@librechat/agents 2.4.74 → 2.4.76
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cjs/llm/anthropic/index.cjs +4 -1
- package/dist/cjs/llm/anthropic/index.cjs.map +1 -1
- package/dist/cjs/llm/ollama/index.cjs +67 -0
- package/dist/cjs/llm/ollama/index.cjs.map +1 -0
- package/dist/cjs/llm/ollama/utils.cjs +158 -0
- package/dist/cjs/llm/ollama/utils.cjs.map +1 -0
- package/dist/cjs/llm/openai/index.cjs +3 -0
- package/dist/cjs/llm/openai/index.cjs.map +1 -1
- package/dist/cjs/llm/openai/utils/index.cjs +1 -3
- package/dist/cjs/llm/openai/utils/index.cjs.map +1 -1
- package/dist/cjs/llm/providers.cjs +2 -2
- package/dist/cjs/llm/providers.cjs.map +1 -1
- package/dist/cjs/llm/text.cjs +14 -3
- package/dist/cjs/llm/text.cjs.map +1 -1
- package/dist/esm/llm/anthropic/index.mjs +4 -1
- package/dist/esm/llm/anthropic/index.mjs.map +1 -1
- package/dist/esm/llm/ollama/index.mjs +65 -0
- package/dist/esm/llm/ollama/index.mjs.map +1 -0
- package/dist/esm/llm/ollama/utils.mjs +155 -0
- package/dist/esm/llm/ollama/utils.mjs.map +1 -0
- package/dist/esm/llm/openai/index.mjs +3 -0
- package/dist/esm/llm/openai/index.mjs.map +1 -1
- package/dist/esm/llm/openai/utils/index.mjs +1 -3
- package/dist/esm/llm/openai/utils/index.mjs.map +1 -1
- package/dist/esm/llm/providers.mjs +1 -1
- package/dist/esm/llm/providers.mjs.map +1 -1
- package/dist/esm/llm/text.mjs +14 -3
- package/dist/esm/llm/text.mjs.map +1 -1
- package/dist/types/llm/ollama/index.d.ts +7 -0
- package/dist/types/llm/ollama/utils.d.ts +7 -0
- package/dist/types/llm/text.d.ts +1 -1
- package/package.json +2 -2
- package/src/llm/anthropic/index.ts +4 -1
- package/src/llm/ollama/index.ts +89 -0
- package/src/llm/ollama/utils.ts +193 -0
- package/src/llm/openai/index.ts +2 -0
- package/src/llm/openai/utils/index.ts +1 -5
- package/src/llm/openai/utils/isReasoningModel.test.ts +90 -0
- package/src/llm/providers.ts +1 -1
- package/src/llm/text.ts +26 -7
- package/src/scripts/simple.ts +1 -1
- package/src/utils/llmConfig.ts +11 -2
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
import {
|
|
2
|
+
AIMessage,
|
|
3
|
+
AIMessageChunk,
|
|
4
|
+
BaseMessage,
|
|
5
|
+
HumanMessage,
|
|
6
|
+
MessageContentText,
|
|
7
|
+
SystemMessage,
|
|
8
|
+
ToolMessage,
|
|
9
|
+
UsageMetadata,
|
|
10
|
+
} from '@langchain/core/messages';
|
|
11
|
+
import type {
|
|
12
|
+
Message as OllamaMessage,
|
|
13
|
+
ToolCall as OllamaToolCall,
|
|
14
|
+
} from 'ollama';
|
|
15
|
+
import { v4 as uuidv4 } from 'uuid';
|
|
16
|
+
|
|
17
|
+
export function convertOllamaMessagesToLangChain(
|
|
18
|
+
messages: OllamaMessage,
|
|
19
|
+
extra?: {
|
|
20
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
21
|
+
responseMetadata?: Record<string, any>;
|
|
22
|
+
usageMetadata?: UsageMetadata;
|
|
23
|
+
}
|
|
24
|
+
): AIMessageChunk {
|
|
25
|
+
const additional_kwargs: BaseMessage['additional_kwargs'] = {};
|
|
26
|
+
if ('thinking' in messages) {
|
|
27
|
+
additional_kwargs.reasoning_content = messages.thinking as string;
|
|
28
|
+
}
|
|
29
|
+
return new AIMessageChunk({
|
|
30
|
+
content: messages.content || '',
|
|
31
|
+
tool_call_chunks: messages.tool_calls?.map((tc) => ({
|
|
32
|
+
name: tc.function.name,
|
|
33
|
+
args: JSON.stringify(tc.function.arguments),
|
|
34
|
+
type: 'tool_call_chunk',
|
|
35
|
+
index: 0,
|
|
36
|
+
id: uuidv4(),
|
|
37
|
+
})),
|
|
38
|
+
response_metadata: extra?.responseMetadata,
|
|
39
|
+
usage_metadata: extra?.usageMetadata,
|
|
40
|
+
additional_kwargs,
|
|
41
|
+
});
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
function extractBase64FromDataUrl(dataUrl: string): string {
|
|
45
|
+
const match = dataUrl.match(/^data:.*?;base64,(.*)$/);
|
|
46
|
+
return match ? match[1] : '';
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
function convertAMessagesToOllama(messages: AIMessage): OllamaMessage[] {
|
|
50
|
+
if (typeof messages.content === 'string') {
|
|
51
|
+
return [
|
|
52
|
+
{
|
|
53
|
+
role: 'assistant',
|
|
54
|
+
content: messages.content,
|
|
55
|
+
},
|
|
56
|
+
];
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
const textFields = messages.content.filter(
|
|
60
|
+
(c) => c.type === 'text' && typeof c.text === 'string'
|
|
61
|
+
);
|
|
62
|
+
const textMessages = (textFields as MessageContentText[]).map((c) => ({
|
|
63
|
+
role: 'assistant',
|
|
64
|
+
content: c.text,
|
|
65
|
+
}));
|
|
66
|
+
let toolCallMsgs: OllamaMessage | undefined;
|
|
67
|
+
|
|
68
|
+
if (
|
|
69
|
+
messages.content.find((c) => c.type === 'tool_use') &&
|
|
70
|
+
messages.tool_calls?.length
|
|
71
|
+
) {
|
|
72
|
+
// `tool_use` content types are accepted if the message has tool calls
|
|
73
|
+
const toolCalls: OllamaToolCall[] | undefined = messages.tool_calls.map(
|
|
74
|
+
(tc) => ({
|
|
75
|
+
id: tc.id,
|
|
76
|
+
type: 'function',
|
|
77
|
+
function: {
|
|
78
|
+
name: tc.name,
|
|
79
|
+
arguments: tc.args,
|
|
80
|
+
},
|
|
81
|
+
})
|
|
82
|
+
);
|
|
83
|
+
|
|
84
|
+
if (toolCalls) {
|
|
85
|
+
toolCallMsgs = {
|
|
86
|
+
role: 'assistant',
|
|
87
|
+
tool_calls: toolCalls,
|
|
88
|
+
content: '',
|
|
89
|
+
};
|
|
90
|
+
}
|
|
91
|
+
} else if (
|
|
92
|
+
messages.content.find((c) => c.type === 'tool_use') &&
|
|
93
|
+
!messages.tool_calls?.length
|
|
94
|
+
) {
|
|
95
|
+
throw new Error(
|
|
96
|
+
'\'tool_use\' content type is not supported without tool calls.'
|
|
97
|
+
);
|
|
98
|
+
}
|
|
99
|
+
|
|
100
|
+
return [...textMessages, ...(toolCallMsgs ? [toolCallMsgs] : [])];
|
|
101
|
+
}
|
|
102
|
+
|
|
103
|
+
function convertHumanGenericMessagesToOllama(
|
|
104
|
+
message: HumanMessage
|
|
105
|
+
): OllamaMessage[] {
|
|
106
|
+
if (typeof message.content === 'string') {
|
|
107
|
+
return [
|
|
108
|
+
{
|
|
109
|
+
role: 'user',
|
|
110
|
+
content: message.content,
|
|
111
|
+
},
|
|
112
|
+
];
|
|
113
|
+
}
|
|
114
|
+
return message.content.map((c) => {
|
|
115
|
+
if (c.type === 'text') {
|
|
116
|
+
return {
|
|
117
|
+
role: 'user',
|
|
118
|
+
content: c.text,
|
|
119
|
+
};
|
|
120
|
+
} else if (c.type === 'image_url') {
|
|
121
|
+
if (typeof c.image_url === 'string') {
|
|
122
|
+
return {
|
|
123
|
+
role: 'user',
|
|
124
|
+
content: '',
|
|
125
|
+
images: [extractBase64FromDataUrl(c.image_url)],
|
|
126
|
+
};
|
|
127
|
+
} else if (c.image_url.url && typeof c.image_url.url === 'string') {
|
|
128
|
+
return {
|
|
129
|
+
role: 'user',
|
|
130
|
+
content: '',
|
|
131
|
+
images: [extractBase64FromDataUrl(c.image_url.url)],
|
|
132
|
+
};
|
|
133
|
+
}
|
|
134
|
+
}
|
|
135
|
+
throw new Error(`Unsupported content type: ${c.type}`);
|
|
136
|
+
});
|
|
137
|
+
}
|
|
138
|
+
|
|
139
|
+
function convertSystemMessageToOllama(message: SystemMessage): OllamaMessage[] {
|
|
140
|
+
if (typeof message.content === 'string') {
|
|
141
|
+
return [
|
|
142
|
+
{
|
|
143
|
+
role: 'system',
|
|
144
|
+
content: message.content,
|
|
145
|
+
},
|
|
146
|
+
];
|
|
147
|
+
} else if (
|
|
148
|
+
message.content.every(
|
|
149
|
+
(c) => c.type === 'text' && typeof c.text === 'string'
|
|
150
|
+
)
|
|
151
|
+
) {
|
|
152
|
+
return (message.content as MessageContentText[]).map((c) => ({
|
|
153
|
+
role: 'system',
|
|
154
|
+
content: c.text,
|
|
155
|
+
}));
|
|
156
|
+
} else {
|
|
157
|
+
throw new Error(
|
|
158
|
+
`Unsupported content type(s): ${message.content
|
|
159
|
+
.map((c) => c.type)
|
|
160
|
+
.join(', ')}`
|
|
161
|
+
);
|
|
162
|
+
}
|
|
163
|
+
}
|
|
164
|
+
|
|
165
|
+
function convertToolMessageToOllama(message: ToolMessage): OllamaMessage[] {
|
|
166
|
+
if (typeof message.content !== 'string') {
|
|
167
|
+
throw new Error('Non string tool message content is not supported');
|
|
168
|
+
}
|
|
169
|
+
return [
|
|
170
|
+
{
|
|
171
|
+
role: 'tool',
|
|
172
|
+
content: message.content,
|
|
173
|
+
},
|
|
174
|
+
];
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
export function convertToOllamaMessages(
|
|
178
|
+
messages: BaseMessage[]
|
|
179
|
+
): OllamaMessage[] {
|
|
180
|
+
return messages.flatMap((msg) => {
|
|
181
|
+
if (['human', 'generic'].includes(msg._getType())) {
|
|
182
|
+
return convertHumanGenericMessagesToOllama(msg);
|
|
183
|
+
} else if (msg._getType() === 'ai') {
|
|
184
|
+
return convertAMessagesToOllama(msg);
|
|
185
|
+
} else if (msg._getType() === 'system') {
|
|
186
|
+
return convertSystemMessageToOllama(msg);
|
|
187
|
+
} else if (msg._getType() === 'tool') {
|
|
188
|
+
return convertToolMessageToOllama(msg as ToolMessage);
|
|
189
|
+
} else {
|
|
190
|
+
throw new Error(`Unsupported message type: ${msg._getType()}`);
|
|
191
|
+
}
|
|
192
|
+
});
|
|
193
|
+
}
|
package/src/llm/openai/index.ts
CHANGED
|
@@ -342,6 +342,8 @@ export class ChatOpenAI extends OriginalChatOpenAI<t.ChatOpenAICallOptions> {
|
|
|
342
342
|
);
|
|
343
343
|
if ('reasoning_content' in delta) {
|
|
344
344
|
chunk.additional_kwargs.reasoning_content = delta.reasoning_content;
|
|
345
|
+
} else if ('reasoning' in delta) {
|
|
346
|
+
chunk.additional_kwargs.reasoning_content = delta.reasoning;
|
|
345
347
|
}
|
|
346
348
|
defaultRole = delta.role ?? defaultRole;
|
|
347
349
|
const newTokenIndices = {
|
|
@@ -648,11 +648,7 @@ export function _convertMessagesToOpenAIResponsesParams(
|
|
|
648
648
|
}
|
|
649
649
|
|
|
650
650
|
export function isReasoningModel(model?: string) {
|
|
651
|
-
return (
|
|
652
|
-
model != null &&
|
|
653
|
-
model !== '' &&
|
|
654
|
-
(/^o\d/.test(model) || /^gpt-[5-9]/.test(model))
|
|
655
|
-
);
|
|
651
|
+
return model != null && model !== '' && /\b(o\d|gpt-[5-9])\b/i.test(model);
|
|
656
652
|
}
|
|
657
653
|
|
|
658
654
|
function _convertOpenAIResponsesMessageToBaseMessage(
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
import { isReasoningModel } from './index';
|
|
2
|
+
|
|
3
|
+
describe('isReasoningModel', () => {
|
|
4
|
+
describe('should return true for reasoning models', () => {
|
|
5
|
+
test('basic o-series models', () => {
|
|
6
|
+
expect(isReasoningModel('o1')).toBe(true);
|
|
7
|
+
expect(isReasoningModel('o2')).toBe(true);
|
|
8
|
+
expect(isReasoningModel('o9')).toBe(true);
|
|
9
|
+
expect(isReasoningModel('o1-preview')).toBe(true);
|
|
10
|
+
expect(isReasoningModel('o1-mini')).toBe(true);
|
|
11
|
+
});
|
|
12
|
+
|
|
13
|
+
test('gpt-5+ models', () => {
|
|
14
|
+
expect(isReasoningModel('gpt-5')).toBe(true);
|
|
15
|
+
expect(isReasoningModel('gpt-6')).toBe(true);
|
|
16
|
+
expect(isReasoningModel('gpt-7')).toBe(true);
|
|
17
|
+
expect(isReasoningModel('gpt-8')).toBe(true);
|
|
18
|
+
expect(isReasoningModel('gpt-9')).toBe(true);
|
|
19
|
+
});
|
|
20
|
+
|
|
21
|
+
test('with provider prefixes', () => {
|
|
22
|
+
expect(isReasoningModel('azure/o1')).toBe(true);
|
|
23
|
+
expect(isReasoningModel('azure/gpt-5')).toBe(true);
|
|
24
|
+
expect(isReasoningModel('openai/o1')).toBe(true);
|
|
25
|
+
expect(isReasoningModel('openai/gpt-5')).toBe(true);
|
|
26
|
+
});
|
|
27
|
+
|
|
28
|
+
test('with custom prefixes', () => {
|
|
29
|
+
expect(isReasoningModel('custom-provider/o1')).toBe(true);
|
|
30
|
+
expect(isReasoningModel('my-deployment/gpt-5')).toBe(true);
|
|
31
|
+
expect(isReasoningModel('company/azure/gpt-5')).toBe(true);
|
|
32
|
+
});
|
|
33
|
+
|
|
34
|
+
test('case insensitive', () => {
|
|
35
|
+
expect(isReasoningModel('O1')).toBe(true);
|
|
36
|
+
expect(isReasoningModel('GPT-5')).toBe(true);
|
|
37
|
+
expect(isReasoningModel('gPt-6')).toBe(true);
|
|
38
|
+
expect(isReasoningModel('Azure/O1')).toBe(true);
|
|
39
|
+
});
|
|
40
|
+
});
|
|
41
|
+
|
|
42
|
+
describe('should return false for non-reasoning models', () => {
|
|
43
|
+
test('older GPT models', () => {
|
|
44
|
+
expect(isReasoningModel('gpt-3.5-turbo')).toBe(false);
|
|
45
|
+
expect(isReasoningModel('gpt-4')).toBe(false);
|
|
46
|
+
expect(isReasoningModel('gpt-4-turbo')).toBe(false);
|
|
47
|
+
expect(isReasoningModel('gpt-4o')).toBe(false);
|
|
48
|
+
expect(isReasoningModel('gpt-4o-mini')).toBe(false);
|
|
49
|
+
});
|
|
50
|
+
|
|
51
|
+
test('other model families', () => {
|
|
52
|
+
expect(isReasoningModel('claude-3')).toBe(false);
|
|
53
|
+
expect(isReasoningModel('claude-3-opus')).toBe(false);
|
|
54
|
+
expect(isReasoningModel('llama-2')).toBe(false);
|
|
55
|
+
expect(isReasoningModel('gemini-pro')).toBe(false);
|
|
56
|
+
});
|
|
57
|
+
|
|
58
|
+
test('partial matches that should not match', () => {
|
|
59
|
+
expect(isReasoningModel('proto1')).toBe(false);
|
|
60
|
+
expect(isReasoningModel('version-o1')).toBe(true);
|
|
61
|
+
expect(isReasoningModel('gpt-40')).toBe(false);
|
|
62
|
+
expect(isReasoningModel('gpt-3.5')).toBe(false);
|
|
63
|
+
});
|
|
64
|
+
|
|
65
|
+
test('empty, null, and undefined', () => {
|
|
66
|
+
expect(isReasoningModel('')).toBe(false);
|
|
67
|
+
expect(isReasoningModel()).toBe(false);
|
|
68
|
+
expect(isReasoningModel(undefined)).toBe(false);
|
|
69
|
+
});
|
|
70
|
+
});
|
|
71
|
+
|
|
72
|
+
describe('edge cases', () => {
|
|
73
|
+
test('with special characters', () => {
|
|
74
|
+
expect(isReasoningModel('deployment_o1_model')).toBe(false);
|
|
75
|
+
expect(isReasoningModel('gpt-5-deployment')).toBe(true);
|
|
76
|
+
expect(isReasoningModel('o1@latest')).toBe(true);
|
|
77
|
+
expect(isReasoningModel('gpt-5.0')).toBe(true);
|
|
78
|
+
});
|
|
79
|
+
|
|
80
|
+
test('word boundary behavior', () => {
|
|
81
|
+
// These should match because o1 and gpt-5 are whole words
|
|
82
|
+
expect(isReasoningModel('use-o1-model')).toBe(true);
|
|
83
|
+
expect(isReasoningModel('model-gpt-5-latest')).toBe(true);
|
|
84
|
+
|
|
85
|
+
// These should not match because o1/gpt-5 are not whole words
|
|
86
|
+
expect(isReasoningModel('proto1model')).toBe(false);
|
|
87
|
+
expect(isReasoningModel('supergpt-50')).toBe(false);
|
|
88
|
+
});
|
|
89
|
+
});
|
|
90
|
+
});
|
package/src/llm/providers.ts
CHANGED
|
@@ -1,5 +1,4 @@
|
|
|
1
1
|
// src/llm/providers.ts
|
|
2
|
-
import { ChatOllama } from '@langchain/ollama';
|
|
3
2
|
import { ChatMistralAI } from '@langchain/mistralai';
|
|
4
3
|
import { ChatBedrockConverse } from '@langchain/aws';
|
|
5
4
|
// import { ChatAnthropic } from '@langchain/anthropic';
|
|
@@ -20,6 +19,7 @@ import { CustomChatGoogleGenerativeAI } from '@/llm/google';
|
|
|
20
19
|
import { CustomAnthropic } from '@/llm/anthropic';
|
|
21
20
|
import { ChatOpenRouter } from '@/llm/openrouter';
|
|
22
21
|
import { ChatVertexAI } from '@/llm/vertexai';
|
|
22
|
+
import { ChatOllama } from '@/llm/ollama';
|
|
23
23
|
import { Providers } from '@/common';
|
|
24
24
|
|
|
25
25
|
export const llmProviders: Partial<ChatModelConstructorMap> = {
|
package/src/llm/text.ts
CHANGED
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
|
|
2
1
|
export interface TextStreamOptions {
|
|
3
2
|
minChunkSize?: number;
|
|
4
3
|
maxChunkSize?: number;
|
|
@@ -30,7 +29,15 @@ export class TextStream {
|
|
|
30
29
|
return Math.floor(Math.random() * (max - min)) + min;
|
|
31
30
|
}
|
|
32
31
|
|
|
33
|
-
private static readonly BOUNDARIES = new Set([
|
|
32
|
+
private static readonly BOUNDARIES = new Set([
|
|
33
|
+
' ',
|
|
34
|
+
'.',
|
|
35
|
+
',',
|
|
36
|
+
'!',
|
|
37
|
+
'?',
|
|
38
|
+
';',
|
|
39
|
+
':',
|
|
40
|
+
]);
|
|
34
41
|
|
|
35
42
|
private findFirstWordBoundary(text: string, minSize: number): number {
|
|
36
43
|
if (minSize >= text.length) return text.length;
|
|
@@ -49,11 +56,17 @@ export class TextStream {
|
|
|
49
56
|
return text.length; // If no boundary found, return entire remaining text
|
|
50
57
|
}
|
|
51
58
|
|
|
52
|
-
async *generateText(
|
|
59
|
+
async *generateText(
|
|
60
|
+
signal?: AbortSignal,
|
|
61
|
+
progressCallback?: ProgressCallback
|
|
62
|
+
): AsyncGenerator<string, void, unknown> {
|
|
53
63
|
const { delay, minChunkSize, maxChunkSize } = this;
|
|
54
64
|
|
|
55
65
|
while (this.currentIndex < this.text.length) {
|
|
56
|
-
|
|
66
|
+
if (signal?.aborted === true) {
|
|
67
|
+
break;
|
|
68
|
+
}
|
|
69
|
+
await new Promise((resolve) => setTimeout(resolve, delay));
|
|
57
70
|
|
|
58
71
|
const remainingText = this.text.slice(this.currentIndex);
|
|
59
72
|
let chunkSize: number;
|
|
@@ -62,14 +75,20 @@ export class TextStream {
|
|
|
62
75
|
chunkSize = this.findFirstWordBoundary(remainingText, minChunkSize);
|
|
63
76
|
} else {
|
|
64
77
|
const remainingChars = remainingText.length;
|
|
65
|
-
chunkSize = Math.min(
|
|
78
|
+
chunkSize = Math.min(
|
|
79
|
+
this.randomInt(minChunkSize, maxChunkSize + 1),
|
|
80
|
+
remainingChars
|
|
81
|
+
);
|
|
66
82
|
}
|
|
67
83
|
|
|
68
|
-
const chunk = this.text.slice(
|
|
84
|
+
const chunk = this.text.slice(
|
|
85
|
+
this.currentIndex,
|
|
86
|
+
this.currentIndex + chunkSize
|
|
87
|
+
);
|
|
69
88
|
progressCallback?.(chunk);
|
|
70
89
|
|
|
71
90
|
yield chunk;
|
|
72
91
|
this.currentIndex += chunkSize;
|
|
73
92
|
}
|
|
74
93
|
}
|
|
75
|
-
}
|
|
94
|
+
}
|
package/src/scripts/simple.ts
CHANGED
|
@@ -128,7 +128,7 @@ async function testStandardStreaming(): Promise<void> {
|
|
|
128
128
|
type: 'standard',
|
|
129
129
|
llmConfig,
|
|
130
130
|
// tools: [new TavilySearchResults()],
|
|
131
|
-
reasoningKey: 'reasoning',
|
|
131
|
+
// reasoningKey: 'reasoning',
|
|
132
132
|
instructions:
|
|
133
133
|
'You are a friendly AI assistant. Always address the user by their name.',
|
|
134
134
|
additional_instructions: `The user's name is ${userName} and they are located in ${location}.`,
|
package/src/utils/llmConfig.ts
CHANGED
|
@@ -56,10 +56,19 @@ export const llmConfigs: Record<string, t.LLMConfig | undefined> = {
|
|
|
56
56
|
},
|
|
57
57
|
[Providers.OLLAMA]: {
|
|
58
58
|
provider: Providers.OLLAMA,
|
|
59
|
-
model: '
|
|
59
|
+
model: 'gpt-oss:20b',
|
|
60
60
|
streaming: true,
|
|
61
61
|
streamUsage: true,
|
|
62
|
-
baseUrl: 'http://
|
|
62
|
+
baseUrl: 'http://localhost:11434',
|
|
63
|
+
},
|
|
64
|
+
lmstudio: {
|
|
65
|
+
provider: Providers.OPENAI,
|
|
66
|
+
model: 'gpt-oss-120b',
|
|
67
|
+
streaming: true,
|
|
68
|
+
streamUsage: true,
|
|
69
|
+
configuration: {
|
|
70
|
+
baseURL: 'http://192.168.254.183:1233/v1',
|
|
71
|
+
},
|
|
63
72
|
},
|
|
64
73
|
[Providers.DEEPSEEK]: {
|
|
65
74
|
provider: Providers.DEEPSEEK,
|