClass(clientOptions);
100
-
101
- const prompt = await ChatPromptTemplate.fromMessages([
102
- ['system', systemPrompt],
103
- new MessagesPlaceholder('messages'),
104
- new MessagesPlaceholder('agent_scratchpad'),
105
- ]);
106
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
107
- return new AgentExecutor({ agent, tools });
108
- }
109
-
110
- const memberNames = this.members.map(member => member.name);
111
-
112
- const systemPrompt = this.supervisorConfig.systemPrompt ||
113
- 'You are a supervisor tasked with managing a conversation between the' +
114
- ' following workers: {members}. Given the following user request,' +
115
- ' respond with the worker to act next. Each worker will perform a' +
116
- ' task and respond with their results and status. When finished,' +
117
- ' respond with FINISH.';
118
- const options = [END, ...memberNames];
119
-
120
- const functionDef = {
121
- name: 'route',
122
- description: 'Select the next role.',
123
- parameters: {
124
- title: 'routeSchema',
125
- type: 'object',
126
- properties: {
127
- next: {
128
- title: 'Next',
129
- anyOf: [
130
- { enum: options },
131
- ],
132
- },
133
- },
134
- required: ['next'],
135
- },
136
- };
137
-
138
- const toolDef = {
139
- type: 'function',
140
- function: functionDef,
141
- } as const;
142
-
143
- const prompt = ChatPromptTemplate.fromMessages([
144
- ['system', systemPrompt],
145
- new MessagesPlaceholder('messages'),
146
- [
147
- 'system',
148
- 'Given the conversation above, who should act next?' +
149
- ' Or should we FINISH? Select one of: {options}',
150
- ],
151
- ]);
152
-
153
- const formattedPrompt = await prompt.partial({
154
- options: options.join(', '),
155
- members: memberNames.join(', '),
156
- });
157
-
158
- const { provider, ...clientOptions } = this.supervisorConfig.llmConfig;
159
- const LLMClass = llmProviders[provider];
160
- if (!LLMClass) {
161
- throw new Error(`Unsupported LLM provider for supervisor: ${provider}`);
162
- }
163
- const llm = new LLMClass(clientOptions);
164
-
165
- const supervisorChain = formattedPrompt
166
- .pipe(llm.bindTools(
167
- [toolDef],
168
- {
169
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
170
- },
171
- ))
172
- .pipe(new JsonOutputToolsParser())
173
- .pipe((x) => (x[0].args));
174
-
175
- const workflow = new StateGraph({
176
- channels: agentStateChannels,
177
- });
178
-
179
- // Dynamically create agents and add nodes for each member
180
- for (const member of this.members) {
181
- const agent = await createAgent(member.llmConfig, member.tools, member.systemPrompt);
182
- const node = async (
183
- state: AgentStateChannels,
184
- config?: RunnableConfig,
185
- ) => {
186
- const result = await agent.invoke(state, config);
187
- return {
188
- messages: [
189
- new HumanMessage({ content: result.output, name: member.name }),
190
- ],
191
- };
192
- };
193
- workflow.addNode(member.name, node);
194
- workflow.addEdge(member.name, 'supervisor');
195
- }
196
-
197
- workflow.addNode('supervisor', supervisorChain);
198
-
199
- workflow.addConditionalEdges(
200
- 'supervisor',
201
- (x: AgentStateChannels) => x.next,
202
- );
203
-
204
- workflow.addEdge(START, 'supervisor');
205
-
206
- return workflow.compile();
207
- }
208
-
209
- async processStream(
210
- inputs: { messages: BaseMessage[] },
211
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
212
- ) {
213
- if (!this.graph) {
214
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
215
- }
216
- const stream = this.graph.streamEvents(inputs, config);
217
- for await (const event of stream) {
218
- const handler = this.handlerRegistry.getHandler(event.event);
219
- if (handler) {
220
- handler.handle(event.event, event.data);
221
- }
222
- }
223
- }
224
- }