@librechat/agents 3.0.1 → 3.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. package/dist/cjs/common/enum.cjs +0 -1
  2. package/dist/cjs/common/enum.cjs.map +1 -1
  3. package/dist/cjs/llm/providers.cjs +0 -2
  4. package/dist/cjs/llm/providers.cjs.map +1 -1
  5. package/dist/cjs/main.cjs +2 -0
  6. package/dist/cjs/main.cjs.map +1 -1
  7. package/dist/cjs/tools/Calculator.cjs +45 -0
  8. package/dist/cjs/tools/Calculator.cjs.map +1 -0
  9. package/dist/esm/common/enum.mjs +0 -1
  10. package/dist/esm/common/enum.mjs.map +1 -1
  11. package/dist/esm/llm/providers.mjs +0 -2
  12. package/dist/esm/llm/providers.mjs.map +1 -1
  13. package/dist/esm/main.mjs +1 -0
  14. package/dist/esm/main.mjs.map +1 -1
  15. package/dist/esm/tools/Calculator.mjs +24 -0
  16. package/dist/esm/tools/Calculator.mjs.map +1 -0
  17. package/dist/types/common/enum.d.ts +0 -1
  18. package/dist/types/index.d.ts +1 -0
  19. package/dist/types/tools/Calculator.d.ts +8 -0
  20. package/dist/types/types/llm.d.ts +1 -6
  21. package/package.json +5 -3
  22. package/src/common/enum.ts +0 -1
  23. package/src/index.ts +1 -0
  24. package/src/llm/providers.ts +0 -2
  25. package/src/scripts/abort.ts +34 -15
  26. package/src/scripts/cli.ts +25 -20
  27. package/src/scripts/cli2.ts +23 -15
  28. package/src/scripts/cli3.ts +35 -29
  29. package/src/scripts/cli4.ts +1 -2
  30. package/src/scripts/cli5.ts +1 -2
  31. package/src/scripts/code_exec.ts +1 -2
  32. package/src/scripts/code_exec_simple.ts +1 -2
  33. package/src/scripts/content.ts +33 -15
  34. package/src/scripts/simple.ts +1 -2
  35. package/src/scripts/stream.ts +33 -15
  36. package/src/scripts/test-tools-before-handoff.ts +17 -28
  37. package/src/scripts/tools.ts +4 -6
  38. package/src/specs/anthropic.simple.test.ts +1 -1
  39. package/src/specs/azure.simple.test.ts +1 -1
  40. package/src/specs/openai.simple.test.ts +1 -1
  41. package/src/specs/openrouter.simple.test.ts +1 -1
  42. package/src/tools/Calculator.ts +25 -0
  43. package/src/types/llm.ts +0 -6
  44. package/dist/types/tools/example.d.ts +0 -78
  45. package/src/proto/CollabGraph.ts +0 -269
  46. package/src/proto/TaskManager.ts +0 -243
  47. package/src/proto/collab.ts +0 -200
  48. package/src/proto/collab_design.ts +0 -184
  49. package/src/proto/collab_design_v2.ts +0 -224
  50. package/src/proto/collab_design_v3.ts +0 -255
  51. package/src/proto/collab_design_v4.ts +0 -220
  52. package/src/proto/collab_design_v5.ts +0 -251
  53. package/src/proto/collab_graph.ts +0 -181
  54. package/src/proto/collab_original.ts +0 -123
  55. package/src/proto/example.ts +0 -93
  56. package/src/proto/example_new.ts +0 -68
  57. package/src/proto/example_old.ts +0 -201
  58. package/src/proto/example_test.ts +0 -152
  59. package/src/proto/example_test_anthropic.ts +0 -100
  60. package/src/proto/log_stream.ts +0 -202
  61. package/src/proto/main_collab_community_event.ts +0 -133
  62. package/src/proto/main_collab_design_v2.ts +0 -96
  63. package/src/proto/main_collab_design_v4.ts +0 -100
  64. package/src/proto/main_collab_design_v5.ts +0 -135
  65. package/src/proto/main_collab_global_analysis.ts +0 -122
  66. package/src/proto/main_collab_hackathon_event.ts +0 -153
  67. package/src/proto/main_collab_space_mission.ts +0 -153
  68. package/src/proto/main_philosophy.ts +0 -210
  69. package/src/proto/original_script.ts +0 -126
  70. package/src/proto/standard.ts +0 -100
  71. package/src/proto/stream.ts +0 -56
  72. package/src/proto/tasks.ts +0 -118
  73. package/src/proto/tools/global_analysis_tools.ts +0 -86
  74. package/src/proto/tools/space_mission_tools.ts +0 -60
  75. package/src/proto/vertexai.ts +0 -54
  76. package/src/tools/example.ts +0 -129
@@ -1,243 +0,0 @@
1
- // src/graphs/TaskManager.ts
2
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
3
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
4
- import { BaseMessage, HumanMessage, AIMessage } from '@langchain/core/messages';
5
- import { ChatPromptTemplate, MessagesPlaceholder } from '@langchain/core/prompts';
6
- import { END, START, StateGraph, MemorySaver } from '@langchain/langgraph';
7
- import type { Runnable, RunnableConfig } from '@langchain/core/runnables';
8
- import type { ToolNode } from '@langchain/langgraph/prebuilt';
9
- import type { StructuredTool } from '@langchain/core/tools';
10
- import type { StateGraphArgs } from '@langchain/langgraph';
11
- import type * as t from '@/types';
12
- import {
13
- taskManagerPrompt,
14
- endProcessFunctionParameters,
15
- endProcessFunctionDescription,
16
- assignTasksFunctionParameters,
17
- assignTasksFunctionDescription,
18
- } from '@/prompts/taskmanager';
19
- import { getChatModelClass } from '@/llm/providers';
20
- import { Providers } from '@/common';
21
- import { Graph } from '../graphs/Graph';
22
-
23
- export interface TaskManagerStateChannels {
24
- messages: BaseMessage[];
25
- tasks: Task[];
26
- completedTasks: string[];
27
- next: string;
28
- }
29
-
30
- export interface Task {
31
- member: string;
32
- description: string;
33
- tool?: string;
34
- }
35
-
36
- export interface TaskMember {
37
- name: string;
38
- systemPrompt: string;
39
- tools: StructuredTool[];
40
- llmConfig: t.LLMConfig;
41
- }
42
-
43
- interface SupervisorConfig {
44
- systemPrompt?: string;
45
- llmConfig: t.LLMConfig;
46
- }
47
-
48
- export class TaskManager extends Graph<TaskManagerStateChannels, string> {
49
- initializeTools(tools: StructuredTool[]): ToolNode<TaskManagerStateChannels> {
50
- throw new Error('Method not implemented.');
51
- }
52
- initializeModel(provider: Providers, clientOptions: Record<string, unknown>, tools: StructuredTool[]) {
53
- throw new Error('Method not implemented.');
54
- }
55
- createCallModel(boundModel: any): (state: TaskManagerStateChannels, config?: RunnableConfig) => Promise<Partial<TaskManagerStateChannels>> {
56
- throw new Error('Method not implemented.');
57
- }
58
- private graph: t.CompiledWorkflow<TaskManagerStateChannels, Partial<TaskManagerStateChannels>, string> | null = null;
59
- private members: TaskMember[];
60
- private supervisorConfig: SupervisorConfig;
61
- private supervisorChain: Runnable | null = null;
62
-
63
- constructor(members: TaskMember[], supervisorConfig: SupervisorConfig) {
64
- super();
65
- this.members = members;
66
- this.supervisorConfig = supervisorConfig;
67
- }
68
-
69
- async initialize(): Promise<void> {
70
- const memberNames = this.members.map(member => member.name);
71
- const systemPrompt = this.supervisorConfig.systemPrompt || taskManagerPrompt;
72
- this.supervisorChain = await this.createSupervisorChain(systemPrompt, memberNames);
73
- }
74
-
75
- createGraphState(): StateGraphArgs<TaskManagerStateChannels>['channels'] {
76
- return {
77
- messages: {
78
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
79
- default: () => [],
80
- },
81
- tasks: {
82
- value: (x?: Task[], y?: Task[]) => y ?? x ?? [],
83
- default: () => [],
84
- },
85
- completedTasks: {
86
- value: (x?: string[], y?: string[]) => [...new Set([...(x ?? []), ...(y ?? [])])],
87
- default: () => [],
88
- },
89
- next: {
90
- value: (x?: string, y?: string) => y ?? x ?? END,
91
- default: () => END,
92
- },
93
- };
94
- }
95
-
96
- private async createAgent(
97
- llmConfig: t.LLMConfig,
98
- tools: StructuredTool[],
99
- systemPrompt: string
100
- ): Promise<AgentExecutor> {
101
- const { provider, ...clientOptions } = llmConfig;
102
- const LLMClass = getChatModelClass(provider);
103
- if (!LLMClass) {
104
- throw new Error(`Unsupported LLM provider: ${provider}`);
105
- }
106
- const llm = new LLMClass(clientOptions);
107
-
108
- const prompt = ChatPromptTemplate.fromMessages([
109
- ['system', systemPrompt],
110
- new MessagesPlaceholder('chat_history'),
111
- ['human', '{input}'],
112
- new MessagesPlaceholder('agent_scratchpad'),
113
- ]);
114
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
115
- return new AgentExecutor({ agent, tools });
116
- }
117
-
118
- createWorkflow(
119
- graphState: StateGraphArgs<TaskManagerStateChannels>['channels'],
120
- callModel?: any,
121
- ): t.CompiledWorkflow<TaskManagerStateChannels, Partial<TaskManagerStateChannels>, string> {
122
- if (!this.supervisorChain) {
123
- throw new Error('TaskManager not initialized. Call initialize() first.');
124
- }
125
-
126
- const workflow = new StateGraph<TaskManagerStateChannels, Partial<TaskManagerStateChannels>, string>({
127
- channels: graphState,
128
- });
129
-
130
- const supervisorNode = async (
131
- state: TaskManagerStateChannels,
132
- config?: RunnableConfig,
133
- ) => {
134
- const result = await this.supervisorChain?.invoke(state, config) as { tasks?: Task[], reason?: string };
135
- console.log('Supervisor Node Output:', result);
136
-
137
- if (result && result.reason) {
138
- console.log('Process ending. Reason:', result.reason);
139
- return { next: END };
140
- }
141
-
142
- const newTasks = (result.tasks || []).filter(task =>
143
- !state.completedTasks.includes(`${task.member}:${task.description}`)
144
- );
145
-
146
- return {
147
- tasks: newTasks,
148
- next: newTasks.length > 0 ? 'execute_tasks' : END,
149
- };
150
- };
151
-
152
- const executeTasksNode = async (
153
- state: TaskManagerStateChannels,
154
- config?: RunnableConfig,
155
- ) => {
156
- const results: BaseMessage[] = [];
157
- const completedTasks: string[] = [];
158
-
159
- for (const task of state.tasks) {
160
- const member = this.members.find(m => m.name === task.member);
161
- if (!member) {
162
- throw new Error(`TaskMember ${task.member} not found`);
163
- }
164
-
165
- const agent = await this.createAgent(member.llmConfig, member.tools, member.systemPrompt);
166
- const taskMessage = new HumanMessage(`Task: ${task.description}${task.tool ? ` Use the ${task.tool} tool.` : ''}`);
167
- const result = await agent.invoke({
168
- input: taskMessage.content,
169
- chat_history: state.messages,
170
- }, config);
171
-
172
- results.push(new AIMessage({ content: result.output, name: task.member }));
173
- completedTasks.push(`${task.member}:${task.description}`);
174
- }
175
-
176
- return {
177
- messages: state.messages.concat(results),
178
- completedTasks: state.completedTasks.concat(completedTasks),
179
- tasks: [],
180
- next: 'supervisor',
181
- };
182
- };
183
-
184
- workflow.addNode('supervisor', supervisorNode);
185
- workflow.addNode('execute_tasks', executeTasksNode);
186
-
187
- workflow.addEdge(START, 'supervisor');
188
- workflow.addConditionalEdges(
189
- 'supervisor',
190
- (x: TaskManagerStateChannels) => x.next,
191
- );
192
- workflow.addEdge('execute_tasks', 'supervisor');
193
-
194
- const memory = new MemorySaver();
195
- this.graph = workflow.compile({ checkpointer: memory });
196
- return this.graph;
197
- }
198
-
199
- private async createSupervisorChain(systemPrompt: string, memberNames: string[]): Promise<Runnable> {
200
- const assignTasksDef = {
201
- name: 'assign_tasks',
202
- description: assignTasksFunctionDescription,
203
- parameters: assignTasksFunctionParameters,
204
- };
205
-
206
- const endProcessDef = {
207
- name: 'end_process',
208
- description: endProcessFunctionDescription,
209
- parameters: endProcessFunctionParameters,
210
- };
211
-
212
- const toolDefs = [
213
- { type: 'function', function: assignTasksDef },
214
- { type: 'function', function: endProcessDef },
215
- ];
216
-
217
- const prompt = ChatPromptTemplate.fromMessages([
218
- ['system', systemPrompt],
219
- new MessagesPlaceholder('messages'),
220
- new MessagesPlaceholder('completedTasks'),
221
- [
222
- 'human',
223
- 'Based on the conversation above and the completed tasks, either assign new tasks using the \'assign_tasks\' function or end the process using the \'end_process\' function if the user\'s request is fulfilled. Assign only the most essential tasks to minimize the number of turns. Do not repeat tasks that have already been completed.',
224
- ],
225
- ]);
226
-
227
- const formattedPrompt = await prompt.partial({
228
- members: memberNames.join(', '),
229
- });
230
-
231
- const { provider, ...clientOptions } = this.supervisorConfig.llmConfig;
232
- const LLMClass = getChatModelClass(provider);
233
- if (!LLMClass) {
234
- throw new Error(`Unsupported LLM provider for supervisor: ${provider}`);
235
- }
236
- const llm = new LLMClass(clientOptions);
237
-
238
- return formattedPrompt
239
- .pipe(llm.bindTools(toolDefs))
240
- .pipe(new JsonOutputToolsParser())
241
- .pipe((x: any) => x[0].args);
242
- }
243
- }
@@ -1,200 +0,0 @@
1
- // src/collab.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { chartTool, tavilyTool } from '@/tools/example';
6
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
7
- import {
8
- ChatPromptTemplate,
9
- MessagesPlaceholder,
10
- } from '@langchain/core/prompts';
11
- import { ChatOpenAI } from '@langchain/openai';
12
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
13
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
14
- import { HandlerRegistry } from '@/events';
15
-
16
- interface AgentStateChannels {
17
- messages: BaseMessage[];
18
- next: string;
19
- }
20
-
21
- export class CollaborativeProcessor {
22
- private graph: Runnable | null = null;
23
- private handlerRegistry: HandlerRegistry;
24
-
25
- constructor(customHandlers?: Record<string, any>) {
26
- this.handlerRegistry = new HandlerRegistry();
27
- if (customHandlers) {
28
- for (const [eventType, handler] of Object.entries(customHandlers)) {
29
- this.handlerRegistry.register(eventType, handler);
30
- }
31
- }
32
- }
33
-
34
- async initialize(): Promise<void> {
35
- this.graph = await this.createGraph();
36
- }
37
-
38
- private async createGraph(): Promise<Runnable> {
39
- const agentStateChannels: StateGraphArgs['channels'] = {
40
- messages: {
41
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
42
- default: () => [],
43
- },
44
- next: {
45
- value: (x?: string, y?: string) => y ?? x ?? END,
46
- default: () => END,
47
- },
48
- };
49
-
50
- async function createAgent(
51
- llm: ChatOpenAI,
52
- tools: any[],
53
- systemPrompt: string
54
- ): Promise<AgentExecutor> {
55
- const prompt = await ChatPromptTemplate.fromMessages([
56
- ['system', systemPrompt],
57
- new MessagesPlaceholder('messages'),
58
- new MessagesPlaceholder('agent_scratchpad'),
59
- ]);
60
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
61
- return new AgentExecutor({ agent, tools });
62
- }
63
-
64
- const members = ['researcher', 'chart_generator'];
65
-
66
- const systemPrompt =
67
- 'You are a supervisor tasked with managing a conversation between the' +
68
- ' following workers: {members}. Given the following user request,' +
69
- ' respond with the worker to act next. Each worker will perform a' +
70
- ' task and respond with their results and status. When finished,' +
71
- ' respond with FINISH.';
72
- const options = [END, ...members];
73
-
74
- const functionDef = {
75
- name: 'route',
76
- description: 'Select the next role.',
77
- parameters: {
78
- title: 'routeSchema',
79
- type: 'object',
80
- properties: {
81
- next: {
82
- title: 'Next',
83
- anyOf: [
84
- { enum: options },
85
- ],
86
- },
87
- },
88
- required: ['next'],
89
- },
90
- };
91
-
92
- const toolDef = {
93
- type: 'function',
94
- function: functionDef,
95
- } as const;
96
-
97
- const prompt = ChatPromptTemplate.fromMessages([
98
- ['system', systemPrompt],
99
- new MessagesPlaceholder('messages'),
100
- [
101
- 'system',
102
- 'Given the conversation above, who should act next?' +
103
- ' Or should we FINISH? Select one of: {options}',
104
- ],
105
- ]);
106
-
107
- const formattedPrompt = await prompt.partial({
108
- options: options.join(', '),
109
- members: members.join(', '),
110
- });
111
-
112
- const llm = new ChatOpenAI({
113
- modelName: 'gpt-4',
114
- temperature: 0,
115
- });
116
-
117
- const supervisorChain = formattedPrompt
118
- .pipe(llm.bindTools(
119
- [toolDef],
120
- {
121
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
122
- },
123
- ))
124
- .pipe(new JsonOutputToolsParser())
125
- .pipe((x) => (x[0].args));
126
-
127
- const researcherAgent = await createAgent(
128
- llm,
129
- [tavilyTool],
130
- 'You are a web researcher. You may use the Tavily search engine to search the web for' +
131
- ' important information, so the Chart Generator in your team can make useful plots.',
132
- );
133
-
134
- const researcherNode = async (
135
- state: AgentStateChannels,
136
- config?: RunnableConfig,
137
- ) => {
138
- const result = await researcherAgent.invoke(state, config);
139
- return {
140
- messages: [
141
- new HumanMessage({ content: result.output, name: 'Researcher' }),
142
- ],
143
- };
144
- };
145
-
146
- const chartGenAgent = await createAgent(
147
- llm,
148
- [chartTool],
149
- 'You excel at generating bar charts. Use the researcher\'s information to generate the charts.',
150
- );
151
-
152
- const chartGenNode = async (
153
- state: AgentStateChannels,
154
- config?: RunnableConfig,
155
- ) => {
156
- const result = await chartGenAgent.invoke(state, config);
157
- return {
158
- messages: [
159
- new HumanMessage({ content: result.output, name: 'ChartGenerator' }),
160
- ],
161
- };
162
- };
163
-
164
- const workflow = new StateGraph({
165
- channels: agentStateChannels,
166
- })
167
- .addNode('researcher', researcherNode)
168
- .addNode('chart_generator', chartGenNode)
169
- .addNode('supervisor', supervisorChain);
170
-
171
- members.forEach((member) => {
172
- workflow.addEdge(member, 'supervisor');
173
- });
174
-
175
- workflow.addConditionalEdges(
176
- 'supervisor',
177
- (x: AgentStateChannels) => x.next,
178
- );
179
-
180
- workflow.addEdge(START, 'supervisor');
181
-
182
- return workflow.compile();
183
- }
184
-
185
- async processStream(
186
- inputs: { messages: BaseMessage[] },
187
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
188
- ) {
189
- if (!this.graph) {
190
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
191
- }
192
- const stream = await this.graph.streamEvents(inputs, config);
193
- for await (const event of stream) {
194
- const handler = this.handlerRegistry.getHandler(event.event);
195
- if (handler) {
196
- handler.handle(event.event, event.data);
197
- }
198
- }
199
- }
200
- }
@@ -1,184 +0,0 @@
1
- // src/collab.ts
2
- import 'dotenv/config';
3
- import { BaseMessage, HumanMessage } from '@langchain/core/messages';
4
- import { END, StateGraphArgs, START, StateGraph } from '@langchain/langgraph';
5
- import { chartTool, tavilyTool } from '@/tools/example';
6
- import { AgentExecutor, createOpenAIToolsAgent } from 'langchain/agents';
7
- import {
8
- ChatPromptTemplate,
9
- MessagesPlaceholder,
10
- } from '@langchain/core/prompts';
11
- import { ChatOpenAI } from '@langchain/openai';
12
- import { Runnable, RunnableConfig } from '@langchain/core/runnables';
13
- import { JsonOutputToolsParser } from 'langchain/output_parsers';
14
- import { HandlerRegistry } from '@/events';
15
-
16
- interface AgentStateChannels {
17
- messages: BaseMessage[];
18
- next: string;
19
- }
20
-
21
- interface Member {
22
- name: string;
23
- systemPrompt: string;
24
- tools: any[];
25
- }
26
-
27
- export class CollaborativeProcessor {
28
- private graph: Runnable | null = null;
29
- private handlerRegistry: HandlerRegistry;
30
- private members: Member[];
31
-
32
- constructor(members: Member[], customHandlers?: Record<string, any>) {
33
- this.members = members;
34
- this.handlerRegistry = new HandlerRegistry();
35
- if (customHandlers) {
36
- for (const [eventType, handler] of Object.entries(customHandlers)) {
37
- this.handlerRegistry.register(eventType, handler);
38
- }
39
- }
40
- }
41
-
42
- async initialize(): Promise<void> {
43
- this.graph = await this.createGraph();
44
- }
45
-
46
- private async createGraph(): Promise<Runnable> {
47
- const agentStateChannels: StateGraphArgs['channels'] = {
48
- messages: {
49
- value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
50
- default: () => [],
51
- },
52
- next: {
53
- value: (x?: string, y?: string) => y ?? x ?? END,
54
- default: () => END,
55
- },
56
- };
57
-
58
- async function createAgent(
59
- llm: ChatOpenAI,
60
- tools: any[],
61
- systemPrompt: string
62
- ): Promise<AgentExecutor> {
63
- const prompt = await ChatPromptTemplate.fromMessages([
64
- ['system', systemPrompt],
65
- new MessagesPlaceholder('messages'),
66
- new MessagesPlaceholder('agent_scratchpad'),
67
- ]);
68
- const agent = await createOpenAIToolsAgent({ llm, tools, prompt });
69
- return new AgentExecutor({ agent, tools });
70
- }
71
-
72
- const memberNames = this.members.map(member => member.name);
73
-
74
- const systemPrompt =
75
- 'You are a supervisor tasked with managing a conversation between the' +
76
- ' following workers: {members}. Given the following user request,' +
77
- ' respond with the worker to act next. Each worker will perform a' +
78
- ' task and respond with their results and status. When finished,' +
79
- ' respond with FINISH.';
80
- const options = [END, ...memberNames];
81
-
82
- const functionDef = {
83
- name: 'route',
84
- description: 'Select the next role.',
85
- parameters: {
86
- title: 'routeSchema',
87
- type: 'object',
88
- properties: {
89
- next: {
90
- title: 'Next',
91
- anyOf: [
92
- { enum: options },
93
- ],
94
- },
95
- },
96
- required: ['next'],
97
- },
98
- };
99
-
100
- const toolDef = {
101
- type: 'function',
102
- function: functionDef,
103
- } as const;
104
-
105
- const prompt = ChatPromptTemplate.fromMessages([
106
- ['system', systemPrompt],
107
- new MessagesPlaceholder('messages'),
108
- [
109
- 'system',
110
- 'Given the conversation above, who should act next?' +
111
- ' Or should we FINISH? Select one of: {options}',
112
- ],
113
- ]);
114
-
115
- const formattedPrompt = await prompt.partial({
116
- options: options.join(', '),
117
- members: memberNames.join(', '),
118
- });
119
-
120
- const llm = new ChatOpenAI({
121
- modelName: 'gpt-4',
122
- temperature: 0,
123
- });
124
-
125
- const supervisorChain = formattedPrompt
126
- .pipe(llm.bindTools(
127
- [toolDef],
128
- {
129
- tool_choice: { 'type': 'function', 'function': { 'name': 'route' } },
130
- },
131
- ))
132
- .pipe(new JsonOutputToolsParser())
133
- .pipe((x) => (x[0].args));
134
-
135
- const workflow = new StateGraph({
136
- channels: agentStateChannels,
137
- });
138
-
139
- // Dynamically create agents and add nodes for each member
140
- for (const member of this.members) {
141
- const agent = await createAgent(llm, member.tools, member.systemPrompt);
142
- const node = async (
143
- state: AgentStateChannels,
144
- config?: RunnableConfig,
145
- ) => {
146
- const result = await agent.invoke(state, config);
147
- return {
148
- messages: [
149
- new HumanMessage({ content: result.output, name: member.name }),
150
- ],
151
- };
152
- };
153
- workflow.addNode(member.name, node);
154
- workflow.addEdge(member.name, 'supervisor');
155
- }
156
-
157
- workflow.addNode('supervisor', supervisorChain);
158
-
159
- workflow.addConditionalEdges(
160
- 'supervisor',
161
- (x: AgentStateChannels) => x.next,
162
- );
163
-
164
- workflow.addEdge(START, 'supervisor');
165
-
166
- return workflow.compile();
167
- }
168
-
169
- async processStream(
170
- inputs: { messages: BaseMessage[] },
171
- config: Partial<RunnableConfig> & { version: 'v1' | 'v2' },
172
- ) {
173
- if (!this.graph) {
174
- throw new Error('CollaborativeProcessor not initialized. Call initialize() first.');
175
- }
176
- const stream = this.graph.streamEvents(inputs, config);
177
- for await (const event of stream) {
178
- const handler = this.handlerRegistry.getHandler(event.event);
179
- if (handler) {
180
- handler.handle(event.event, event.data);
181
- }
182
- }
183
- }
184
- }