@librechat/agents 2.4.42 → 2.4.44
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cjs/common/enum.cjs +4 -2
- package/dist/cjs/common/enum.cjs.map +1 -1
- package/dist/cjs/graphs/Graph.cjs +2 -2
- package/dist/cjs/graphs/Graph.cjs.map +1 -1
- package/dist/cjs/llm/google/index.cjs +73 -1
- package/dist/cjs/llm/google/index.cjs.map +1 -1
- package/dist/cjs/llm/google/utils/common.cjs +469 -0
- package/dist/cjs/llm/google/utils/common.cjs.map +1 -0
- package/dist/cjs/llm/providers.cjs +3 -3
- package/dist/cjs/llm/providers.cjs.map +1 -1
- package/dist/cjs/llm/vertexai/index.cjs +330 -0
- package/dist/cjs/llm/vertexai/index.cjs.map +1 -0
- package/dist/cjs/stream.cjs +5 -2
- package/dist/cjs/stream.cjs.map +1 -1
- package/dist/esm/common/enum.mjs +4 -2
- package/dist/esm/common/enum.mjs.map +1 -1
- package/dist/esm/graphs/Graph.mjs +2 -2
- package/dist/esm/graphs/Graph.mjs.map +1 -1
- package/dist/esm/llm/google/index.mjs +73 -1
- package/dist/esm/llm/google/index.mjs.map +1 -1
- package/dist/esm/llm/google/utils/common.mjs +463 -0
- package/dist/esm/llm/google/utils/common.mjs.map +1 -0
- package/dist/esm/llm/providers.mjs +2 -2
- package/dist/esm/llm/providers.mjs.map +1 -1
- package/dist/esm/llm/vertexai/index.mjs +328 -0
- package/dist/esm/llm/vertexai/index.mjs.map +1 -0
- package/dist/esm/stream.mjs +5 -2
- package/dist/esm/stream.mjs.map +1 -1
- package/dist/types/common/enum.d.ts +5 -3
- package/dist/types/llm/google/index.d.ts +10 -5
- package/dist/types/llm/google/types.d.ts +32 -0
- package/dist/types/llm/google/utils/common.d.ts +19 -0
- package/dist/types/llm/google/utils/tools.d.ts +10 -0
- package/dist/types/llm/google/utils/zod_to_genai_parameters.d.ts +14 -0
- package/dist/types/llm/vertexai/index.d.ts +293 -0
- package/dist/types/types/llm.d.ts +7 -3
- package/dist/types/types/stream.d.ts +5 -0
- package/package.json +1 -1
- package/src/common/enum.ts +4 -2
- package/src/graphs/Graph.ts +10 -6
- package/src/llm/google/index.ts +118 -8
- package/src/llm/google/types.ts +43 -0
- package/src/llm/google/utils/common.ts +632 -0
- package/src/llm/google/utils/tools.ts +160 -0
- package/src/llm/google/utils/zod_to_genai_parameters.ts +88 -0
- package/src/llm/providers.ts +8 -7
- package/src/llm/vertexai/index.ts +360 -0
- package/src/stream.ts +5 -2
- package/src/types/llm.ts +9 -5
- package/src/types/stream.ts +6 -0
- package/src/utils/llmConfig.ts +2 -2
|
@@ -0,0 +1,293 @@
|
|
|
1
|
+
import { ChatGoogle } from '@langchain/google-gauth';
|
|
2
|
+
import type { GoogleAIModelRequestParams, GoogleAbstractedClient } from '@langchain/google-common';
|
|
3
|
+
import type { VertexAIClientOptions } from '@/types';
|
|
4
|
+
/**
|
|
5
|
+
* Integration with Google Vertex AI chat models.
|
|
6
|
+
*
|
|
7
|
+
* Setup:
|
|
8
|
+
* Install `@langchain/google-vertexai` and set your stringified
|
|
9
|
+
* Vertex AI credentials as an environment variable named `GOOGLE_APPLICATION_CREDENTIALS`.
|
|
10
|
+
*
|
|
11
|
+
* ```bash
|
|
12
|
+
* npm install @langchain/google-vertexai
|
|
13
|
+
* export GOOGLE_APPLICATION_CREDENTIALS="path/to/credentials"
|
|
14
|
+
* ```
|
|
15
|
+
*
|
|
16
|
+
* ## [Constructor args](https://api.js.langchain.com/classes/_langchain_google_vertexai.index.ChatVertexAI.html#constructor.new_ChatVertexAI)
|
|
17
|
+
*
|
|
18
|
+
* ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_common_types.GoogleAIBaseLanguageModelCallOptions.html)
|
|
19
|
+
*
|
|
20
|
+
* Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
|
|
21
|
+
* They can also be passed via `.withConfig`, or the second arg in `.bindTools`, like shown in the examples below:
|
|
22
|
+
*
|
|
23
|
+
* ```typescript
|
|
24
|
+
* // When calling `.withConfig`, call options should be passed via the first argument
|
|
25
|
+
* const llmWithArgsBound = llm.withConfig({
|
|
26
|
+
* stop: ["\n"],
|
|
27
|
+
* tools: [...],
|
|
28
|
+
* });
|
|
29
|
+
*
|
|
30
|
+
* // When calling `.bindTools`, call options should be passed via the second argument
|
|
31
|
+
* const llmWithTools = llm.bindTools(
|
|
32
|
+
* [...],
|
|
33
|
+
* {
|
|
34
|
+
* tool_choice: "auto",
|
|
35
|
+
* }
|
|
36
|
+
* );
|
|
37
|
+
* ```
|
|
38
|
+
*
|
|
39
|
+
* ## Examples
|
|
40
|
+
*
|
|
41
|
+
* <details open>
|
|
42
|
+
* <summary><strong>Instantiate</strong></summary>
|
|
43
|
+
*
|
|
44
|
+
* ```typescript
|
|
45
|
+
* import { ChatVertexAI } from '@langchain/google-vertexai';
|
|
46
|
+
*
|
|
47
|
+
* const llm = new ChatVertexAI({
|
|
48
|
+
* model: "gemini-1.5-pro",
|
|
49
|
+
* temperature: 0,
|
|
50
|
+
* // other params...
|
|
51
|
+
* });
|
|
52
|
+
* ```
|
|
53
|
+
* </details>
|
|
54
|
+
*
|
|
55
|
+
* <br />
|
|
56
|
+
*
|
|
57
|
+
* <details>
|
|
58
|
+
* <summary><strong>Invoking</strong></summary>
|
|
59
|
+
*
|
|
60
|
+
* ```typescript
|
|
61
|
+
* const input = `Translate "I love programming" into French.`;
|
|
62
|
+
*
|
|
63
|
+
* // Models also accept a list of chat messages or a formatted prompt
|
|
64
|
+
* const result = await llm.invoke(input);
|
|
65
|
+
* console.log(result);
|
|
66
|
+
* ```
|
|
67
|
+
*
|
|
68
|
+
* ```txt
|
|
69
|
+
* AIMessageChunk {
|
|
70
|
+
* "content": "\"J'adore programmer\" \n\nHere's why this is the best translation:\n\n* **J'adore** means \"I love\" and conveys a strong passion.\n* **Programmer** is the French verb for \"to program.\"\n\nThis translation is natural and idiomatic in French. \n",
|
|
71
|
+
* "additional_kwargs": {},
|
|
72
|
+
* "response_metadata": {},
|
|
73
|
+
* "tool_calls": [],
|
|
74
|
+
* "tool_call_chunks": [],
|
|
75
|
+
* "invalid_tool_calls": [],
|
|
76
|
+
* "usage_metadata": {
|
|
77
|
+
* "input_tokens": 9,
|
|
78
|
+
* "output_tokens": 63,
|
|
79
|
+
* "total_tokens": 72
|
|
80
|
+
* }
|
|
81
|
+
* }
|
|
82
|
+
* ```
|
|
83
|
+
* </details>
|
|
84
|
+
*
|
|
85
|
+
* <br />
|
|
86
|
+
*
|
|
87
|
+
* <details>
|
|
88
|
+
* <summary><strong>Streaming Chunks</strong></summary>
|
|
89
|
+
*
|
|
90
|
+
* ```typescript
|
|
91
|
+
* for await (const chunk of await llm.stream(input)) {
|
|
92
|
+
* console.log(chunk);
|
|
93
|
+
* }
|
|
94
|
+
* ```
|
|
95
|
+
*
|
|
96
|
+
* ```txt
|
|
97
|
+
* AIMessageChunk {
|
|
98
|
+
* "content": "\"",
|
|
99
|
+
* "additional_kwargs": {},
|
|
100
|
+
* "response_metadata": {},
|
|
101
|
+
* "tool_calls": [],
|
|
102
|
+
* "tool_call_chunks": [],
|
|
103
|
+
* "invalid_tool_calls": []
|
|
104
|
+
* }
|
|
105
|
+
* AIMessageChunk {
|
|
106
|
+
* "content": "J'adore programmer\" \n",
|
|
107
|
+
* "additional_kwargs": {},
|
|
108
|
+
* "response_metadata": {},
|
|
109
|
+
* "tool_calls": [],
|
|
110
|
+
* "tool_call_chunks": [],
|
|
111
|
+
* "invalid_tool_calls": []
|
|
112
|
+
* }
|
|
113
|
+
* AIMessageChunk {
|
|
114
|
+
* "content": "",
|
|
115
|
+
* "additional_kwargs": {},
|
|
116
|
+
* "response_metadata": {},
|
|
117
|
+
* "tool_calls": [],
|
|
118
|
+
* "tool_call_chunks": [],
|
|
119
|
+
* "invalid_tool_calls": []
|
|
120
|
+
* }
|
|
121
|
+
* AIMessageChunk {
|
|
122
|
+
* "content": "",
|
|
123
|
+
* "additional_kwargs": {},
|
|
124
|
+
* "response_metadata": {
|
|
125
|
+
* "finishReason": "stop"
|
|
126
|
+
* },
|
|
127
|
+
* "tool_calls": [],
|
|
128
|
+
* "tool_call_chunks": [],
|
|
129
|
+
* "invalid_tool_calls": [],
|
|
130
|
+
* "usage_metadata": {
|
|
131
|
+
* "input_tokens": 9,
|
|
132
|
+
* "output_tokens": 8,
|
|
133
|
+
* "total_tokens": 17
|
|
134
|
+
* }
|
|
135
|
+
* }
|
|
136
|
+
* ```
|
|
137
|
+
* </details>
|
|
138
|
+
*
|
|
139
|
+
* <br />
|
|
140
|
+
*
|
|
141
|
+
* <details>
|
|
142
|
+
* <summary><strong>Aggregate Streamed Chunks</strong></summary>
|
|
143
|
+
*
|
|
144
|
+
* ```typescript
|
|
145
|
+
* import { AIMessageChunk } from '@langchain/core/messages';
|
|
146
|
+
* import { concat } from '@langchain/core/utils/stream';
|
|
147
|
+
*
|
|
148
|
+
* const stream = await llm.stream(input);
|
|
149
|
+
* let full: AIMessageChunk | undefined;
|
|
150
|
+
* for await (const chunk of stream) {
|
|
151
|
+
* full = !full ? chunk : concat(full, chunk);
|
|
152
|
+
* }
|
|
153
|
+
* console.log(full);
|
|
154
|
+
* ```
|
|
155
|
+
*
|
|
156
|
+
* ```txt
|
|
157
|
+
* AIMessageChunk {
|
|
158
|
+
* "content": "\"J'adore programmer\" \n",
|
|
159
|
+
* "additional_kwargs": {},
|
|
160
|
+
* "response_metadata": {
|
|
161
|
+
* "finishReason": "stop"
|
|
162
|
+
* },
|
|
163
|
+
* "tool_calls": [],
|
|
164
|
+
* "tool_call_chunks": [],
|
|
165
|
+
* "invalid_tool_calls": [],
|
|
166
|
+
* "usage_metadata": {
|
|
167
|
+
* "input_tokens": 9,
|
|
168
|
+
* "output_tokens": 8,
|
|
169
|
+
* "total_tokens": 17
|
|
170
|
+
* }
|
|
171
|
+
* }
|
|
172
|
+
* ```
|
|
173
|
+
* </details>
|
|
174
|
+
*
|
|
175
|
+
* <br />
|
|
176
|
+
*
|
|
177
|
+
* <details>
|
|
178
|
+
* <summary><strong>Bind tools</strong></summary>
|
|
179
|
+
*
|
|
180
|
+
* ```typescript
|
|
181
|
+
* import { z } from 'zod';
|
|
182
|
+
*
|
|
183
|
+
* const GetWeather = {
|
|
184
|
+
* name: "GetWeather",
|
|
185
|
+
* description: "Get the current weather in a given location",
|
|
186
|
+
* schema: z.object({
|
|
187
|
+
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
|
|
188
|
+
* }),
|
|
189
|
+
* }
|
|
190
|
+
*
|
|
191
|
+
* const GetPopulation = {
|
|
192
|
+
* name: "GetPopulation",
|
|
193
|
+
* description: "Get the current population in a given location",
|
|
194
|
+
* schema: z.object({
|
|
195
|
+
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
|
|
196
|
+
* }),
|
|
197
|
+
* }
|
|
198
|
+
*
|
|
199
|
+
* const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
|
|
200
|
+
* const aiMsg = await llmWithTools.invoke(
|
|
201
|
+
* "Which city is hotter today and which is bigger: LA or NY?"
|
|
202
|
+
* );
|
|
203
|
+
* console.log(aiMsg.tool_calls);
|
|
204
|
+
* ```
|
|
205
|
+
*
|
|
206
|
+
* ```txt
|
|
207
|
+
* [
|
|
208
|
+
* {
|
|
209
|
+
* name: 'GetPopulation',
|
|
210
|
+
* args: { location: 'New York City, NY' },
|
|
211
|
+
* id: '33c1c1f47e2f492799c77d2800a43912',
|
|
212
|
+
* type: 'tool_call'
|
|
213
|
+
* }
|
|
214
|
+
* ]
|
|
215
|
+
* ```
|
|
216
|
+
* </details>
|
|
217
|
+
*
|
|
218
|
+
* <br />
|
|
219
|
+
*
|
|
220
|
+
* <details>
|
|
221
|
+
* <summary><strong>Structured Output</strong></summary>
|
|
222
|
+
*
|
|
223
|
+
* ```typescript
|
|
224
|
+
* import { z } from 'zod';
|
|
225
|
+
*
|
|
226
|
+
* const Joke = z.object({
|
|
227
|
+
* setup: z.string().describe("The setup of the joke"),
|
|
228
|
+
* punchline: z.string().describe("The punchline to the joke"),
|
|
229
|
+
* rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
|
|
230
|
+
* }).describe('Joke to tell user.');
|
|
231
|
+
*
|
|
232
|
+
* const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
|
|
233
|
+
* const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
|
|
234
|
+
* console.log(jokeResult);
|
|
235
|
+
* ```
|
|
236
|
+
*
|
|
237
|
+
* ```txt
|
|
238
|
+
* {
|
|
239
|
+
* setup: 'What do you call a cat that loves to bowl?',
|
|
240
|
+
* punchline: 'An alley cat!'
|
|
241
|
+
* }
|
|
242
|
+
* ```
|
|
243
|
+
* </details>
|
|
244
|
+
*
|
|
245
|
+
* <br />
|
|
246
|
+
*
|
|
247
|
+
* <details>
|
|
248
|
+
* <summary><strong>Usage Metadata</strong></summary>
|
|
249
|
+
*
|
|
250
|
+
* ```typescript
|
|
251
|
+
* const aiMsgForMetadata = await llm.invoke(input);
|
|
252
|
+
* console.log(aiMsgForMetadata.usage_metadata);
|
|
253
|
+
* ```
|
|
254
|
+
*
|
|
255
|
+
* ```txt
|
|
256
|
+
* { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
|
|
257
|
+
* ```
|
|
258
|
+
* </details>
|
|
259
|
+
*
|
|
260
|
+
* <br />
|
|
261
|
+
*
|
|
262
|
+
* <details>
|
|
263
|
+
* <summary><strong>Stream Usage Metadata</strong></summary>
|
|
264
|
+
*
|
|
265
|
+
* ```typescript
|
|
266
|
+
* const streamForMetadata = await llm.stream(
|
|
267
|
+
* input,
|
|
268
|
+
* {
|
|
269
|
+
* streamUsage: true
|
|
270
|
+
* }
|
|
271
|
+
* );
|
|
272
|
+
* let fullForMetadata: AIMessageChunk | undefined;
|
|
273
|
+
* for await (const chunk of streamForMetadata) {
|
|
274
|
+
* fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);
|
|
275
|
+
* }
|
|
276
|
+
* console.log(fullForMetadata?.usage_metadata);
|
|
277
|
+
* ```
|
|
278
|
+
*
|
|
279
|
+
* ```txt
|
|
280
|
+
* { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
|
|
281
|
+
* ```
|
|
282
|
+
* </details>
|
|
283
|
+
*
|
|
284
|
+
* <br />
|
|
285
|
+
*/
|
|
286
|
+
export declare class ChatVertexAI extends ChatGoogle {
|
|
287
|
+
lc_namespace: string[];
|
|
288
|
+
dynamicThinkingBudget: boolean;
|
|
289
|
+
static lc_name(): 'ChatVertexAI';
|
|
290
|
+
constructor(fields?: VertexAIClientOptions);
|
|
291
|
+
invocationParams(options?: this['ParsedCallOptions'] | undefined): GoogleAIModelRequestParams;
|
|
292
|
+
buildConnection(fields: VertexAIClientOptions, client: GoogleAbstractedClient): void;
|
|
293
|
+
}
|
|
@@ -2,12 +2,12 @@ import { ChatOllama } from '@langchain/ollama';
|
|
|
2
2
|
import { ChatAnthropic } from '@langchain/anthropic';
|
|
3
3
|
import { ChatMistralAI } from '@langchain/mistralai';
|
|
4
4
|
import { ChatBedrockConverse } from '@langchain/aws';
|
|
5
|
-
import { ChatVertexAI } from '@langchain/google-vertexai';
|
|
6
5
|
import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
|
|
7
6
|
import type { BindToolsInput, BaseChatModelParams } from '@langchain/core/language_models/chat_models';
|
|
8
7
|
import type { OpenAIChatInput, ChatOpenAIFields, AzureOpenAIInput, ClientOptions as OAIClientOptions } from '@langchain/openai';
|
|
9
8
|
import type { BedrockChatFields } from '@langchain/community/chat_models/bedrock/web';
|
|
10
9
|
import type { GoogleGenerativeAIChatInput } from '@langchain/google-genai';
|
|
10
|
+
import type { GeminiGenerationConfig } from '@langchain/google-common';
|
|
11
11
|
import type { ChatVertexAIInput } from '@langchain/google-vertexai';
|
|
12
12
|
import type { ChatDeepSeekCallOptions } from '@langchain/deepseek';
|
|
13
13
|
import type { ChatOpenRouterCallOptions } from '@/llm/openrouter';
|
|
@@ -20,9 +20,10 @@ import type { Runnable } from '@langchain/core/runnables';
|
|
|
20
20
|
import type { ChatOllamaInput } from '@langchain/ollama';
|
|
21
21
|
import type { OpenAI as OpenAIClient } from 'openai';
|
|
22
22
|
import type { ChatXAIInput } from '@langchain/xai';
|
|
23
|
-
import {
|
|
23
|
+
import { AzureChatOpenAI, ChatDeepSeek, ChatOpenAI, ChatXAI } from '@/llm/openai';
|
|
24
24
|
import { CustomChatGoogleGenerativeAI } from '@/llm/google';
|
|
25
25
|
import { ChatOpenRouter } from '@/llm/openrouter';
|
|
26
|
+
import { ChatVertexAI } from '@/llm/vertexai';
|
|
26
27
|
import { Providers } from '@/common';
|
|
27
28
|
export type AzureClientOptions = Partial<OpenAIChatInput> & Partial<AzureOpenAIInput> & {
|
|
28
29
|
openAIApiKey?: string;
|
|
@@ -43,7 +44,9 @@ export type OpenAIClientOptions = ChatOpenAIFields;
|
|
|
43
44
|
export type OllamaClientOptions = ChatOllamaInput;
|
|
44
45
|
export type AnthropicClientOptions = AnthropicInput;
|
|
45
46
|
export type MistralAIClientOptions = ChatMistralAIInput;
|
|
46
|
-
export type VertexAIClientOptions = ChatVertexAIInput
|
|
47
|
+
export type VertexAIClientOptions = ChatVertexAIInput & {
|
|
48
|
+
includeThoughts?: boolean;
|
|
49
|
+
};
|
|
47
50
|
export type BedrockClientOptions = BedrockChatFields;
|
|
48
51
|
export type BedrockAnthropicInput = ChatBedrockConverseInput & {
|
|
49
52
|
additionalModelRequestFields?: ChatBedrockConverseInput['additionalModelRequestFields'] & AnthropicReasoning;
|
|
@@ -51,6 +54,7 @@ export type BedrockAnthropicInput = ChatBedrockConverseInput & {
|
|
|
51
54
|
export type BedrockConverseClientOptions = ChatBedrockConverseInput;
|
|
52
55
|
export type GoogleClientOptions = GoogleGenerativeAIChatInput & {
|
|
53
56
|
customHeaders?: RequestOptions['customHeaders'];
|
|
57
|
+
thinkingConfig?: GeminiGenerationConfig['thinkingConfig'];
|
|
54
58
|
};
|
|
55
59
|
export type DeepSeekClientOptions = ChatDeepSeekCallOptions;
|
|
56
60
|
export type XAIClientOptions = ChatXAIInput;
|
|
@@ -191,6 +191,11 @@ export type ReasoningContentText = {
|
|
|
191
191
|
type: ContentTypes.THINK;
|
|
192
192
|
think: string;
|
|
193
193
|
};
|
|
194
|
+
/** Vertex AI / Google Common - Reasoning Content Block Format */
|
|
195
|
+
export type GoogleReasoningContentText = {
|
|
196
|
+
type: ContentTypes.REASONING;
|
|
197
|
+
reasoning: string;
|
|
198
|
+
};
|
|
194
199
|
/** Anthropic's Reasoning Content Block Format */
|
|
195
200
|
export type ThinkingContentText = {
|
|
196
201
|
type: ContentTypes.THINKING;
|
package/package.json
CHANGED
package/src/common/enum.ts
CHANGED
|
@@ -117,10 +117,12 @@ export enum ContentTypes {
|
|
|
117
117
|
IMAGE_FILE = 'image_file',
|
|
118
118
|
/** Anthropic */
|
|
119
119
|
THINKING = 'thinking',
|
|
120
|
-
/**
|
|
121
|
-
|
|
120
|
+
/** Vertex AI / Google Common */
|
|
121
|
+
REASONING = 'reasoning',
|
|
122
122
|
/** Multi-Agent Switch */
|
|
123
123
|
AGENT_UPDATE = 'agent_update',
|
|
124
|
+
/** Bedrock */
|
|
125
|
+
REASONING_CONTENT = 'reasoning_content',
|
|
124
126
|
}
|
|
125
127
|
|
|
126
128
|
export enum ToolCallTypes {
|
package/src/graphs/Graph.ts
CHANGED
|
@@ -426,13 +426,17 @@ export class StandardGraph extends Graph<t.BaseGraphState, GraphNode> {
|
|
|
426
426
|
omitOptions?: Set<string>;
|
|
427
427
|
}): t.ChatModelInstance {
|
|
428
428
|
const ChatModelClass = getChatModelClass(provider);
|
|
429
|
-
const options =
|
|
430
|
-
|
|
431
|
-
Object.
|
|
432
|
-
|
|
429
|
+
const options =
|
|
430
|
+
omitOptions && clientOptions == null
|
|
431
|
+
? Object.assign(
|
|
432
|
+
Object.fromEntries(
|
|
433
|
+
Object.entries(this.clientOptions).filter(
|
|
434
|
+
([key]) => !omitOptions.has(key)
|
|
435
|
+
)
|
|
436
|
+
),
|
|
437
|
+
clientOptions
|
|
433
438
|
)
|
|
434
|
-
|
|
435
|
-
: (clientOptions ?? this.clientOptions);
|
|
439
|
+
: (clientOptions ?? this.clientOptions);
|
|
436
440
|
return new ChatModelClass(options);
|
|
437
441
|
}
|
|
438
442
|
|
package/src/llm/google/index.ts
CHANGED
|
@@ -1,15 +1,25 @@
|
|
|
1
|
+
/* eslint-disable @typescript-eslint/ban-ts-comment */
|
|
1
2
|
import { ChatGoogleGenerativeAI } from '@langchain/google-genai';
|
|
2
3
|
import { getEnvironmentVariable } from '@langchain/core/utils/env';
|
|
3
4
|
import { GoogleGenerativeAI as GenerativeAI } from '@google/generative-ai';
|
|
4
|
-
import type {
|
|
5
|
-
|
|
5
|
+
import type {
|
|
6
|
+
GenerateContentRequest,
|
|
7
|
+
SafetySetting,
|
|
8
|
+
} from '@google/generative-ai';
|
|
9
|
+
import type { CallbackManagerForLLMRun } from '@langchain/core/callbacks/manager';
|
|
10
|
+
import type { BaseMessage, UsageMetadata } from '@langchain/core/messages';
|
|
11
|
+
import type { GeminiGenerationConfig } from '@langchain/google-common';
|
|
12
|
+
import type { ChatGenerationChunk } from '@langchain/core/outputs';
|
|
13
|
+
import type { GeminiApiUsageMetadata } from './types';
|
|
14
|
+
import type { GoogleClientOptions } from '@/types';
|
|
15
|
+
import {
|
|
16
|
+
convertResponseContentToChatGenerationChunk,
|
|
17
|
+
convertBaseMessagesToContent,
|
|
18
|
+
} from './utils/common';
|
|
6
19
|
|
|
7
20
|
export class CustomChatGoogleGenerativeAI extends ChatGoogleGenerativeAI {
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
customHeaders?: RequestOptions['customHeaders'];
|
|
11
|
-
}
|
|
12
|
-
) {
|
|
21
|
+
thinkingConfig?: GeminiGenerationConfig['thinkingConfig'];
|
|
22
|
+
constructor(fields: GoogleClientOptions) {
|
|
13
23
|
super(fields);
|
|
14
24
|
|
|
15
25
|
this.model = fields.model.replace(/^models\//, '');
|
|
@@ -66,10 +76,11 @@ export class CustomChatGoogleGenerativeAI extends ChatGoogleGenerativeAI {
|
|
|
66
76
|
}
|
|
67
77
|
}
|
|
68
78
|
|
|
79
|
+
this.thinkingConfig = fields.thinkingConfig ?? this.thinkingConfig;
|
|
80
|
+
|
|
69
81
|
this.streaming = fields.streaming ?? this.streaming;
|
|
70
82
|
this.json = fields.json;
|
|
71
83
|
|
|
72
|
-
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
|
|
73
84
|
// @ts-ignore - Accessing private property from parent class
|
|
74
85
|
this.client = new GenerativeAI(this.apiKey).getGenerativeModel(
|
|
75
86
|
{
|
|
@@ -94,4 +105,103 @@ export class CustomChatGoogleGenerativeAI extends ChatGoogleGenerativeAI {
|
|
|
94
105
|
);
|
|
95
106
|
this.streamUsage = fields.streamUsage ?? this.streamUsage;
|
|
96
107
|
}
|
|
108
|
+
|
|
109
|
+
invocationParams(
|
|
110
|
+
options?: this['ParsedCallOptions']
|
|
111
|
+
): Omit<GenerateContentRequest, 'contents'> {
|
|
112
|
+
const params = super.invocationParams(options);
|
|
113
|
+
return {
|
|
114
|
+
...params,
|
|
115
|
+
generationConfig: {
|
|
116
|
+
...params.generationConfig,
|
|
117
|
+
|
|
118
|
+
/** @ts-ignore */
|
|
119
|
+
thinkingConfig: this.thinkingConfig,
|
|
120
|
+
},
|
|
121
|
+
};
|
|
122
|
+
}
|
|
123
|
+
|
|
124
|
+
async *_streamResponseChunks(
|
|
125
|
+
messages: BaseMessage[],
|
|
126
|
+
options: this['ParsedCallOptions'],
|
|
127
|
+
runManager?: CallbackManagerForLLMRun
|
|
128
|
+
): AsyncGenerator<ChatGenerationChunk> {
|
|
129
|
+
const prompt = convertBaseMessagesToContent(
|
|
130
|
+
messages,
|
|
131
|
+
this._isMultimodalModel,
|
|
132
|
+
this.useSystemInstruction
|
|
133
|
+
);
|
|
134
|
+
let actualPrompt = prompt;
|
|
135
|
+
if (prompt[0].role === 'system') {
|
|
136
|
+
const [systemInstruction] = prompt;
|
|
137
|
+
/** @ts-ignore */
|
|
138
|
+
this.client.systemInstruction = systemInstruction;
|
|
139
|
+
actualPrompt = prompt.slice(1);
|
|
140
|
+
}
|
|
141
|
+
const parameters = this.invocationParams(options);
|
|
142
|
+
const request = {
|
|
143
|
+
...parameters,
|
|
144
|
+
contents: actualPrompt,
|
|
145
|
+
};
|
|
146
|
+
const stream = await this.caller.callWithOptions(
|
|
147
|
+
{ signal: options.signal },
|
|
148
|
+
async () => {
|
|
149
|
+
/** @ts-ignore */
|
|
150
|
+
const { stream } = await this.client.generateContentStream(request);
|
|
151
|
+
return stream;
|
|
152
|
+
}
|
|
153
|
+
);
|
|
154
|
+
|
|
155
|
+
let usageMetadata: UsageMetadata | undefined;
|
|
156
|
+
let index = 0;
|
|
157
|
+
for await (const response of stream) {
|
|
158
|
+
if (
|
|
159
|
+
'usageMetadata' in response &&
|
|
160
|
+
this.streamUsage !== false &&
|
|
161
|
+
options.streamUsage !== false
|
|
162
|
+
) {
|
|
163
|
+
const genAIUsageMetadata = response.usageMetadata as
|
|
164
|
+
| GeminiApiUsageMetadata
|
|
165
|
+
| undefined;
|
|
166
|
+
const output_tokens =
|
|
167
|
+
(genAIUsageMetadata?.candidatesTokenCount ?? 0) +
|
|
168
|
+
(genAIUsageMetadata?.thoughtsTokenCount ?? 0);
|
|
169
|
+
if (!usageMetadata) {
|
|
170
|
+
usageMetadata = {
|
|
171
|
+
input_tokens: genAIUsageMetadata?.promptTokenCount ?? 0,
|
|
172
|
+
output_tokens,
|
|
173
|
+
total_tokens: genAIUsageMetadata?.totalTokenCount ?? 0,
|
|
174
|
+
};
|
|
175
|
+
} else {
|
|
176
|
+
// Under the hood, LangChain combines the prompt tokens. Google returns the updated
|
|
177
|
+
// total each time, so we need to find the difference between the tokens.
|
|
178
|
+
const outputTokenDiff = output_tokens - usageMetadata.output_tokens;
|
|
179
|
+
usageMetadata = {
|
|
180
|
+
input_tokens: 0,
|
|
181
|
+
output_tokens: outputTokenDiff,
|
|
182
|
+
total_tokens: outputTokenDiff,
|
|
183
|
+
};
|
|
184
|
+
}
|
|
185
|
+
}
|
|
186
|
+
|
|
187
|
+
const chunk = convertResponseContentToChatGenerationChunk(response, {
|
|
188
|
+
usageMetadata,
|
|
189
|
+
index,
|
|
190
|
+
});
|
|
191
|
+
index += 1;
|
|
192
|
+
if (!chunk) {
|
|
193
|
+
continue;
|
|
194
|
+
}
|
|
195
|
+
|
|
196
|
+
yield chunk;
|
|
197
|
+
await runManager?.handleLLMNewToken(
|
|
198
|
+
chunk.text || '',
|
|
199
|
+
undefined,
|
|
200
|
+
undefined,
|
|
201
|
+
undefined,
|
|
202
|
+
undefined,
|
|
203
|
+
{ chunk }
|
|
204
|
+
);
|
|
205
|
+
}
|
|
206
|
+
}
|
|
97
207
|
}
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
import {
|
|
2
|
+
CodeExecutionTool,
|
|
3
|
+
FunctionDeclarationsTool as GoogleGenerativeAIFunctionDeclarationsTool,
|
|
4
|
+
GoogleSearchRetrievalTool,
|
|
5
|
+
} from '@google/generative-ai';
|
|
6
|
+
import { BindToolsInput } from '@langchain/core/language_models/chat_models';
|
|
7
|
+
|
|
8
|
+
export type GoogleGenerativeAIToolType =
|
|
9
|
+
| BindToolsInput
|
|
10
|
+
| GoogleGenerativeAIFunctionDeclarationsTool
|
|
11
|
+
| CodeExecutionTool
|
|
12
|
+
| GoogleSearchRetrievalTool;
|
|
13
|
+
|
|
14
|
+
/** Enum for content modality types */
|
|
15
|
+
enum Modality {
|
|
16
|
+
MODALITY_UNSPECIFIED = 'MODALITY_UNSPECIFIED',
|
|
17
|
+
TEXT = 'TEXT',
|
|
18
|
+
IMAGE = 'IMAGE',
|
|
19
|
+
VIDEO = 'VIDEO',
|
|
20
|
+
AUDIO = 'AUDIO',
|
|
21
|
+
DOCUMENT = 'DOCUMENT',
|
|
22
|
+
}
|
|
23
|
+
|
|
24
|
+
/** Interface for modality token count */
|
|
25
|
+
interface ModalityTokenCount {
|
|
26
|
+
modality: Modality;
|
|
27
|
+
tokenCount: number;
|
|
28
|
+
}
|
|
29
|
+
|
|
30
|
+
/** Main interface for Gemini API usage metadata */
|
|
31
|
+
export interface GeminiApiUsageMetadata {
|
|
32
|
+
promptTokenCount?: number;
|
|
33
|
+
totalTokenCount?: number;
|
|
34
|
+
thoughtsTokenCount?: number;
|
|
35
|
+
candidatesTokenCount?: number;
|
|
36
|
+
toolUsePromptTokenCount?: number;
|
|
37
|
+
cachedContentTokenCount?: number;
|
|
38
|
+
promptTokensDetails: ModalityTokenCount[];
|
|
39
|
+
candidatesTokensDetails?: ModalityTokenCount[];
|
|
40
|
+
cacheTokensDetails?: ModalityTokenCount[];
|
|
41
|
+
toolUsePromptTokensDetails?: ModalityTokenCount[];
|
|
42
|
+
trafficType?: string;
|
|
43
|
+
}
|