@librechat/agents 1.8.1 → 1.8.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,13 +3,14 @@
3
3
  var openai = require('@langchain/openai');
4
4
  var ollama = require('@langchain/ollama');
5
5
  var aws = require('@langchain/aws');
6
+ var anthropic = require('@langchain/anthropic');
6
7
  var mistralai = require('@langchain/mistralai');
7
8
  var googleVertexai = require('@langchain/google-vertexai');
8
9
  var web = require('@langchain/community/chat_models/bedrock/web');
9
10
  var _enum = require('../common/enum.cjs');
10
- var llm = require('./anthropic/llm.cjs');
11
11
 
12
12
  // src/llm/providers.ts
13
+ // import { CustomAnthropic } from '@/llm/anthropic/llm';
13
14
  const llmProviders = {
14
15
  [_enum.Providers.OPENAI]: openai.ChatOpenAI,
15
16
  [_enum.Providers.OLLAMA]: ollama.ChatOllama,
@@ -17,8 +18,8 @@ const llmProviders = {
17
18
  [_enum.Providers.BEDROCK_LEGACY]: web.BedrockChat,
18
19
  [_enum.Providers.MISTRALAI]: mistralai.ChatMistralAI,
19
20
  [_enum.Providers.BEDROCK]: aws.ChatBedrockConverse,
20
- [_enum.Providers.ANTHROPIC]: llm.CustomAnthropic,
21
21
  // [Providers.ANTHROPIC]: CustomAnthropic,
22
+ [_enum.Providers.ANTHROPIC]: anthropic.ChatAnthropic,
22
23
  };
23
24
  const manualToolStreamProviders = new Set([_enum.Providers.ANTHROPIC, _enum.Providers.BEDROCK, _enum.Providers.OLLAMA]);
24
25
  const getChatModelClass = (provider) => {
@@ -1 +1 @@
1
- {"version":3,"file":"providers.cjs","sources":["../../../src/llm/providers.ts"],"sourcesContent":["// src/llm/providers.ts\nimport { ChatOpenAI } from '@langchain/openai';\nimport { ChatOllama } from '@langchain/ollama';\nimport { ChatBedrockConverse } from '@langchain/aws';\n// import { ChatAnthropic } from '@langchain/anthropic';\nimport { ChatMistralAI } from '@langchain/mistralai';\nimport { ChatVertexAI } from '@langchain/google-vertexai';\nimport { BedrockChat } from '@langchain/community/chat_models/bedrock/web';\nimport type { ChatModelConstructorMap, ProviderOptionsMap, ChatModelMap } from '@/types';\nimport { Providers } from '@/common';\nimport { CustomAnthropic } from '@/llm/anthropic/llm';\n\nexport const llmProviders: Partial<ChatModelConstructorMap> = {\n [Providers.OPENAI]: ChatOpenAI,\n [Providers.OLLAMA]: ChatOllama,\n [Providers.VERTEXAI]: ChatVertexAI,\n [Providers.BEDROCK_LEGACY]: BedrockChat,\n [Providers.MISTRALAI]: ChatMistralAI,\n [Providers.BEDROCK]: ChatBedrockConverse,\n [Providers.ANTHROPIC]: CustomAnthropic,\n // [Providers.ANTHROPIC]: CustomAnthropic,\n};\n\nexport const manualToolStreamProviders = new Set<Providers | string>([Providers.ANTHROPIC, Providers.BEDROCK, Providers.OLLAMA]);\n\nexport const getChatModelClass = <P extends Providers>(\n provider: P\n): new (config: ProviderOptionsMap[P]) => ChatModelMap[P] => {\n const ChatModelClass = llmProviders[provider];\n if (!ChatModelClass) {\n throw new Error(`Unsupported LLM provider: ${provider}`);\n }\n\n return ChatModelClass;\n};"],"names":["Providers","ChatOpenAI","ChatOllama","ChatVertexAI","BedrockChat","ChatMistralAI","ChatBedrockConverse","CustomAnthropic"],"mappings":";;;;;;;;;;;AAAA;AAYa,MAAA,YAAY,GAAqC;AAC5D,IAAA,CAACA,eAAS,CAAC,MAAM,GAAGC,iBAAU;AAC9B,IAAA,CAACD,eAAS,CAAC,MAAM,GAAGE,iBAAU;AAC9B,IAAA,CAACF,eAAS,CAAC,QAAQ,GAAGG,2BAAY;AAClC,IAAA,CAACH,eAAS,CAAC,cAAc,GAAGI,eAAW;AACvC,IAAA,CAACJ,eAAS,CAAC,SAAS,GAAGK,uBAAa;AACpC,IAAA,CAACL,eAAS,CAAC,OAAO,GAAGM,uBAAmB;AACxC,IAAA,CAACN,eAAS,CAAC,SAAS,GAAGO,mBAAe;;EAEtC;MAEW,yBAAyB,GAAG,IAAI,GAAG,CAAqB,CAACP,eAAS,CAAC,SAAS,EAAEA,eAAS,CAAC,OAAO,EAAEA,eAAS,CAAC,MAAM,CAAC,EAAE;AAEpH,MAAA,iBAAiB,GAAG,CAC/B,QAAW,KAC+C;AAC1D,IAAA,MAAM,cAAc,GAAG,YAAY,CAAC,QAAQ,CAAC,CAAC;IAC9C,IAAI,CAAC,cAAc,EAAE;AACnB,QAAA,MAAM,IAAI,KAAK,CAAC,6BAA6B,QAAQ,CAAA,CAAE,CAAC,CAAC;KAC1D;AAED,IAAA,OAAO,cAAc,CAAC;AACxB;;;;;;"}
1
+ {"version":3,"file":"providers.cjs","sources":["../../../src/llm/providers.ts"],"sourcesContent":["// src/llm/providers.ts\nimport { ChatOpenAI } from '@langchain/openai';\nimport { ChatOllama } from '@langchain/ollama';\nimport { ChatBedrockConverse } from '@langchain/aws';\nimport { ChatAnthropic } from '@langchain/anthropic';\nimport { ChatMistralAI } from '@langchain/mistralai';\nimport { ChatVertexAI } from '@langchain/google-vertexai';\nimport { BedrockChat } from '@langchain/community/chat_models/bedrock/web';\nimport type { ChatModelConstructorMap, ProviderOptionsMap, ChatModelMap } from '@/types';\nimport { Providers } from '@/common';\n// import { CustomAnthropic } from '@/llm/anthropic/llm';\n\nexport const llmProviders: Partial<ChatModelConstructorMap> = {\n [Providers.OPENAI]: ChatOpenAI,\n [Providers.OLLAMA]: ChatOllama,\n [Providers.VERTEXAI]: ChatVertexAI,\n [Providers.BEDROCK_LEGACY]: BedrockChat,\n [Providers.MISTRALAI]: ChatMistralAI,\n [Providers.BEDROCK]: ChatBedrockConverse,\n // [Providers.ANTHROPIC]: CustomAnthropic,\n [Providers.ANTHROPIC]: ChatAnthropic,\n};\n\nexport const manualToolStreamProviders = new Set<Providers | string>([Providers.ANTHROPIC, Providers.BEDROCK, Providers.OLLAMA]);\n\nexport const getChatModelClass = <P extends Providers>(\n provider: P\n): new (config: ProviderOptionsMap[P]) => ChatModelMap[P] => {\n const ChatModelClass = llmProviders[provider];\n if (!ChatModelClass) {\n throw new Error(`Unsupported LLM provider: ${provider}`);\n }\n\n return ChatModelClass;\n};"],"names":["Providers","ChatOpenAI","ChatOllama","ChatVertexAI","BedrockChat","ChatMistralAI","ChatBedrockConverse","ChatAnthropic"],"mappings":";;;;;;;;;;;AAAA;AAUA;AAEa,MAAA,YAAY,GAAqC;AAC5D,IAAA,CAACA,eAAS,CAAC,MAAM,GAAGC,iBAAU;AAC9B,IAAA,CAACD,eAAS,CAAC,MAAM,GAAGE,iBAAU;AAC9B,IAAA,CAACF,eAAS,CAAC,QAAQ,GAAGG,2BAAY;AAClC,IAAA,CAACH,eAAS,CAAC,cAAc,GAAGI,eAAW;AACvC,IAAA,CAACJ,eAAS,CAAC,SAAS,GAAGK,uBAAa;AACpC,IAAA,CAACL,eAAS,CAAC,OAAO,GAAGM,uBAAmB;;AAExC,IAAA,CAACN,eAAS,CAAC,SAAS,GAAGO,uBAAa;EACpC;MAEW,yBAAyB,GAAG,IAAI,GAAG,CAAqB,CAACP,eAAS,CAAC,SAAS,EAAEA,eAAS,CAAC,OAAO,EAAEA,eAAS,CAAC,MAAM,CAAC,EAAE;AAEpH,MAAA,iBAAiB,GAAG,CAC/B,QAAW,KAC+C;AAC1D,IAAA,MAAM,cAAc,GAAG,YAAY,CAAC,QAAQ,CAAC,CAAC;IAC9C,IAAI,CAAC,cAAc,EAAE;AACnB,QAAA,MAAM,IAAI,KAAK,CAAC,6BAA6B,QAAQ,CAAA,CAAE,CAAC,CAAC;KAC1D;AAED,IAAA,OAAO,cAAc,CAAC;AACxB;;;;;;"}
@@ -1,13 +1,14 @@
1
1
  import { ChatOpenAI } from '@langchain/openai';
2
2
  import { ChatOllama } from '@langchain/ollama';
3
3
  import { ChatBedrockConverse } from '@langchain/aws';
4
+ import { ChatAnthropic } from '@langchain/anthropic';
4
5
  import { ChatMistralAI } from '@langchain/mistralai';
5
6
  import { ChatVertexAI } from '@langchain/google-vertexai';
6
7
  import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
7
8
  import { Providers } from '../common/enum.mjs';
8
- import { CustomAnthropic } from './anthropic/llm.mjs';
9
9
 
10
10
  // src/llm/providers.ts
11
+ // import { CustomAnthropic } from '@/llm/anthropic/llm';
11
12
  const llmProviders = {
12
13
  [Providers.OPENAI]: ChatOpenAI,
13
14
  [Providers.OLLAMA]: ChatOllama,
@@ -15,8 +16,8 @@ const llmProviders = {
15
16
  [Providers.BEDROCK_LEGACY]: BedrockChat,
16
17
  [Providers.MISTRALAI]: ChatMistralAI,
17
18
  [Providers.BEDROCK]: ChatBedrockConverse,
18
- [Providers.ANTHROPIC]: CustomAnthropic,
19
19
  // [Providers.ANTHROPIC]: CustomAnthropic,
20
+ [Providers.ANTHROPIC]: ChatAnthropic,
20
21
  };
21
22
  const manualToolStreamProviders = new Set([Providers.ANTHROPIC, Providers.BEDROCK, Providers.OLLAMA]);
22
23
  const getChatModelClass = (provider) => {
@@ -1 +1 @@
1
- {"version":3,"file":"providers.mjs","sources":["../../../src/llm/providers.ts"],"sourcesContent":["// src/llm/providers.ts\nimport { ChatOpenAI } from '@langchain/openai';\nimport { ChatOllama } from '@langchain/ollama';\nimport { ChatBedrockConverse } from '@langchain/aws';\n// import { ChatAnthropic } from '@langchain/anthropic';\nimport { ChatMistralAI } from '@langchain/mistralai';\nimport { ChatVertexAI } from '@langchain/google-vertexai';\nimport { BedrockChat } from '@langchain/community/chat_models/bedrock/web';\nimport type { ChatModelConstructorMap, ProviderOptionsMap, ChatModelMap } from '@/types';\nimport { Providers } from '@/common';\nimport { CustomAnthropic } from '@/llm/anthropic/llm';\n\nexport const llmProviders: Partial<ChatModelConstructorMap> = {\n [Providers.OPENAI]: ChatOpenAI,\n [Providers.OLLAMA]: ChatOllama,\n [Providers.VERTEXAI]: ChatVertexAI,\n [Providers.BEDROCK_LEGACY]: BedrockChat,\n [Providers.MISTRALAI]: ChatMistralAI,\n [Providers.BEDROCK]: ChatBedrockConverse,\n [Providers.ANTHROPIC]: CustomAnthropic,\n // [Providers.ANTHROPIC]: CustomAnthropic,\n};\n\nexport const manualToolStreamProviders = new Set<Providers | string>([Providers.ANTHROPIC, Providers.BEDROCK, Providers.OLLAMA]);\n\nexport const getChatModelClass = <P extends Providers>(\n provider: P\n): new (config: ProviderOptionsMap[P]) => ChatModelMap[P] => {\n const ChatModelClass = llmProviders[provider];\n if (!ChatModelClass) {\n throw new Error(`Unsupported LLM provider: ${provider}`);\n }\n\n return ChatModelClass;\n};"],"names":[],"mappings":";;;;;;;;;AAAA;AAYa,MAAA,YAAY,GAAqC;AAC5D,IAAA,CAAC,SAAS,CAAC,MAAM,GAAG,UAAU;AAC9B,IAAA,CAAC,SAAS,CAAC,MAAM,GAAG,UAAU;AAC9B,IAAA,CAAC,SAAS,CAAC,QAAQ,GAAG,YAAY;AAClC,IAAA,CAAC,SAAS,CAAC,cAAc,GAAG,WAAW;AACvC,IAAA,CAAC,SAAS,CAAC,SAAS,GAAG,aAAa;AACpC,IAAA,CAAC,SAAS,CAAC,OAAO,GAAG,mBAAmB;AACxC,IAAA,CAAC,SAAS,CAAC,SAAS,GAAG,eAAe;;EAEtC;MAEW,yBAAyB,GAAG,IAAI,GAAG,CAAqB,CAAC,SAAS,CAAC,SAAS,EAAE,SAAS,CAAC,OAAO,EAAE,SAAS,CAAC,MAAM,CAAC,EAAE;AAEpH,MAAA,iBAAiB,GAAG,CAC/B,QAAW,KAC+C;AAC1D,IAAA,MAAM,cAAc,GAAG,YAAY,CAAC,QAAQ,CAAC,CAAC;IAC9C,IAAI,CAAC,cAAc,EAAE;AACnB,QAAA,MAAM,IAAI,KAAK,CAAC,6BAA6B,QAAQ,CAAA,CAAE,CAAC,CAAC;KAC1D;AAED,IAAA,OAAO,cAAc,CAAC;AACxB;;;;"}
1
+ {"version":3,"file":"providers.mjs","sources":["../../../src/llm/providers.ts"],"sourcesContent":["// src/llm/providers.ts\nimport { ChatOpenAI } from '@langchain/openai';\nimport { ChatOllama } from '@langchain/ollama';\nimport { ChatBedrockConverse } from '@langchain/aws';\nimport { ChatAnthropic } from '@langchain/anthropic';\nimport { ChatMistralAI } from '@langchain/mistralai';\nimport { ChatVertexAI } from '@langchain/google-vertexai';\nimport { BedrockChat } from '@langchain/community/chat_models/bedrock/web';\nimport type { ChatModelConstructorMap, ProviderOptionsMap, ChatModelMap } from '@/types';\nimport { Providers } from '@/common';\n// import { CustomAnthropic } from '@/llm/anthropic/llm';\n\nexport const llmProviders: Partial<ChatModelConstructorMap> = {\n [Providers.OPENAI]: ChatOpenAI,\n [Providers.OLLAMA]: ChatOllama,\n [Providers.VERTEXAI]: ChatVertexAI,\n [Providers.BEDROCK_LEGACY]: BedrockChat,\n [Providers.MISTRALAI]: ChatMistralAI,\n [Providers.BEDROCK]: ChatBedrockConverse,\n // [Providers.ANTHROPIC]: CustomAnthropic,\n [Providers.ANTHROPIC]: ChatAnthropic,\n};\n\nexport const manualToolStreamProviders = new Set<Providers | string>([Providers.ANTHROPIC, Providers.BEDROCK, Providers.OLLAMA]);\n\nexport const getChatModelClass = <P extends Providers>(\n provider: P\n): new (config: ProviderOptionsMap[P]) => ChatModelMap[P] => {\n const ChatModelClass = llmProviders[provider];\n if (!ChatModelClass) {\n throw new Error(`Unsupported LLM provider: ${provider}`);\n }\n\n return ChatModelClass;\n};"],"names":[],"mappings":";;;;;;;;;AAAA;AAUA;AAEa,MAAA,YAAY,GAAqC;AAC5D,IAAA,CAAC,SAAS,CAAC,MAAM,GAAG,UAAU;AAC9B,IAAA,CAAC,SAAS,CAAC,MAAM,GAAG,UAAU;AAC9B,IAAA,CAAC,SAAS,CAAC,QAAQ,GAAG,YAAY;AAClC,IAAA,CAAC,SAAS,CAAC,cAAc,GAAG,WAAW;AACvC,IAAA,CAAC,SAAS,CAAC,SAAS,GAAG,aAAa;AACpC,IAAA,CAAC,SAAS,CAAC,OAAO,GAAG,mBAAmB;;AAExC,IAAA,CAAC,SAAS,CAAC,SAAS,GAAG,aAAa;EACpC;MAEW,yBAAyB,GAAG,IAAI,GAAG,CAAqB,CAAC,SAAS,CAAC,SAAS,EAAE,SAAS,CAAC,OAAO,EAAE,SAAS,CAAC,MAAM,CAAC,EAAE;AAEpH,MAAA,iBAAiB,GAAG,CAC/B,QAAW,KAC+C;AAC1D,IAAA,MAAM,cAAc,GAAG,YAAY,CAAC,QAAQ,CAAC,CAAC;IAC9C,IAAI,CAAC,cAAc,EAAE;AACnB,QAAA,MAAM,IAAI,KAAK,CAAC,6BAA6B,QAAQ,CAAA,CAAE,CAAC,CAAC;KAC1D;AAED,IAAA,OAAO,cAAc,CAAC;AACxB;;;;"}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@librechat/agents",
3
- "version": "1.8.1",
3
+ "version": "1.8.3",
4
4
  "main": "./dist/cjs/main.cjs",
5
5
  "module": "./dist/esm/main.mjs",
6
6
  "types": "./dist/types/index.d.ts",
@@ -42,7 +42,7 @@
42
42
  "start:cli": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/cli.ts --provider 'openAI' --name 'Jo' --location 'New York, NY'",
43
43
  "content": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/content.ts --provider 'anthropic' --name 'Jo' --location 'New York, NY'",
44
44
  "stream": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/stream.ts --provider 'anthropic' --name 'Jo' --location 'New York, NY'",
45
- "code_exec": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/code_exec.ts --provider 'openAI' --name 'Jo' --location 'New York, NY'",
45
+ "code_exec": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/code_exec.ts --provider 'anthropic' --name 'Jo' --location 'New York, NY'",
46
46
  "code_exec_simple": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/code_exec_simple.ts --provider 'anthropic' --name 'Jo' --location 'New York, NY'",
47
47
  "simple": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/simple.ts --provider 'openAI' --name 'Jo' --location 'New York, NY'",
48
48
  "memory": "node -r dotenv/config --loader ./tsconfig-paths-bootstrap.mjs --experimental-specifier-resolution=node ./src/scripts/memory.ts --provider 'openAI' --name 'Jo' --location 'New York, NY'",
@@ -69,7 +69,7 @@
69
69
  "@aws-crypto/sha256-js": "^5.2.0",
70
70
  "@aws-sdk/credential-provider-node": "^3.613.0",
71
71
  "@aws-sdk/types": "^3.609.0",
72
- "@langchain/anthropic": "^0.3.7",
72
+ "@langchain/anthropic": "^0.3.8",
73
73
  "@langchain/aws": "^0.1.1",
74
74
  "@langchain/community": "^0.3.14",
75
75
  "@langchain/core": "^0.3.18",
@@ -35,15 +35,15 @@ function _formatImage(imageUrl: string): { type: string; media_type: string; dat
35
35
  } as any;
36
36
  }
37
37
 
38
- function _mergeMessages(
38
+ function _ensureMessageContents(
39
39
  messages: BaseMessage[]
40
40
  ): (SystemMessage | HumanMessage | AIMessage)[] {
41
41
  // Merge runs of human/tool messages into single human messages with content blocks.
42
- const merged = [];
42
+ const updatedMsgs = [];
43
43
  for (const message of messages) {
44
44
  if (message._getType() === 'tool') {
45
45
  if (typeof message.content === 'string') {
46
- const previousMessage = merged[merged.length - 1] as BaseMessage | undefined;
46
+ const previousMessage = updatedMsgs[updatedMsgs.length - 1] as BaseMessage | undefined;
47
47
  if (
48
48
  previousMessage &&
49
49
  previousMessage._getType() === 'human' &&
@@ -59,7 +59,7 @@ function _mergeMessages(
59
59
  });
60
60
  } else {
61
61
  // If not, we create a new human message with the tool result.
62
- merged.push(
62
+ updatedMsgs.push(
63
63
  new HumanMessage({
64
64
  content: [
65
65
  {
@@ -72,7 +72,7 @@ function _mergeMessages(
72
72
  );
73
73
  }
74
74
  } else {
75
- merged.push(
75
+ updatedMsgs.push(
76
76
  new HumanMessage({
77
77
  content: [
78
78
  {
@@ -85,31 +85,10 @@ function _mergeMessages(
85
85
  );
86
86
  }
87
87
  } else {
88
- const previousMessage = merged[merged.length - 1] as BaseMessage | undefined;
89
- if (
90
- previousMessage &&
91
- previousMessage._getType() === 'human' &&
92
- message._getType() === 'human'
93
- ) {
94
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
95
- let combinedContent: Record<string, any>[];
96
- if (typeof previousMessage.content === 'string') {
97
- combinedContent = [{ type: 'text', text: previousMessage.content }];
98
- } else {
99
- combinedContent = previousMessage.content;
100
- }
101
- if (typeof message.content === 'string') {
102
- combinedContent.push({ type: 'text', text: message.content });
103
- } else {
104
- combinedContent = combinedContent.concat(message.content);
105
- }
106
- previousMessage.content = combinedContent;
107
- } else {
108
- merged.push(message);
109
- }
88
+ updatedMsgs.push(message);
110
89
  }
111
90
  }
112
- return merged;
91
+ return updatedMsgs;
113
92
  }
114
93
 
115
94
  export function _convertLangChainToolCallToAnthropic(
@@ -205,7 +184,7 @@ function _formatContent(content: MessageContent): string | Record<string, any>[]
205
184
  export function _convertMessagesToAnthropicPayload(
206
185
  messages: BaseMessage[]
207
186
  ): AnthropicMessageCreateParams {
208
- const mergedMessages = _mergeMessages(messages);
187
+ const mergedMessages = _ensureMessageContents(messages);
209
188
  let system;
210
189
  if (mergedMessages.length > 0 && mergedMessages[0]._getType() === 'system') {
211
190
  system = messages[0].content;
@@ -2,13 +2,13 @@
2
2
  import { ChatOpenAI } from '@langchain/openai';
3
3
  import { ChatOllama } from '@langchain/ollama';
4
4
  import { ChatBedrockConverse } from '@langchain/aws';
5
- // import { ChatAnthropic } from '@langchain/anthropic';
5
+ import { ChatAnthropic } from '@langchain/anthropic';
6
6
  import { ChatMistralAI } from '@langchain/mistralai';
7
7
  import { ChatVertexAI } from '@langchain/google-vertexai';
8
8
  import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
9
9
  import type { ChatModelConstructorMap, ProviderOptionsMap, ChatModelMap } from '@/types';
10
10
  import { Providers } from '@/common';
11
- import { CustomAnthropic } from '@/llm/anthropic/llm';
11
+ // import { CustomAnthropic } from '@/llm/anthropic/llm';
12
12
 
13
13
  export const llmProviders: Partial<ChatModelConstructorMap> = {
14
14
  [Providers.OPENAI]: ChatOpenAI,
@@ -17,8 +17,8 @@ export const llmProviders: Partial<ChatModelConstructorMap> = {
17
17
  [Providers.BEDROCK_LEGACY]: BedrockChat,
18
18
  [Providers.MISTRALAI]: ChatMistralAI,
19
19
  [Providers.BEDROCK]: ChatBedrockConverse,
20
- [Providers.ANTHROPIC]: CustomAnthropic,
21
20
  // [Providers.ANTHROPIC]: CustomAnthropic,
21
+ [Providers.ANTHROPIC]: ChatAnthropic,
22
22
  };
23
23
 
24
24
  export const manualToolStreamProviders = new Set<Providers | string>([Providers.ANTHROPIC, Providers.BEDROCK, Providers.OLLAMA]);
@@ -77,7 +77,7 @@ export class CollaborativeProcessor {
77
77
  }
78
78
 
79
79
  private async createGraph(): Promise<t.CompiledWorkflow> {
80
- const agentStateChannels: StateGraphArgs['channels'] = {
80
+ const agentStateChannels: StateGraphArgs<AgentStateChannels>['channels'] = {
81
81
  messages: {
82
82
  value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
83
83
  default: () => [],
@@ -1,117 +0,0 @@
1
- 'use strict';
2
-
3
- var messages = require('@langchain/core/messages');
4
- var anthropic = require('@langchain/anthropic');
5
- var outputs = require('@langchain/core/outputs');
6
- var message_outputs = require('./utils/message_outputs.cjs');
7
- var message_inputs = require('./utils/message_inputs.cjs');
8
- var text = require('../text.cjs');
9
-
10
- function _toolsInParams(params) {
11
- return !!(params.tools && params.tools.length > 0);
12
- }
13
- function extractToken(chunk) {
14
- if (typeof chunk.content === 'string') {
15
- return [chunk.content, 'string'];
16
- }
17
- else if (Array.isArray(chunk.content) &&
18
- chunk.content.length >= 1 &&
19
- 'input' in chunk.content[0]) {
20
- return typeof chunk.content[0].input === 'string'
21
- ? [chunk.content[0].input, 'input']
22
- : [JSON.stringify(chunk.content[0].input), 'input'];
23
- }
24
- else if (Array.isArray(chunk.content) &&
25
- chunk.content.length >= 1 &&
26
- 'text' in chunk.content[0]) {
27
- return [chunk.content[0].text, 'content'];
28
- }
29
- return [undefined];
30
- }
31
- function cloneChunk(text, tokenType, chunk) {
32
- if (tokenType === 'string') {
33
- return new messages.AIMessageChunk(Object.assign({}, chunk, { content: text }));
34
- }
35
- else if (tokenType === 'input') {
36
- return chunk;
37
- }
38
- const content = chunk.content[0];
39
- if (tokenType === 'content' && content.type === 'text') {
40
- return new messages.AIMessageChunk(Object.assign({}, chunk, { content: [Object.assign({}, content, { text })] }));
41
- }
42
- else if (tokenType === 'content' && content.type === 'text_delta') {
43
- return new messages.AIMessageChunk(Object.assign({}, chunk, { content: [Object.assign({}, content, { text })] }));
44
- }
45
- return chunk;
46
- }
47
- class CustomAnthropic extends anthropic.ChatAnthropicMessages {
48
- _lc_stream_delay;
49
- constructor(fields) {
50
- super(fields);
51
- this._lc_stream_delay = fields._lc_stream_delay ?? 25;
52
- }
53
- async *_streamResponseChunks(messages$1, options, runManager) {
54
- const params = this.invocationParams(options);
55
- const formattedMessages = message_inputs._convertMessagesToAnthropicPayload(messages$1);
56
- const coerceContentToString = !_toolsInParams({
57
- ...params,
58
- ...formattedMessages,
59
- stream: false,
60
- });
61
- const stream = await this.createStreamWithRetry({
62
- ...params,
63
- ...formattedMessages,
64
- stream: true,
65
- }, {
66
- headers: options.headers,
67
- });
68
- for await (const data of stream) {
69
- if (options.signal?.aborted) {
70
- stream.controller.abort();
71
- throw new Error('AbortError: User aborted the request.');
72
- }
73
- const shouldStreamUsage = this.streamUsage ?? options.streamUsage;
74
- const result = message_outputs._makeMessageChunkFromAnthropicEvent(data, {
75
- streamUsage: shouldStreamUsage,
76
- coerceContentToString,
77
- });
78
- if (!result)
79
- continue;
80
- const { chunk } = result;
81
- // Extract the text content token for text field and runManager.
82
- const [token = '', tokenType] = extractToken(chunk);
83
- const createGenerationChunk = (text, incomingChunk) => {
84
- return new outputs.ChatGenerationChunk({
85
- message: new messages.AIMessageChunk({
86
- // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().
87
- content: incomingChunk.content,
88
- additional_kwargs: incomingChunk.additional_kwargs,
89
- tool_call_chunks: incomingChunk.tool_call_chunks,
90
- usage_metadata: shouldStreamUsage ? incomingChunk.usage_metadata : undefined,
91
- response_metadata: incomingChunk.response_metadata,
92
- id: incomingChunk.id,
93
- }),
94
- text,
95
- });
96
- };
97
- if (!tokenType || tokenType === 'input') {
98
- const generationChunk = createGenerationChunk(token, chunk);
99
- yield generationChunk;
100
- await runManager?.handleLLMNewToken(token, undefined, undefined, undefined, undefined, { chunk: generationChunk });
101
- continue;
102
- }
103
- const textStream = new text.TextStream(token, {
104
- delay: this._lc_stream_delay,
105
- });
106
- for await (const currentToken of textStream.generateText()) {
107
- const newChunk = cloneChunk(currentToken, tokenType, chunk);
108
- const generationChunk = createGenerationChunk(currentToken, newChunk);
109
- yield generationChunk;
110
- await runManager?.handleLLMNewToken(token, undefined, undefined, undefined, undefined, { chunk: generationChunk });
111
- }
112
- }
113
- }
114
- }
115
-
116
- exports.CustomAnthropic = CustomAnthropic;
117
- //# sourceMappingURL=llm.cjs.map
@@ -1 +0,0 @@
1
- {"version":3,"file":"llm.cjs","sources":["../../../../src/llm/anthropic/llm.ts"],"sourcesContent":["import { AIMessageChunk } from '@langchain/core/messages';\nimport { ChatAnthropicMessages } from '@langchain/anthropic';\nimport { ChatGenerationChunk } from '@langchain/core/outputs';\nimport type { BaseMessage, MessageContentComplex } from '@langchain/core/messages';\nimport type { CallbackManagerForLLMRun } from '@langchain/core/callbacks/manager';\nimport type { AnthropicInput } from '@langchain/anthropic';\nimport type { AnthropicMessageCreateParams } from '@/llm/anthropic/types';\nimport { _makeMessageChunkFromAnthropicEvent } from './utils/message_outputs';\nimport { _convertMessagesToAnthropicPayload } from './utils/message_inputs';\nimport { TextStream } from '@/llm/text';\n\nfunction _toolsInParams(params: AnthropicMessageCreateParams): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction extractToken(chunk: AIMessageChunk): [string, 'string' | 'input' | 'content'] | [undefined] {\n if (typeof chunk.content === 'string') {\n return [chunk.content, 'string'];\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n 'input' in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === 'string'\n ? [chunk.content[0].input, 'input']\n : [JSON.stringify(chunk.content[0].input), 'input'];\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n 'text' in chunk.content[0]\n ) {\n return [chunk.content[0].text, 'content'];\n }\n return [undefined];\n}\n\nfunction cloneChunk(text: string, tokenType: string, chunk: AIMessageChunk): AIMessageChunk {\n if (tokenType === 'string') {\n return new AIMessageChunk(Object.assign({}, chunk, { content: text }));\n } else if (tokenType === 'input') {\n return chunk;\n }\n const content = chunk.content[0] as MessageContentComplex;\n if (tokenType === 'content' && content.type === 'text') {\n return new AIMessageChunk(Object.assign({}, chunk, { content: [Object.assign({}, content, { text })] }));\n } else if (tokenType === 'content' && content.type === 'text_delta') {\n return new AIMessageChunk(Object.assign({}, chunk, { content: [Object.assign({}, content, { text })] }));\n }\n\n return chunk;\n}\n\nexport type CustomAnthropicInput = AnthropicInput & { _lc_stream_delay?: number };\n\nexport class CustomAnthropic extends ChatAnthropicMessages {\n _lc_stream_delay: number;\n constructor(fields: CustomAnthropicInput) {\n super(fields);\n this._lc_stream_delay = fields._lc_stream_delay ?? 25;\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this['ParsedCallOptions'],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const coerceContentToString = !_toolsInParams({\n ...params,\n ...formattedMessages,\n stream: false,\n });\n\n const stream = await this.createStreamWithRetry(\n {\n ...params,\n ...formattedMessages,\n stream: true,\n },\n {\n headers: options.headers,\n }\n );\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error('AbortError: User aborted the request.');\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const [token = '', tokenType] = extractToken(chunk);\n const createGenerationChunk = (text: string, incomingChunk: AIMessageChunk): ChatGenerationChunk => {\n return new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: incomingChunk.content,\n additional_kwargs: incomingChunk.additional_kwargs,\n tool_call_chunks: incomingChunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? incomingChunk.usage_metadata : undefined,\n response_metadata: incomingChunk.response_metadata,\n id: incomingChunk.id,\n }),\n text,\n });\n };\n\n if (!tokenType || tokenType === 'input') {\n const generationChunk = createGenerationChunk(token, chunk);\n yield generationChunk;\n await runManager?.handleLLMNewToken(\n token,\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n continue;\n }\n\n const textStream = new TextStream(token, {\n delay: this._lc_stream_delay,\n });\n for await (const currentToken of textStream.generateText()) {\n const newChunk = cloneChunk(currentToken, tokenType, chunk);\n const generationChunk = createGenerationChunk(currentToken, newChunk);\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token,\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n }\n\n}\n"],"names":["AIMessageChunk","ChatAnthropicMessages","messages","_convertMessagesToAnthropicPayload","_makeMessageChunkFromAnthropicEvent","ChatGenerationChunk","TextStream"],"mappings":";;;;;;;;;AAWA,SAAS,cAAc,CAAC,MAAoC,EAAA;AAC1D,IAAA,OAAO,CAAC,EAAE,MAAM,CAAC,KAAK,IAAI,MAAM,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;AACrD,CAAC;AAED,SAAS,YAAY,CAAC,KAAqB,EAAA;AACzC,IAAA,IAAI,OAAO,KAAK,CAAC,OAAO,KAAK,QAAQ,EAAE;AACrC,QAAA,OAAO,CAAC,KAAK,CAAC,OAAO,EAAE,QAAQ,CAAC,CAAC;KAClC;AAAM,SAAA,IACL,KAAK,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC;AAC5B,QAAA,KAAK,CAAC,OAAO,CAAC,MAAM,IAAI,CAAC;QACzB,OAAO,IAAI,KAAK,CAAC,OAAO,CAAC,CAAC,CAAC,EAC3B;QACA,OAAO,OAAO,KAAK,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,KAAK,KAAK,QAAQ;AAC/C,cAAE,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,OAAO,CAAC;AACnC,cAAE,CAAC,IAAI,CAAC,SAAS,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,EAAE,OAAO,CAAC,CAAC;KACvD;AAAM,SAAA,IACL,KAAK,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC;AAC5B,QAAA,KAAK,CAAC,OAAO,CAAC,MAAM,IAAI,CAAC;QACzB,MAAM,IAAI,KAAK,CAAC,OAAO,CAAC,CAAC,CAAC,EAC1B;AACA,QAAA,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,SAAS,CAAC,CAAC;KAC3C;IACD,OAAO,CAAC,SAAS,CAAC,CAAC;AACrB,CAAC;AAED,SAAS,UAAU,CAAC,IAAY,EAAE,SAAiB,EAAE,KAAqB,EAAA;AACxE,IAAA,IAAI,SAAS,KAAK,QAAQ,EAAE;AAC1B,QAAA,OAAO,IAAIA,uBAAc,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,EAAE,KAAK,EAAE,EAAE,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC;KACxE;AAAM,SAAA,IAAI,SAAS,KAAK,OAAO,EAAE;AAChC,QAAA,OAAO,KAAK,CAAC;KACd;IACD,MAAM,OAAO,GAAG,KAAK,CAAC,OAAO,CAAC,CAAC,CAA0B,CAAC;IAC1D,IAAI,SAAS,KAAK,SAAS,IAAI,OAAO,CAAC,IAAI,KAAK,MAAM,EAAE;AACtD,QAAA,OAAO,IAAIA,uBAAc,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,EAAE,KAAK,EAAE,EAAE,OAAO,EAAE,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,EAAE,OAAO,EAAE,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;KAC1G;SAAM,IAAI,SAAS,KAAK,SAAS,IAAI,OAAO,CAAC,IAAI,KAAK,YAAY,EAAE;AACnE,QAAA,OAAO,IAAIA,uBAAc,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,EAAE,KAAK,EAAE,EAAE,OAAO,EAAE,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,EAAE,OAAO,EAAE,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;KAC1G;AAED,IAAA,OAAO,KAAK,CAAC;AACf,CAAC;AAIK,MAAO,eAAgB,SAAQC,+BAAqB,CAAA;AACxD,IAAA,gBAAgB,CAAS;AACzB,IAAA,WAAA,CAAY,MAA4B,EAAA;QACtC,KAAK,CAAC,MAAM,CAAC,CAAC;QACd,IAAI,CAAC,gBAAgB,GAAG,MAAM,CAAC,gBAAgB,IAAI,EAAE,CAAC;KACvD;IAED,OAAO,qBAAqB,CAC1BC,UAAuB,EACvB,OAAkC,EAClC,UAAqC,EAAA;QAErC,MAAM,MAAM,GAAG,IAAI,CAAC,gBAAgB,CAAC,OAAO,CAAC,CAAC;AAC9C,QAAA,MAAM,iBAAiB,GAAGC,iDAAkC,CAACD,UAAQ,CAAC,CAAC;AACvE,QAAA,MAAM,qBAAqB,GAAG,CAAC,cAAc,CAAC;AAC5C,YAAA,GAAG,MAAM;AACT,YAAA,GAAG,iBAAiB;AACpB,YAAA,MAAM,EAAE,KAAK;AACd,SAAA,CAAC,CAAC;AAEH,QAAA,MAAM,MAAM,GAAG,MAAM,IAAI,CAAC,qBAAqB,CAC7C;AACE,YAAA,GAAG,MAAM;AACT,YAAA,GAAG,iBAAiB;AACpB,YAAA,MAAM,EAAE,IAAI;SACb,EACD;YACE,OAAO,EAAE,OAAO,CAAC,OAAO;AACzB,SAAA,CACF,CAAC;AAEF,QAAA,WAAW,MAAM,IAAI,IAAI,MAAM,EAAE;AAC/B,YAAA,IAAI,OAAO,CAAC,MAAM,EAAE,OAAO,EAAE;AAC3B,gBAAA,MAAM,CAAC,UAAU,CAAC,KAAK,EAAE,CAAC;AAC1B,gBAAA,MAAM,IAAI,KAAK,CAAC,uCAAuC,CAAC,CAAC;aAC1D;YACD,MAAM,iBAAiB,GAAG,IAAI,CAAC,WAAW,IAAI,OAAO,CAAC,WAAW,CAAC;AAClE,YAAA,MAAM,MAAM,GAAGE,mDAAmC,CAAC,IAAI,EAAE;AACvD,gBAAA,WAAW,EAAE,iBAAiB;gBAC9B,qBAAqB;AACtB,aAAA,CAAC,CAAC;AACH,YAAA,IAAI,CAAC,MAAM;gBAAE,SAAS;AAEtB,YAAA,MAAM,EAAE,KAAK,EAAE,GAAG,MAAM,CAAC;;AAGzB,YAAA,MAAM,CAAC,KAAK,GAAG,EAAE,EAAE,SAAS,CAAC,GAAG,YAAY,CAAC,KAAK,CAAC,CAAC;AACpD,YAAA,MAAM,qBAAqB,GAAG,CAAC,IAAY,EAAE,aAA6B,KAAyB;gBACjG,OAAO,IAAIC,2BAAmB,CAAC;oBAC7B,OAAO,EAAE,IAAIL,uBAAc,CAAC;;wBAE1B,OAAO,EAAE,aAAa,CAAC,OAAO;wBAC9B,iBAAiB,EAAE,aAAa,CAAC,iBAAiB;wBAClD,gBAAgB,EAAE,aAAa,CAAC,gBAAgB;wBAChD,cAAc,EAAE,iBAAiB,GAAG,aAAa,CAAC,cAAc,GAAG,SAAS;wBAC5E,iBAAiB,EAAE,aAAa,CAAC,iBAAiB;wBAClD,EAAE,EAAE,aAAa,CAAC,EAAE;qBACrB,CAAC;oBACF,IAAI;AACL,iBAAA,CAAC,CAAC;AACL,aAAC,CAAC;AAEF,YAAA,IAAI,CAAC,SAAS,IAAI,SAAS,KAAK,OAAO,EAAE;gBACvC,MAAM,eAAe,GAAG,qBAAqB,CAAC,KAAK,EAAE,KAAK,CAAC,CAAC;AAC5D,gBAAA,MAAM,eAAe,CAAC;gBACtB,MAAM,UAAU,EAAE,iBAAiB,CACjC,KAAK,EACL,SAAS,EACT,SAAS,EACT,SAAS,EACT,SAAS,EACT,EAAE,KAAK,EAAE,eAAe,EAAE,CAC3B,CAAC;gBACF,SAAS;aACV;AAED,YAAA,MAAM,UAAU,GAAG,IAAIM,eAAU,CAAC,KAAK,EAAE;gBACvC,KAAK,EAAE,IAAI,CAAC,gBAAgB;AAC7B,aAAA,CAAC,CAAC;YACH,WAAW,MAAM,YAAY,IAAI,UAAU,CAAC,YAAY,EAAE,EAAE;gBAC1D,MAAM,QAAQ,GAAG,UAAU,CAAC,YAAY,EAAE,SAAS,EAAE,KAAK,CAAC,CAAC;gBAC5D,MAAM,eAAe,GAAG,qBAAqB,CAAC,YAAY,EAAE,QAAQ,CAAC,CAAC;AACtE,gBAAA,MAAM,eAAe,CAAC;gBAEtB,MAAM,UAAU,EAAE,iBAAiB,CACjC,KAAK,EACL,SAAS,EACT,SAAS,EACT,SAAS,EACT,SAAS,EACT,EAAE,KAAK,EAAE,eAAe,EAAE,CAC3B,CAAC;aACH;SACF;KACF;AAEF;;;;"}
@@ -1,251 +0,0 @@
1
- 'use strict';
2
-
3
- var messages = require('@langchain/core/messages');
4
-
5
- /**
6
- * This util file contains functions for converting LangChain messages to Anthropic messages.
7
- */
8
- function _formatImage(imageUrl) {
9
- const regex = /^data:(image\/.+);base64,(.+)$/;
10
- const match = imageUrl.match(regex);
11
- if (match === null) {
12
- throw new Error([
13
- 'Anthropic only supports base64-encoded images currently.',
14
- 'Example: ...',
15
- ].join('\n\n'));
16
- }
17
- return {
18
- type: 'base64',
19
- media_type: match[1] ?? '',
20
- data: match[2] ?? '',
21
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
22
- };
23
- }
24
- function _mergeMessages(messages$1) {
25
- // Merge runs of human/tool messages into single human messages with content blocks.
26
- const merged = [];
27
- for (const message of messages$1) {
28
- if (message._getType() === 'tool') {
29
- if (typeof message.content === 'string') {
30
- const previousMessage = merged[merged.length - 1];
31
- if (previousMessage &&
32
- previousMessage._getType() === 'human' &&
33
- Array.isArray(previousMessage.content) &&
34
- 'type' in previousMessage.content[0] &&
35
- previousMessage.content[0].type === 'tool_result') {
36
- // If the previous message was a tool result, we merge this tool message into it.
37
- previousMessage.content.push({
38
- type: 'tool_result',
39
- content: message.content,
40
- tool_use_id: message.tool_call_id,
41
- });
42
- }
43
- else {
44
- // If not, we create a new human message with the tool result.
45
- merged.push(new messages.HumanMessage({
46
- content: [
47
- {
48
- type: 'tool_result',
49
- content: message.content,
50
- tool_use_id: message.tool_call_id,
51
- },
52
- ],
53
- }));
54
- }
55
- }
56
- else {
57
- merged.push(new messages.HumanMessage({
58
- content: [
59
- {
60
- type: 'tool_result',
61
- content: _formatContent(message.content),
62
- tool_use_id: message.tool_call_id,
63
- },
64
- ],
65
- }));
66
- }
67
- }
68
- else {
69
- const previousMessage = merged[merged.length - 1];
70
- if (previousMessage &&
71
- previousMessage._getType() === 'human' &&
72
- message._getType() === 'human') {
73
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
74
- let combinedContent;
75
- if (typeof previousMessage.content === 'string') {
76
- combinedContent = [{ type: 'text', text: previousMessage.content }];
77
- }
78
- else {
79
- combinedContent = previousMessage.content;
80
- }
81
- if (typeof message.content === 'string') {
82
- combinedContent.push({ type: 'text', text: message.content });
83
- }
84
- else {
85
- combinedContent = combinedContent.concat(message.content);
86
- }
87
- previousMessage.content = combinedContent;
88
- }
89
- else {
90
- merged.push(message);
91
- }
92
- }
93
- }
94
- return merged;
95
- }
96
- function _convertLangChainToolCallToAnthropic(toolCall) {
97
- if (toolCall.id === undefined) {
98
- throw new Error('Anthropic requires all tool calls to have an "id".');
99
- }
100
- return {
101
- type: 'tool_use',
102
- id: toolCall.id,
103
- name: toolCall.name,
104
- input: toolCall.args,
105
- };
106
- }
107
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
108
- function _formatContent(content) {
109
- const toolTypes = ['tool_use', 'tool_result', 'input_json_delta'];
110
- const textTypes = ['text', 'text_delta'];
111
- if (typeof content === 'string') {
112
- return content;
113
- }
114
- else {
115
- const contentBlocks = content.map((contentPart) => {
116
- const cacheControl = 'cache_control' in contentPart ? contentPart.cache_control : undefined;
117
- if (contentPart.type === 'image_url') {
118
- let source;
119
- if (typeof contentPart.image_url === 'string') {
120
- source = _formatImage(contentPart.image_url);
121
- }
122
- else {
123
- source = _formatImage(contentPart.image_url.url);
124
- }
125
- return {
126
- type: 'image', // Explicitly setting the type as "image"
127
- source,
128
- ...(cacheControl ? { cache_control: cacheControl } : {}),
129
- };
130
- }
131
- else if (textTypes.find((t) => t === contentPart.type) &&
132
- 'text' in contentPart) {
133
- // Assuming contentPart is of type MessageContentText here
134
- return {
135
- type: 'text', // Explicitly setting the type as "text"
136
- text: contentPart.text,
137
- ...(cacheControl ? { cache_control: cacheControl } : {}),
138
- };
139
- }
140
- else if (toolTypes.find((t) => t === contentPart.type)) {
141
- const contentPartCopy = { ...contentPart };
142
- if ('index' in contentPartCopy) {
143
- // Anthropic does not support passing the index field here, so we remove it.
144
- delete contentPartCopy.index;
145
- }
146
- if (contentPartCopy.type === 'input_json_delta') {
147
- // `input_json_delta` type only represents yielding partial tool inputs
148
- // and is not a valid type for Anthropic messages.
149
- contentPartCopy.type = 'tool_use';
150
- }
151
- if ('input' in contentPartCopy) {
152
- // Anthropic tool use inputs should be valid objects, when applicable.
153
- try {
154
- contentPartCopy.input = JSON.parse(contentPartCopy.input);
155
- }
156
- catch {
157
- // no-op
158
- }
159
- }
160
- // TODO: Fix when SDK types are fixed
161
- return {
162
- ...contentPartCopy,
163
- ...(cacheControl ? { cache_control: cacheControl } : {}),
164
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
165
- };
166
- }
167
- else {
168
- throw new Error('Unsupported message content format');
169
- }
170
- });
171
- return contentBlocks;
172
- }
173
- }
174
- /**
175
- * Formats messages as a prompt for the model.
176
- * Used in LangSmith, export is important here.
177
- * @param messages The base messages to format as a prompt.
178
- * @returns The formatted prompt.
179
- */
180
- function _convertMessagesToAnthropicPayload(messages$1) {
181
- const mergedMessages = _mergeMessages(messages$1);
182
- let system;
183
- if (mergedMessages.length > 0 && mergedMessages[0]._getType() === 'system') {
184
- system = messages$1[0].content;
185
- }
186
- const conversationMessages = system !== undefined ? mergedMessages.slice(1) : mergedMessages;
187
- const formattedMessages = conversationMessages.map((message) => {
188
- let role;
189
- if (message._getType() === 'human') {
190
- role = 'user';
191
- }
192
- else if (message._getType() === 'ai') {
193
- role = 'assistant';
194
- }
195
- else if (message._getType() === 'tool') {
196
- role = 'user';
197
- }
198
- else if (message._getType() === 'system') {
199
- throw new Error('System messages are only permitted as the first passed message.');
200
- }
201
- else {
202
- throw new Error(`Message type "${message._getType()}" is not supported.`);
203
- }
204
- if (messages.isAIMessage(message) && !!message.tool_calls?.length) {
205
- if (typeof message.content === 'string') {
206
- if (message.content === '') {
207
- return {
208
- role,
209
- content: message.tool_calls.map(_convertLangChainToolCallToAnthropic),
210
- };
211
- }
212
- else {
213
- return {
214
- role,
215
- content: [
216
- { type: 'text', text: message.content },
217
- ...message.tool_calls.map(_convertLangChainToolCallToAnthropic),
218
- ],
219
- };
220
- }
221
- }
222
- else {
223
- const { content } = message;
224
- const hasMismatchedToolCalls = !message.tool_calls.every((toolCall) => content.find((contentPart) => (contentPart.type === 'tool_use' ||
225
- contentPart.type === 'input_json_delta') &&
226
- contentPart.id === toolCall.id));
227
- if (hasMismatchedToolCalls) {
228
- console.warn('The "tool_calls" field on a message is only respected if content is a string.');
229
- }
230
- return {
231
- role,
232
- content: _formatContent(message.content),
233
- };
234
- }
235
- }
236
- else {
237
- return {
238
- role,
239
- content: _formatContent(message.content),
240
- };
241
- }
242
- });
243
- return {
244
- messages: formattedMessages,
245
- system,
246
- };
247
- }
248
-
249
- exports._convertLangChainToolCallToAnthropic = _convertLangChainToolCallToAnthropic;
250
- exports._convertMessagesToAnthropicPayload = _convertMessagesToAnthropicPayload;
251
- //# sourceMappingURL=message_inputs.cjs.map