@leocuvee/turtlecoin-utils 0.0.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (132) hide show
  1. package/.github/workflows/ci.yml +27 -0
  2. package/.idea/codeStyles/codeStyleConfig.xml +5 -0
  3. package/.idea/inspectionProfiles/Project_Default.xml +7 -0
  4. package/.idea/misc.xml +6 -0
  5. package/.idea/modules.xml +8 -0
  6. package/.idea/turtlecoin-utils.iml +12 -0
  7. package/.idea/vcs.xml +6 -0
  8. package/.travis.yml +11 -0
  9. package/CONTRIBUTING.md +3 -0
  10. package/LICENSE +674 -0
  11. package/README.md +203 -0
  12. package/config.json +7 -0
  13. package/docs/.nojekyll +0 -0
  14. package/docs/CNAME +1 -0
  15. package/docs/assets/css/main.css +2321 -0
  16. package/docs/assets/images/icons.png +0 -0
  17. package/docs/assets/images/icons@2x.png +0 -0
  18. package/docs/assets/images/widgets.png +0 -0
  19. package/docs/assets/images/widgets@2x.png +0 -0
  20. package/docs/assets/js/main.js +1 -0
  21. package/docs/assets/js/search.js +3 -0
  22. package/docs/classes/address.html +964 -0
  23. package/docs/classes/addressprefix.html +431 -0
  24. package/docs/classes/block.html +965 -0
  25. package/docs/classes/blocktemplate.html +695 -0
  26. package/docs/classes/cryptonote.html +1137 -0
  27. package/docs/classes/ed25519.keypair.html +400 -0
  28. package/docs/classes/ed25519.keys.html +373 -0
  29. package/docs/classes/extranoncetag.extranoncedata.html +454 -0
  30. package/docs/classes/extranoncetag.extranoncepaymentid.html +453 -0
  31. package/docs/classes/extranoncetag.iextranonce.html +347 -0
  32. package/docs/classes/extratag.extramergedmining.html +494 -0
  33. package/docs/classes/extratag.extranonce.html +530 -0
  34. package/docs/classes/extratag.extrapadding.html +456 -0
  35. package/docs/classes/extratag.extrapublickey.html +460 -0
  36. package/docs/classes/extratag.iextratag.html +355 -0
  37. package/docs/classes/levinpacket.html +674 -0
  38. package/docs/classes/levinpayloads.handshake.html +731 -0
  39. package/docs/classes/levinpayloads.ilevinpayload.html +318 -0
  40. package/docs/classes/levinpayloads.liteblock.html +494 -0
  41. package/docs/classes/levinpayloads.missingtransactions.html +494 -0
  42. package/docs/classes/levinpayloads.newblock.html +540 -0
  43. package/docs/classes/levinpayloads.newtransactions.html +402 -0
  44. package/docs/classes/levinpayloads.peerentry.html +610 -0
  45. package/docs/classes/levinpayloads.ping.html +450 -0
  46. package/docs/classes/levinpayloads.rawblock.html +344 -0
  47. package/docs/classes/levinpayloads.requestchain.html +402 -0
  48. package/docs/classes/levinpayloads.requestgetobjects.html +448 -0
  49. package/docs/classes/levinpayloads.requesttxpool.html +402 -0
  50. package/docs/classes/levinpayloads.responsechain.html +494 -0
  51. package/docs/classes/levinpayloads.responsegetobjects.html +540 -0
  52. package/docs/classes/levinpayloads.timedsync.html +540 -0
  53. package/docs/classes/multisig.html +930 -0
  54. package/docs/classes/multisigmessage.html +694 -0
  55. package/docs/classes/parentblock.html +347 -0
  56. package/docs/classes/transaction.html +925 -0
  57. package/docs/classes/transactioninputs.coinbaseinput.html +390 -0
  58. package/docs/classes/transactioninputs.itransactioninput.html +321 -0
  59. package/docs/classes/transactioninputs.keyinput.html +459 -0
  60. package/docs/classes/transactionoutputs.itransactionoutput.html +317 -0
  61. package/docs/classes/transactionoutputs.keyoutput.html +422 -0
  62. package/docs/enums/extranoncetag.noncetagtype.html +246 -0
  63. package/docs/enums/extratag.extratagtype.html +280 -0
  64. package/docs/enums/levinprotocol.commandtype.html +391 -0
  65. package/docs/enums/transactioninputs.inputtype.html +246 -0
  66. package/docs/enums/transactionoutputs.outputtype.html +229 -0
  67. package/docs/globals.html +238 -0
  68. package/docs/index.html +271 -0
  69. package/docs/interfaces/interfaces.config.html +590 -0
  70. package/docs/interfaces/interfaces.daemonblocktemplateresponse.html +323 -0
  71. package/docs/interfaces/interfaces.generatedinput.html +304 -0
  72. package/docs/interfaces/interfaces.generatedoutput.html +285 -0
  73. package/docs/interfaces/interfaces.inputkeys.html +304 -0
  74. package/docs/interfaces/interfaces.ipreparedtransaction.html +268 -0
  75. package/docs/interfaces/interfaces.output.html +399 -0
  76. package/docs/interfaces/interfaces.preparedringsignature.html +377 -0
  77. package/docs/interfaces/interfaces.preparedtransaction.html +329 -0
  78. package/docs/interfaces/interfaces.randomoutput.html +285 -0
  79. package/docs/interfaces/interfaces.transactionrecipient.html +285 -0
  80. package/docs/interfaces/multisiginterfaces.partialkeyimage.html +277 -0
  81. package/docs/interfaces/multisiginterfaces.partialsigningkey.html +277 -0
  82. package/docs/modules/ed25519.html +195 -0
  83. package/docs/modules/extranoncetag.html +208 -0
  84. package/docs/modules/extratag.html +216 -0
  85. package/docs/modules/interfaces.html +231 -0
  86. package/docs/modules/levinpayloads.html +247 -0
  87. package/docs/modules/levinprotocol.html +191 -0
  88. package/docs/modules/multisiginterfaces.html +195 -0
  89. package/docs/modules/transactioninputs.html +208 -0
  90. package/docs/modules/transactionoutputs.html +204 -0
  91. package/index.d.ts +417 -0
  92. package/index.js +1508 -0
  93. package/lib/base58.js +220 -0
  94. package/lib/biginteger.js +1591 -0
  95. package/lib/blocktemplate.js +408 -0
  96. package/lib/crypto.js +19698 -0
  97. package/lib/mnemonic.js +1204 -0
  98. package/lib/nacl-fast-cn.js +608 -0
  99. package/lib/ringsigs.js +24262 -0
  100. package/lib/sha3.js +477 -0
  101. package/package.json +58 -0
  102. package/src/Address.ts +433 -0
  103. package/src/AddressPrefix.ts +117 -0
  104. package/src/Block.ts +556 -0
  105. package/src/BlockTemplate.ts +289 -0
  106. package/src/Common.ts +105 -0
  107. package/src/Config.ts +66 -0
  108. package/src/CryptoNote.ts +1072 -0
  109. package/src/LevinPacket.ts +366 -0
  110. package/src/Multisig.ts +600 -0
  111. package/src/MultisigMessage.ts +374 -0
  112. package/src/ParentBlock.ts +39 -0
  113. package/src/Transaction.ts +628 -0
  114. package/src/Types/ED25519.ts +187 -0
  115. package/src/Types/IExtraNonce.ts +225 -0
  116. package/src/Types/IExtraTag.ts +507 -0
  117. package/src/Types/ITransaction.ts +230 -0
  118. package/src/Types/ITransactionInput.ts +190 -0
  119. package/src/Types/ITransactionOutput.ts +108 -0
  120. package/src/Types/LevinPayloads.ts +1576 -0
  121. package/src/Types/MultisigInterfaces.ts +65 -0
  122. package/src/Types/PortableStorage.ts +289 -0
  123. package/src/Types.ts +36 -0
  124. package/src/index.ts +36 -0
  125. package/test/template.json +6 -0
  126. package/test/test.js +1457 -0
  127. package/tests/blocktemplate.json +6 -0
  128. package/tests/tests.js +215 -0
  129. package/tsconfig.json +15 -0
  130. package/tslint.json +36 -0
  131. package/typedoc.json +10 -0
  132. package/webpack.config.js +15 -0
@@ -0,0 +1,1591 @@
1
+ // Copyright (c) 2009, Matthew Crumley <email@matthewcrumley.com>
2
+ // Copyright (c) 2010-2011, John Tobey <John.Tobey@gmail.com>
3
+ // Copyright (c) 2018, The TurtleCoin Developers
4
+ //
5
+ // Please see the included LICENSE file for more information.
6
+
7
+ /*
8
+ Class: BigInteger
9
+ An arbitrarily-large integer.
10
+
11
+ <BigInteger> objects should be considered immutable. None of the "built-in"
12
+ methods modify *this* or their arguments. All properties should be
13
+ considered private.
14
+
15
+ All the methods of <BigInteger> instances can be called "statically". The
16
+ static versions are convenient if you don't already have a <BigInteger>
17
+ object.
18
+
19
+ As an example, these calls are equivalent.
20
+
21
+ > BigInteger(4).multiply(5); // returns BigInteger(20);
22
+ > BigInteger.multiply(4, 5); // returns BigInteger(20);
23
+
24
+ > var a = 42;
25
+ > var a = BigInteger.toJSValue("0b101010"); // Not completely useless...
26
+ */
27
+
28
+ var CONSTRUCT = {} // Unique token to call "private" version of constructor
29
+
30
+ /*
31
+ Constructor: BigInteger()
32
+ Convert a value to a <BigInteger>.
33
+
34
+ Although <BigInteger()> is the constructor for <BigInteger> objects, it is
35
+ best not to call it as a constructor. If *n* is a <BigInteger> object, it is
36
+ simply returned as-is. Otherwise, <BigInteger()> is equivalent to <parse>
37
+ without a radix argument.
38
+
39
+ > var n0 = BigInteger(); // Same as <BigInteger.ZERO>
40
+ > var n1 = BigInteger("123"); // Create a new <BigInteger> with value 123
41
+ > var n2 = BigInteger(123); // Create a new <BigInteger> with value 123
42
+ > var n3 = BigInteger(n2); // Return n2, unchanged
43
+
44
+ The constructor form only takes an array and a sign. *n* must be an
45
+ array of numbers in little-endian order, where each digit is between 0
46
+ and BigInteger.base. The second parameter sets the sign: -1 for
47
+ negative, +1 for positive, or 0 for zero. The array is *not copied and
48
+ may be modified*. If the array contains only zeros, the sign parameter
49
+ is ignored and is forced to zero.
50
+
51
+ > new BigInteger([5], -1): create a new BigInteger with value -5
52
+
53
+ Parameters:
54
+
55
+ n - Value to convert to a <BigInteger>.
56
+
57
+ Returns:
58
+
59
+ A <BigInteger> value.
60
+
61
+ See Also:
62
+
63
+ <parse>, <BigInteger>
64
+ */
65
+ function BigInteger (n, s, token) {
66
+ this._d = 0
67
+ this._s = 0
68
+
69
+ if (token !== CONSTRUCT) {
70
+ if (n instanceof BigInteger) {
71
+ return n
72
+ } else if (typeof n === 'undefined') {
73
+ return ZERO
74
+ }
75
+ return BigInteger.parse(n)
76
+ }
77
+
78
+ n = n || [] // Provide the nullary constructor for subclasses.
79
+ while (n.length && !n[n.length - 1]) {
80
+ --n.length
81
+ }
82
+ this._d = n
83
+ this._s = n.length ? (s || 1) : 0
84
+ }
85
+
86
+ BigInteger._construct = function (n, s) {
87
+ return new BigInteger(n, s, CONSTRUCT)
88
+ }
89
+
90
+ // Base-10 speedup hacks in parse, toString, exp10 and log functions
91
+ // require base to be a power of 10. 10^7 is the largest such power
92
+ // that won't cause a precision loss when digits are multiplied.
93
+ var bigIntegerBase = 10000000
94
+ var bigIntegerBaseLog10 = 7
95
+
96
+ BigInteger.base = bigIntegerBase
97
+ BigInteger.base_log10 = bigIntegerBaseLog10
98
+
99
+ var ZERO = new BigInteger([], 0, CONSTRUCT)
100
+ // Constant: ZERO
101
+ // <BigInteger> 0.
102
+ BigInteger.ZERO = ZERO
103
+
104
+ var ONE = new BigInteger([1], 1, CONSTRUCT)
105
+ // Constant: ONE
106
+ // <BigInteger> 1.
107
+ BigInteger.ONE = ONE
108
+
109
+ var M_ONE = new BigInteger(ONE._d, -1, CONSTRUCT)
110
+ // Constant: M_ONE
111
+ // <BigInteger> -1.
112
+ BigInteger.M_ONE = M_ONE
113
+
114
+ // Constant: _0
115
+ // Shortcut for <ZERO>.
116
+ BigInteger._0 = ZERO
117
+
118
+ // Constant: _1
119
+ // Shortcut for <ONE>.
120
+ BigInteger._1 = ONE
121
+
122
+ /*
123
+ Constant: small
124
+ Array of <BigIntegers> from 0 to 36.
125
+
126
+ These are used internally for parsing, but useful when you need a "small"
127
+ <BigInteger>.
128
+
129
+ See Also:
130
+
131
+ <ZERO>, <ONE>, <_0>, <_1>
132
+ */
133
+ BigInteger.small = [
134
+ ZERO,
135
+ ONE,
136
+ /* Assuming bigIntegerBase > 36 */
137
+ new BigInteger([2], 1, CONSTRUCT),
138
+ new BigInteger([3], 1, CONSTRUCT),
139
+ new BigInteger([4], 1, CONSTRUCT),
140
+ new BigInteger([5], 1, CONSTRUCT),
141
+ new BigInteger([6], 1, CONSTRUCT),
142
+ new BigInteger([7], 1, CONSTRUCT),
143
+ new BigInteger([8], 1, CONSTRUCT),
144
+ new BigInteger([9], 1, CONSTRUCT),
145
+ new BigInteger([10], 1, CONSTRUCT),
146
+ new BigInteger([11], 1, CONSTRUCT),
147
+ new BigInteger([12], 1, CONSTRUCT),
148
+ new BigInteger([13], 1, CONSTRUCT),
149
+ new BigInteger([14], 1, CONSTRUCT),
150
+ new BigInteger([15], 1, CONSTRUCT),
151
+ new BigInteger([16], 1, CONSTRUCT),
152
+ new BigInteger([17], 1, CONSTRUCT),
153
+ new BigInteger([18], 1, CONSTRUCT),
154
+ new BigInteger([19], 1, CONSTRUCT),
155
+ new BigInteger([20], 1, CONSTRUCT),
156
+ new BigInteger([21], 1, CONSTRUCT),
157
+ new BigInteger([22], 1, CONSTRUCT),
158
+ new BigInteger([23], 1, CONSTRUCT),
159
+ new BigInteger([24], 1, CONSTRUCT),
160
+ new BigInteger([25], 1, CONSTRUCT),
161
+ new BigInteger([26], 1, CONSTRUCT),
162
+ new BigInteger([27], 1, CONSTRUCT),
163
+ new BigInteger([28], 1, CONSTRUCT),
164
+ new BigInteger([29], 1, CONSTRUCT),
165
+ new BigInteger([30], 1, CONSTRUCT),
166
+ new BigInteger([31], 1, CONSTRUCT),
167
+ new BigInteger([32], 1, CONSTRUCT),
168
+ new BigInteger([33], 1, CONSTRUCT),
169
+ new BigInteger([34], 1, CONSTRUCT),
170
+ new BigInteger([35], 1, CONSTRUCT),
171
+ new BigInteger([36], 1, CONSTRUCT)
172
+ ]
173
+
174
+ // Used for parsing/radix conversion
175
+ BigInteger.digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'.split('')
176
+
177
+ /*
178
+ Method: toString
179
+ Convert a <BigInteger> to a string.
180
+
181
+ When *base* is greater than 10, letters are upper case.
182
+
183
+ Parameters:
184
+
185
+ base - Optional base to represent the number in (default is base 10).
186
+ Must be between 2 and 36 inclusive, or an Error will be thrown.
187
+
188
+ Returns:
189
+
190
+ The string representation of the <BigInteger>.
191
+ */
192
+ BigInteger.prototype.toString = function (base) {
193
+ base = +base || 10
194
+ if (base < 2 || base > 36) {
195
+ throw new Error('illegal radix ' + base + '.')
196
+ }
197
+ if (this._s === 0) {
198
+ return '0'
199
+ }
200
+ if (base === 10) {
201
+ var str = this._s < 0 ? '-' : ''
202
+ str += this._d[this._d.length - 1].toString()
203
+ for (var i = this._d.length - 2; i >= 0; i--) {
204
+ var group = this._d[i].toString()
205
+ while (group.length < bigIntegerBaseLog10) group = '0' + group
206
+ str += group
207
+ }
208
+ return str
209
+ } else {
210
+ var numerals = BigInteger.digits
211
+ base = BigInteger.small[base]
212
+ var sign = this._s
213
+
214
+ var n = this.abs()
215
+ var digits = []
216
+ var digit
217
+
218
+ while (n._s !== 0) {
219
+ var divmod = n.divRem(base)
220
+ n = divmod[0]
221
+ digit = divmod[1]
222
+ // TODO: This could be changed to unshift instead of reversing at the end.
223
+ // Benchmark both to compare speeds.
224
+ digits.push(numerals[digit.valueOf()])
225
+ }
226
+ return (sign < 0 ? '-' : '') + digits.reverse().join('')
227
+ }
228
+ }
229
+
230
+ // Verify strings for parsing
231
+ BigInteger.radixRegex = [
232
+ /^$/,
233
+ /^$/,
234
+ /^[01]*$/,
235
+ /^[012]*$/,
236
+ /^[0-3]*$/,
237
+ /^[0-4]*$/,
238
+ /^[0-5]*$/,
239
+ /^[0-6]*$/,
240
+ /^[0-7]*$/,
241
+ /^[0-8]*$/,
242
+ /^[0-9]*$/,
243
+ /^[0-9aA]*$/,
244
+ /^[0-9abAB]*$/,
245
+ /^[0-9abcABC]*$/,
246
+ /^[0-9a-dA-D]*$/,
247
+ /^[0-9a-eA-E]*$/,
248
+ /^[0-9a-fA-F]*$/,
249
+ /^[0-9a-gA-G]*$/,
250
+ /^[0-9a-hA-H]*$/,
251
+ /^[0-9a-iA-I]*$/,
252
+ /^[0-9a-jA-J]*$/,
253
+ /^[0-9a-kA-K]*$/,
254
+ /^[0-9a-lA-L]*$/,
255
+ /^[0-9a-mA-M]*$/,
256
+ /^[0-9a-nA-N]*$/,
257
+ /^[0-9a-oA-O]*$/,
258
+ /^[0-9a-pA-P]*$/,
259
+ /^[0-9a-qA-Q]*$/,
260
+ /^[0-9a-rA-R]*$/,
261
+ /^[0-9a-sA-S]*$/,
262
+ /^[0-9a-tA-T]*$/,
263
+ /^[0-9a-uA-U]*$/,
264
+ /^[0-9a-vA-V]*$/,
265
+ /^[0-9a-wA-W]*$/,
266
+ /^[0-9a-xA-X]*$/,
267
+ /^[0-9a-yA-Y]*$/,
268
+ /^[0-9a-zA-Z]*$/
269
+ ]
270
+
271
+ /*
272
+ Function: parse
273
+ Parse a string into a <BigInteger>.
274
+
275
+ *base* is optional but, if provided, must be from 2 to 36 inclusive. If
276
+ *base* is not provided, it will be guessed based on the leading characters
277
+ of *s* as follows:
278
+
279
+ - "0x" or "0X": *base* = 16
280
+ - "0c" or "0C": *base* = 8
281
+ - "0b" or "0B": *base* = 2
282
+ - else: *base* = 10
283
+
284
+ If no base is provided, or *base* is 10, the number can be in exponential
285
+ form. For example, these are all valid:
286
+
287
+ > BigInteger.parse("1e9"); // Same as "1000000000"
288
+ > BigInteger.parse("1.234*10^3"); // Same as 1234
289
+ > BigInteger.parse("56789 * 10 ** -2"); // Same as 567
290
+
291
+ If any characters fall outside the range defined by the radix, an exception
292
+ will be thrown.
293
+
294
+ Parameters:
295
+
296
+ s - The string to parse.
297
+ base - Optional radix (default is to guess based on *s*).
298
+
299
+ Returns:
300
+
301
+ a <BigInteger> instance.
302
+ */
303
+ BigInteger.parse = function (s, base) {
304
+ // Expands a number in exponential form to decimal form.
305
+ // expandExponential("-13.441*10^5") === "1344100";
306
+ // expandExponential("1.12300e-1") === "0.112300";
307
+ // expandExponential(1000000000000000000000000000000) === "1000000000000000000000000000000";
308
+ function expandExponential (str) {
309
+ str = str.replace(/\s*[*xX]\s*10\s*(\^|\*\*)\s*/, 'e')
310
+
311
+ return str.replace(/^([+-])?(\d+)\.?(\d*)[eE]([+-]?\d+)$/, function (x, s, n, f, c) {
312
+ c = +c
313
+ var l = c < 0
314
+ var i = n.length + c
315
+ x = (l ? n : f).length
316
+ c = ((c = Math.abs(c)) >= x ? c - x + l : 0)
317
+ var z = (new Array(c + 1)).join('0')
318
+ var r = n + f
319
+ var result = (s || '') + (l ? r = z + r : r += z).substr(0, i += l ? z.length : 0) + (i < r.length ? '.' + r.substr(i) : '')
320
+ return result
321
+ })
322
+ }
323
+
324
+ s = s.toString()
325
+ if (typeof base === 'undefined' || +base === 10) {
326
+ s = expandExponential(s)
327
+ }
328
+
329
+ var prefixRE
330
+ if (typeof base === 'undefined') {
331
+ prefixRE = '0[xcb]'
332
+ } else if (base === 16) {
333
+ prefixRE = '0x'
334
+ } else if (base === 8) {
335
+ prefixRE = '0c'
336
+ } else if (base === 2) {
337
+ prefixRE = '0b'
338
+ } else {
339
+ prefixRE = ''
340
+ }
341
+ var parts = new RegExp('^([+\\-]?)(' + prefixRE + ')?([0-9a-z]*)(?:\\.\\d*)?$', 'i').exec(s)
342
+ if (parts) {
343
+ var sign = parts[1] || '+'
344
+ var baseSection = parts[2] || ''
345
+ var digits = parts[3] || ''
346
+
347
+ if (typeof base === 'undefined') {
348
+ // Guess base
349
+ if (baseSection === '0x' || baseSection === '0X') { // Hex
350
+ base = 16
351
+ } else if (baseSection === '0c' || baseSection === '0C') { // Octal
352
+ base = 8
353
+ } else if (baseSection === '0b' || baseSection === '0B') { // Binary
354
+ base = 2
355
+ } else {
356
+ base = 10
357
+ }
358
+ } else if (base < 2 || base > 36) {
359
+ throw new Error('Illegal radix ' + base + '.')
360
+ }
361
+
362
+ base = +base
363
+
364
+ // Check for digits outside the range
365
+ if (!(BigInteger.radixRegex[base].test(digits))) {
366
+ throw new Error('Bad digit for radix ' + base)
367
+ }
368
+
369
+ // Strip leading zeros, and convert to array
370
+ digits = digits.replace(/^0+/, '').split('')
371
+ if (digits.length === 0) {
372
+ return ZERO
373
+ }
374
+
375
+ // Get the sign (we know it's not zero)
376
+ sign = (sign === '-') ? -1 : 1
377
+
378
+ // Optimize 10
379
+ if (base === 10) {
380
+ var d = []
381
+ while (digits.length >= bigIntegerBaseLog10) {
382
+ d.push(parseInt(digits.splice(digits.length - BigInteger.base_log10, BigInteger.base_log10).join(''), 10))
383
+ }
384
+ d.push(parseInt(digits.join(''), 10))
385
+ return new BigInteger(d, sign, CONSTRUCT)
386
+ }
387
+
388
+ // Do the conversion
389
+ d = ZERO
390
+ base = BigInteger.small[base]
391
+ var small = BigInteger.small
392
+ for (var i = 0; i < digits.length; i++) {
393
+ d = d.multiply(base).add(small[parseInt(digits[i], 36)])
394
+ }
395
+ return new BigInteger(d._d, sign, CONSTRUCT)
396
+ } else {
397
+ throw new Error('Invalid BigInteger format: ' + s)
398
+ }
399
+ }
400
+
401
+ /*
402
+ Function: add
403
+ Add two <BigIntegers>.
404
+
405
+ Parameters:
406
+
407
+ n - The number to add to *this*. Will be converted to a <BigInteger>.
408
+
409
+ Returns:
410
+
411
+ The numbers added together.
412
+
413
+ See Also:
414
+
415
+ <subtract>, <multiply>, <quotient>, <next>
416
+ */
417
+ BigInteger.prototype.add = function (n) {
418
+ if (this._s === 0) {
419
+ return new BigInteger(n)
420
+ }
421
+
422
+ n = new BigInteger(n)
423
+ if (n._s === 0) {
424
+ return this
425
+ }
426
+ if (this._s !== n._s) {
427
+ n = n.negate()
428
+ return this.subtract(n)
429
+ }
430
+
431
+ var a = this._d
432
+ var b = n._d
433
+ var al = a.length
434
+ var bl = b.length
435
+ var sum = new Array(Math.max(al, bl) + 1)
436
+ var size = Math.min(al, bl)
437
+ var carry = 0
438
+ var digit
439
+
440
+ for (var i = 0; i < size; i++) {
441
+ digit = a[i] + b[i] + carry
442
+ sum[i] = digit % bigIntegerBase
443
+ carry = (digit / bigIntegerBase) | 0
444
+ }
445
+ if (bl > al) {
446
+ a = b
447
+ al = bl
448
+ }
449
+ for (i = size; carry && i < al; i++) {
450
+ digit = a[i] + carry
451
+ sum[i] = digit % bigIntegerBase
452
+ carry = (digit / bigIntegerBase) | 0
453
+ }
454
+ if (carry) {
455
+ sum[i] = carry
456
+ }
457
+
458
+ for (; i < al; i++) {
459
+ sum[i] = a[i]
460
+ }
461
+
462
+ return new BigInteger(sum, this._s, CONSTRUCT)
463
+ }
464
+
465
+ /*
466
+ Function: negate
467
+ Get the additive inverse of a <BigInteger>.
468
+
469
+ Returns:
470
+
471
+ A <BigInteger> with the same magnatude, but with the opposite sign.
472
+
473
+ See Also:
474
+
475
+ <abs>
476
+ */
477
+ BigInteger.prototype.negate = function () {
478
+ return new BigInteger(this._d, (-this._s) | 0, CONSTRUCT)
479
+ }
480
+
481
+ /*
482
+ Function: abs
483
+ Get the absolute value of a <BigInteger>.
484
+
485
+ Returns:
486
+
487
+ A <BigInteger> with the same magnatude, but always positive (or zero).
488
+
489
+ See Also:
490
+
491
+ <negate>
492
+ */
493
+ BigInteger.prototype.abs = function () {
494
+ return (this._s < 0) ? this.negate() : this
495
+ }
496
+
497
+ /*
498
+ Function: subtract
499
+ Subtract two <BigIntegers>.
500
+
501
+ Parameters:
502
+
503
+ n - The number to subtract from *this*. Will be converted to a <BigInteger>.
504
+
505
+ Returns:
506
+
507
+ The *n* subtracted from *this*.
508
+
509
+ See Also:
510
+
511
+ <add>, <multiply>, <quotient>, <prev>
512
+ */
513
+ BigInteger.prototype.subtract = function (n) {
514
+ if (this._s === 0) {
515
+ return new BigInteger(n).negate()
516
+ }
517
+
518
+ n = new BigInteger(n)
519
+ if (n._s === 0) {
520
+ return this
521
+ }
522
+ if (this._s !== n._s) {
523
+ n = n.negate()
524
+ return this.add(n)
525
+ }
526
+
527
+ var m = this
528
+ // negative - negative => -|a| - -|b| => -|a| + |b| => |b| - |a|
529
+ if (this._s < 0) {
530
+ m = new BigInteger(n._d, 1, CONSTRUCT)
531
+ n = new BigInteger(this._d, 1, CONSTRUCT)
532
+ }
533
+
534
+ // Both are positive => a - b
535
+ var sign = m.compareAbs(n)
536
+ if (sign === 0) {
537
+ return ZERO
538
+ } else if (sign < 0) {
539
+ // swap m and n
540
+ var t = n
541
+ n = m
542
+ m = t
543
+ }
544
+
545
+ // a > b
546
+ var a = m._d
547
+ var b = n._d
548
+ var al = a.length
549
+ var bl = b.length
550
+ var diff = new Array(al) // al >= bl since a > b
551
+ var borrow = 0
552
+ var i
553
+ var digit
554
+
555
+ for (i = 0; i < bl; i++) {
556
+ digit = a[i] - borrow - b[i]
557
+ if (digit < 0) {
558
+ digit += bigIntegerBase
559
+ borrow = 1
560
+ } else {
561
+ borrow = 0
562
+ }
563
+ diff[i] = digit
564
+ }
565
+ for (i = bl; i < al; i++) {
566
+ digit = a[i] - borrow
567
+ if (digit < 0) {
568
+ digit += bigIntegerBase
569
+ } else {
570
+ diff[i++] = digit
571
+ break
572
+ }
573
+ diff[i] = digit
574
+ }
575
+ for (; i < al; i++) {
576
+ diff[i] = a[i]
577
+ }
578
+
579
+ return new BigInteger(diff, sign, CONSTRUCT)
580
+ };
581
+
582
+ (function () {
583
+ function addOne (n, sign) {
584
+ var a = n._d
585
+ var sum = a.slice()
586
+ var i = 0
587
+
588
+ while (true) {
589
+ var digit = (a[i] || 0) + 1
590
+ sum[i] = digit % bigIntegerBase
591
+ if (digit <= bigIntegerBase - 1) {
592
+ break
593
+ }
594
+ ++i
595
+ }
596
+
597
+ return new BigInteger(sum, sign, CONSTRUCT)
598
+ }
599
+
600
+ function subtractOne (n, sign) {
601
+ var a = n._d
602
+ var sum = a.slice()
603
+ var i = 0
604
+
605
+ while (true) {
606
+ var digit = (a[i] || 0) - 1
607
+ if (digit < 0) {
608
+ sum[i] = digit + bigIntegerBase
609
+ } else {
610
+ sum[i] = digit
611
+ break
612
+ }
613
+ ++i
614
+ }
615
+
616
+ return new BigInteger(sum, sign, CONSTRUCT)
617
+ }
618
+
619
+ /*
620
+ Function: next
621
+ Get the next <BigInteger> (add one).
622
+
623
+ Returns:
624
+
625
+ *this* + 1.
626
+
627
+ See Also:
628
+
629
+ <add>, <prev>
630
+ */
631
+ BigInteger.prototype.next = function () {
632
+ switch (this._s) {
633
+ case 0:
634
+ return ONE
635
+ case -1:
636
+ return subtractOne(this, -1)
637
+ // case 1:
638
+ default:
639
+ return addOne(this, 1)
640
+ }
641
+ }
642
+
643
+ /*
644
+ Function: prev
645
+ Get the previous <BigInteger> (subtract one).
646
+
647
+ Returns:
648
+
649
+ *this* - 1.
650
+
651
+ See Also:
652
+
653
+ <next>, <subtract>
654
+ */
655
+ BigInteger.prototype.prev = function () {
656
+ switch (this._s) {
657
+ case 0:
658
+ return M_ONE
659
+ case -1:
660
+ return addOne(this, -1)
661
+ // case 1:
662
+ default:
663
+ return subtractOne(this, 1)
664
+ }
665
+ }
666
+ })()
667
+
668
+ /*
669
+ Function: compareAbs
670
+ Compare the absolute value of two <BigIntegers>.
671
+
672
+ Calling <compareAbs> is faster than calling <abs> twice, then <compare>.
673
+
674
+ Parameters:
675
+
676
+ n - The number to compare to *this*. Will be converted to a <BigInteger>.
677
+
678
+ Returns:
679
+
680
+ -1, 0, or +1 if *|this|* is less than, equal to, or greater than *|n|*.
681
+
682
+ See Also:
683
+
684
+ <compare>, <abs>
685
+ */
686
+ BigInteger.prototype.compareAbs = function (n) {
687
+ if (this === n) {
688
+ return 0
689
+ }
690
+
691
+ if (!(n instanceof BigInteger)) {
692
+ if (!isFinite(n)) {
693
+ return (isNaN(n) ? n : -1)
694
+ }
695
+ n = new BigInteger(n)
696
+ }
697
+
698
+ if (this._s === 0) {
699
+ return (n._s !== 0) ? -1 : 0
700
+ }
701
+ if (n._s === 0) {
702
+ return 1
703
+ }
704
+
705
+ var l = this._d.length
706
+ var nl = n._d.length
707
+ if (l < nl) {
708
+ return -1
709
+ } else if (l > nl) {
710
+ return 1
711
+ }
712
+
713
+ var a = this._d
714
+ var b = n._d
715
+ for (var i = l - 1; i >= 0; i--) {
716
+ if (a[i] !== b[i]) {
717
+ return a[i] < b[i] ? -1 : 1
718
+ }
719
+ }
720
+
721
+ return 0
722
+ }
723
+
724
+ /*
725
+ Function: compare
726
+ Compare two <BigIntegers>.
727
+
728
+ Parameters:
729
+
730
+ n - The number to compare to *this*. Will be converted to a <BigInteger>.
731
+
732
+ Returns:
733
+
734
+ -1, 0, or +1 if *this* is less than, equal to, or greater than *n*.
735
+
736
+ See Also:
737
+
738
+ <compareAbs>, <isPositive>, <isNegative>, <isUnit>
739
+ */
740
+ BigInteger.prototype.compare = function (n) {
741
+ if (this === n) {
742
+ return 0
743
+ }
744
+
745
+ n = new BigInteger(n)
746
+
747
+ if (this._s === 0) {
748
+ return -n._s
749
+ }
750
+
751
+ if (this._s === n._s) { // both positive or both negative
752
+ var cmp = this.compareAbs(n)
753
+ return cmp * this._s
754
+ } else {
755
+ return this._s
756
+ }
757
+ }
758
+
759
+ /*
760
+ Function: isUnit
761
+ Return true iff *this* is either 1 or -1.
762
+
763
+ Returns:
764
+
765
+ true if *this* compares equal to <BigInteger.ONE> or <BigInteger.M_ONE>.
766
+
767
+ See Also:
768
+
769
+ <isZero>, <isNegative>, <isPositive>, <compareAbs>, <compare>,
770
+ <BigInteger.ONE>, <BigInteger.M_ONE>
771
+ */
772
+ BigInteger.prototype.isUnit = function () {
773
+ return this === ONE ||
774
+ this === M_ONE ||
775
+ (this._d.length === 1 && this._d[0] === 1)
776
+ }
777
+
778
+ /*
779
+ Function: multiply
780
+ Multiply two <BigIntegers>.
781
+
782
+ Parameters:
783
+
784
+ n - The number to multiply *this* by. Will be converted to a
785
+ <BigInteger>.
786
+
787
+ Returns:
788
+
789
+ The numbers multiplied together.
790
+
791
+ See Also:
792
+
793
+ <add>, <subtract>, <quotient>, <square>
794
+ */
795
+ BigInteger.prototype.multiply = function (n) {
796
+ // TODO: Consider adding Karatsuba multiplication for large numbers
797
+ if (this._s === 0) {
798
+ return ZERO
799
+ }
800
+
801
+ n = new BigInteger(n)
802
+ if (n._s === 0) {
803
+ return ZERO
804
+ }
805
+ if (this.isUnit()) {
806
+ if (this._s < 0) {
807
+ return n.negate()
808
+ }
809
+ return n
810
+ }
811
+ if (n.isUnit()) {
812
+ if (n._s < 0) {
813
+ return this.negate()
814
+ }
815
+ return this
816
+ }
817
+ if (this === n) {
818
+ return this.square()
819
+ }
820
+
821
+ var r = (this._d.length >= n._d.length)
822
+ var a = (r ? this : n)._d // a will be longer than b
823
+ var b = (r ? n : this)._d
824
+ var al = a.length
825
+ var bl = b.length
826
+
827
+ var pl = al + bl
828
+ var partial = new Array(pl)
829
+ var i
830
+ for (i = 0; i < pl; i++) {
831
+ partial[i] = 0
832
+ }
833
+
834
+ for (i = 0; i < bl; i++) {
835
+ var carry = 0
836
+ var bi = b[i]
837
+ var jlimit = al + i
838
+ var digit
839
+ for (var j = i; j < jlimit; j++) {
840
+ digit = partial[j] + bi * a[j - i] + carry
841
+ carry = (digit / bigIntegerBase) | 0
842
+ partial[j] = (digit % bigIntegerBase) | 0
843
+ }
844
+ if (carry) {
845
+ digit = partial[j] + carry
846
+ carry = (digit / bigIntegerBase) | 0
847
+ partial[j] = digit % bigIntegerBase
848
+ }
849
+ }
850
+ return new BigInteger(partial, this._s * n._s, CONSTRUCT)
851
+ }
852
+
853
+ // Multiply a BigInteger by a single-digit native number
854
+ // Assumes that this and n are >= 0
855
+ // This is not really intended to be used outside the library itself
856
+ BigInteger.prototype.multiplySingleDigit = function (n) {
857
+ if (n === 0 || this._s === 0) {
858
+ return ZERO
859
+ }
860
+ if (n === 1) {
861
+ return this
862
+ }
863
+
864
+ var digit
865
+ if (this._d.length === 1) {
866
+ digit = this._d[0] * n
867
+ if (digit >= bigIntegerBase) {
868
+ return new BigInteger([(digit % bigIntegerBase) | 0,
869
+ (digit / bigIntegerBase) | 0], 1, CONSTRUCT)
870
+ }
871
+ return new BigInteger([digit], 1, CONSTRUCT)
872
+ }
873
+
874
+ if (n === 2) {
875
+ return this.add(this)
876
+ }
877
+ if (this.isUnit()) {
878
+ return new BigInteger([n], 1, CONSTRUCT)
879
+ }
880
+
881
+ var a = this._d
882
+ var al = a.length
883
+
884
+ var pl = al + 1
885
+ var partial = new Array(pl)
886
+ for (var i = 0; i < pl; i++) {
887
+ partial[i] = 0
888
+ }
889
+
890
+ var carry = 0
891
+ for (var j = 0; j < al; j++) {
892
+ digit = n * a[j] + carry
893
+ carry = (digit / bigIntegerBase) | 0
894
+ partial[j] = (digit % bigIntegerBase) | 0
895
+ }
896
+ if (carry) {
897
+ partial[j] = carry
898
+ }
899
+
900
+ return new BigInteger(partial, 1, CONSTRUCT)
901
+ }
902
+
903
+ /*
904
+ Function: square
905
+ Multiply a <BigInteger> by itself.
906
+
907
+ This is slightly faster than regular multiplication, since it removes the
908
+ duplicated multiplcations.
909
+
910
+ Returns:
911
+
912
+ > this.multiply(this)
913
+
914
+ See Also:
915
+ <multiply>
916
+ */
917
+ BigInteger.prototype.square = function () {
918
+ // Normally, squaring a 10-digit number would take 100 multiplications.
919
+ // Of these 10 are unique diagonals, of the remaining 90 (100-10), 45 are repeated.
920
+ // This procedure saves (N*(N-1))/2 multiplications, (e.g., 45 of 100 multiplies).
921
+ // Based on code by Gary Darby, Intellitech Systems Inc., www.DelphiForFun.org
922
+
923
+ if (this._s === 0) {
924
+ return ZERO
925
+ }
926
+ if (this.isUnit()) {
927
+ return ONE
928
+ }
929
+
930
+ var digits = this._d
931
+ var length = digits.length
932
+ var imult1 = new Array(length + length + 1)
933
+ var product, carry, k
934
+ var i
935
+
936
+ // Calculate diagonal
937
+ for (i = 0; i < length; i++) {
938
+ k = i * 2
939
+ product = digits[i] * digits[i]
940
+ carry = (product / bigIntegerBase) | 0
941
+ imult1[k] = product % bigIntegerBase
942
+ imult1[k + 1] = carry
943
+ }
944
+
945
+ // Calculate repeating part
946
+ for (i = 0; i < length; i++) {
947
+ carry = 0
948
+ k = i * 2 + 1
949
+ for (var j = i + 1; j < length; j++, k++) {
950
+ product = digits[j] * digits[i] * 2 + imult1[k] + carry
951
+ carry = (product / bigIntegerBase) | 0
952
+ imult1[k] = product % bigIntegerBase
953
+ }
954
+ k = length + i
955
+ var digit = carry + imult1[k]
956
+ carry = (digit / bigIntegerBase) | 0
957
+ imult1[k] = digit % bigIntegerBase
958
+ imult1[k + 1] += carry
959
+ }
960
+
961
+ return new BigInteger(imult1, 1, CONSTRUCT)
962
+ }
963
+
964
+ /*
965
+ Function: quotient
966
+ Divide two <BigIntegers> and truncate towards zero.
967
+
968
+ <quotient> throws an exception if *n* is zero.
969
+
970
+ Parameters:
971
+
972
+ n - The number to divide *this* by. Will be converted to a <BigInteger>.
973
+
974
+ Returns:
975
+
976
+ The *this* / *n*, truncated to an integer.
977
+
978
+ See Also:
979
+
980
+ <add>, <subtract>, <multiply>, <divRem>, <remainder>
981
+ */
982
+ BigInteger.prototype.quotient = function (n) {
983
+ return this.divRem(n)[0]
984
+ }
985
+
986
+ /*
987
+ Function: divide
988
+ Deprecated synonym for <quotient>.
989
+ */
990
+ BigInteger.prototype.divide = BigInteger.prototype.quotient
991
+
992
+ /*
993
+ Function: remainder
994
+ Calculate the remainder of two <BigIntegers>.
995
+
996
+ <remainder> throws an exception if *n* is zero.
997
+
998
+ Parameters:
999
+
1000
+ n - The remainder after *this* is divided *this* by *n*. Will be
1001
+ converted to a <BigInteger>.
1002
+
1003
+ Returns:
1004
+
1005
+ *this* % *n*.
1006
+
1007
+ See Also:
1008
+
1009
+ <divRem>, <quotient>
1010
+ */
1011
+ BigInteger.prototype.remainder = function (n) {
1012
+ return this.divRem(n)[1]
1013
+ }
1014
+
1015
+ /*
1016
+ Function: divRem
1017
+ Calculate the integer quotient and remainder of two <BigIntegers>.
1018
+
1019
+ <divRem> throws an exception if *n* is zero.
1020
+
1021
+ Parameters:
1022
+
1023
+ n - The number to divide *this* by. Will be converted to a <BigInteger>.
1024
+
1025
+ Returns:
1026
+
1027
+ A two-element array containing the quotient and the remainder.
1028
+
1029
+ > a.divRem(b)
1030
+
1031
+ is exactly equivalent to
1032
+
1033
+ > [a.quotient(b), a.remainder(b)]
1034
+
1035
+ except it is faster, because they are calculated at the same time.
1036
+
1037
+ See Also:
1038
+
1039
+ <quotient>, <remainder>
1040
+ */
1041
+ BigInteger.prototype.divRem = function (n) {
1042
+ n = new BigInteger(n)
1043
+ if (n._s === 0) {
1044
+ throw new Error('Divide by zero')
1045
+ }
1046
+ if (this._s === 0) {
1047
+ return [ZERO, ZERO]
1048
+ }
1049
+ if (n._d.length === 1) {
1050
+ return this.divRemSmall(n._s * n._d[0])
1051
+ }
1052
+
1053
+ // Test for easy cases -- |n1| <= |n2|
1054
+ switch (this.compareAbs(n)) {
1055
+ case 0: // n1 === n2
1056
+ return [this._s === n._s ? ONE : M_ONE, ZERO]
1057
+ case -1: // |n1| < |n2|
1058
+ return [ZERO, this]
1059
+ }
1060
+
1061
+ var sign = this._s * n._s
1062
+ var a = n.abs()
1063
+ var bDigits = this._d
1064
+ var bIndex = bDigits.length
1065
+ var quot = []
1066
+ var guess
1067
+
1068
+ var part = new BigInteger([], 0, CONSTRUCT)
1069
+
1070
+ while (bIndex) {
1071
+ part._d.unshift(bDigits[--bIndex])
1072
+ part = new BigInteger(part._d, 1, CONSTRUCT)
1073
+
1074
+ if (part.compareAbs(n) < 0) {
1075
+ quot.push(0)
1076
+ continue
1077
+ }
1078
+ if (part._s === 0) {
1079
+ guess = 0
1080
+ } else {
1081
+ var xlen = part._d.length
1082
+ var ylen = a._d.length
1083
+ var highx = part._d[xlen - 1] * bigIntegerBase + part._d[xlen - 2]
1084
+ var highy = a._d[ylen - 1] * bigIntegerBase + a._d[ylen - 2]
1085
+ if (part._d.length > a._d.length) {
1086
+ // The length of part._d can either match a._d length,
1087
+ // or exceed it by one.
1088
+ highx = (highx + 1) * bigIntegerBase
1089
+ }
1090
+ guess = Math.ceil(highx / highy)
1091
+ }
1092
+ do {
1093
+ var check = a.multiplySingleDigit(guess)
1094
+ if (check.compareAbs(part) <= 0) {
1095
+ break
1096
+ }
1097
+ guess--
1098
+ } while (guess)
1099
+
1100
+ quot.push(guess)
1101
+ if (!guess) {
1102
+ continue
1103
+ }
1104
+ var diff = part.subtract(check)
1105
+ part._d = diff._d.slice()
1106
+ }
1107
+
1108
+ return [new BigInteger(quot.reverse(), sign, CONSTRUCT),
1109
+ new BigInteger(part._d, this._s, CONSTRUCT)]
1110
+ }
1111
+
1112
+ // Throws an exception if n is outside of (-BigInteger.base, -1] or
1113
+ // [1, BigInteger.base). It's not necessary to call this, since the
1114
+ // other division functions will call it if they are able to.
1115
+ BigInteger.prototype.divRemSmall = function (n) {
1116
+ var r
1117
+ n = +n
1118
+ if (n === 0) {
1119
+ throw new Error('Divide by zero')
1120
+ }
1121
+
1122
+ var ns = n < 0 ? -1 : 1
1123
+ var sign = this._s * ns
1124
+ n = Math.abs(n)
1125
+
1126
+ if (n < 1 || n >= bigIntegerBase) {
1127
+ throw new Error('Argument out of range')
1128
+ }
1129
+
1130
+ if (this._s === 0) {
1131
+ return [ZERO, ZERO]
1132
+ }
1133
+
1134
+ if (n === 1 || n === -1) {
1135
+ return [(sign === 1) ? this.abs() : new BigInteger(this._d, sign, CONSTRUCT), ZERO]
1136
+ }
1137
+
1138
+ // 2 <= n < bigIntegerBase
1139
+
1140
+ // divide a single digit by a single digit
1141
+ if (this._d.length === 1) {
1142
+ var q = new BigInteger([(this._d[0] / n) | 0], 1, CONSTRUCT)
1143
+ r = new BigInteger([(this._d[0] % n) | 0], 1, CONSTRUCT)
1144
+ if (sign < 0) {
1145
+ q = q.negate()
1146
+ }
1147
+ if (this._s < 0) {
1148
+ r = r.negate()
1149
+ }
1150
+ return [q, r]
1151
+ }
1152
+
1153
+ var digits = this._d.slice()
1154
+ var quot = new Array(digits.length)
1155
+ var part = 0
1156
+ var diff = 0
1157
+ var i = 0
1158
+ var guess
1159
+
1160
+ while (digits.length) {
1161
+ part = part * bigIntegerBase + digits[digits.length - 1]
1162
+ if (part < n) {
1163
+ quot[i++] = 0
1164
+ digits.pop()
1165
+ diff = bigIntegerBase * diff + part
1166
+ continue
1167
+ }
1168
+ if (part === 0) {
1169
+ guess = 0
1170
+ } else {
1171
+ guess = (part / n) | 0
1172
+ }
1173
+
1174
+ var check = n * guess
1175
+ diff = part - check
1176
+ quot[i++] = guess
1177
+ if (!guess) {
1178
+ digits.pop()
1179
+ continue
1180
+ }
1181
+
1182
+ digits.pop()
1183
+ part = diff
1184
+ }
1185
+
1186
+ r = new BigInteger([diff], 1, CONSTRUCT)
1187
+ if (this._s < 0) {
1188
+ r = r.negate()
1189
+ }
1190
+ return [new BigInteger(quot.reverse(), sign, CONSTRUCT), r]
1191
+ }
1192
+
1193
+ /*
1194
+ Function: isEven
1195
+ Return true iff *this* is divisible by two.
1196
+
1197
+ Note that <BigInteger.ZERO> is even.
1198
+
1199
+ Returns:
1200
+
1201
+ true if *this* is even, false otherwise.
1202
+
1203
+ See Also:
1204
+
1205
+ <isOdd>
1206
+ */
1207
+ BigInteger.prototype.isEven = function () {
1208
+ var digits = this._d
1209
+ return this._s === 0 || digits.length === 0 || (digits[0] % 2) === 0
1210
+ }
1211
+
1212
+ /*
1213
+ Function: isOdd
1214
+ Return true iff *this* is not divisible by two.
1215
+
1216
+ Returns:
1217
+
1218
+ true if *this* is odd, false otherwise.
1219
+
1220
+ See Also:
1221
+
1222
+ <isEven>
1223
+ */
1224
+ BigInteger.prototype.isOdd = function () {
1225
+ return !this.isEven()
1226
+ }
1227
+
1228
+ /*
1229
+ Function: sign
1230
+ Get the sign of a <BigInteger>.
1231
+
1232
+ Returns:
1233
+
1234
+ * -1 if *this* < 0
1235
+ * 0 if *this* === 0
1236
+ * +1 if *this* > 0
1237
+
1238
+ See Also:
1239
+
1240
+ <isZero>, <isPositive>, <isNegative>, <compare>, <BigInteger.ZERO>
1241
+ */
1242
+ BigInteger.prototype.sign = function () {
1243
+ return this._s
1244
+ }
1245
+
1246
+ /*
1247
+ Function: isPositive
1248
+ Return true iff *this* > 0.
1249
+
1250
+ Returns:
1251
+
1252
+ true if *this*.compare(<BigInteger.ZERO>) === 1.
1253
+
1254
+ See Also:
1255
+
1256
+ <sign>, <isZero>, <isNegative>, <isUnit>, <compare>, <BigInteger.ZERO>
1257
+ */
1258
+ BigInteger.prototype.isPositive = function () {
1259
+ return this._s > 0
1260
+ }
1261
+
1262
+ /*
1263
+ Function: isNegative
1264
+ Return true iff *this* < 0.
1265
+
1266
+ Returns:
1267
+
1268
+ true if *this*.compare(<BigInteger.ZERO>) === -1.
1269
+
1270
+ See Also:
1271
+
1272
+ <sign>, <isPositive>, <isZero>, <isUnit>, <compare>, <BigInteger.ZERO>
1273
+ */
1274
+ BigInteger.prototype.isNegative = function () {
1275
+ return this._s < 0
1276
+ }
1277
+
1278
+ /*
1279
+ Function: isZero
1280
+ Return true iff *this* === 0.
1281
+
1282
+ Returns:
1283
+
1284
+ true if *this*.compare(<BigInteger.ZERO>) === 0.
1285
+
1286
+ See Also:
1287
+
1288
+ <sign>, <isPositive>, <isNegative>, <isUnit>, <BigInteger.ZERO>
1289
+ */
1290
+ BigInteger.prototype.isZero = function () {
1291
+ return this._s === 0
1292
+ }
1293
+
1294
+ /*
1295
+ Function: exp10
1296
+ Multiply a <BigInteger> by a power of 10.
1297
+
1298
+ This is equivalent to, but faster than
1299
+
1300
+ > if (n >= 0) {
1301
+ > return this.multiply(BigInteger("1e" + n));
1302
+ > }
1303
+ > else { // n <= 0
1304
+ > return this.quotient(BigInteger("1e" + -n));
1305
+ > }
1306
+
1307
+ Parameters:
1308
+
1309
+ n - The power of 10 to multiply *this* by. *n* is converted to a
1310
+ javascipt number and must be no greater than <BigInteger.MAX_EXP>
1311
+ (0x7FFFFFFF), or an exception will be thrown.
1312
+
1313
+ Returns:
1314
+
1315
+ *this* * (10 ** *n*), truncated to an integer if necessary.
1316
+
1317
+ See Also:
1318
+
1319
+ <pow>, <multiply>
1320
+ */
1321
+ BigInteger.prototype.exp10 = function (n) {
1322
+ n = +n
1323
+ if (n === 0) {
1324
+ return this
1325
+ }
1326
+ if (Math.abs(n) > Number(MAX_EXP)) {
1327
+ throw new Error('exponent too large in BigInteger.exp10')
1328
+ }
1329
+ // Optimization for this === 0. This also keeps us from having to trim zeros in the positive n case
1330
+ if (this._s === 0) {
1331
+ return ZERO
1332
+ }
1333
+ if (n > 0) {
1334
+ var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT)
1335
+
1336
+ for (; n >= bigIntegerBaseLog10; n -= bigIntegerBaseLog10) {
1337
+ k._d.unshift(0)
1338
+ }
1339
+ if (n === 0) { return k }
1340
+ k._s = 1
1341
+ k = k.multiplySingleDigit(Math.pow(10, n))
1342
+ return (this._s < 0 ? k.negate() : k)
1343
+ } else if (-n >= this._d.length * bigIntegerBaseLog10) {
1344
+ return ZERO
1345
+ } else {
1346
+ k = new BigInteger(this._d.slice(), this._s, CONSTRUCT)
1347
+
1348
+ for (n = -n; n >= bigIntegerBaseLog10; n -= bigIntegerBaseLog10) {
1349
+ k._d.shift()
1350
+ }
1351
+ return (n === 0) ? k : k.divRemSmall(Math.pow(10, n))[0]
1352
+ }
1353
+ }
1354
+
1355
+ /*
1356
+ Function: pow
1357
+ Raise a <BigInteger> to a power.
1358
+
1359
+ In this implementation, 0**0 is 1.
1360
+
1361
+ Parameters:
1362
+
1363
+ n - The exponent to raise *this* by. *n* must be no greater than
1364
+ <BigInteger.MAX_EXP> (0x7FFFFFFF), or an exception will be thrown.
1365
+
1366
+ Returns:
1367
+
1368
+ *this* raised to the *nth* power.
1369
+
1370
+ See Also:
1371
+
1372
+ <modPow>
1373
+ */
1374
+ BigInteger.prototype.pow = function (n) {
1375
+ if (this.isUnit()) {
1376
+ if (this._s > 0) {
1377
+ return this
1378
+ } else {
1379
+ return new BigInteger(n).isOdd() ? this : this.negate()
1380
+ }
1381
+ }
1382
+
1383
+ n = new BigInteger(n)
1384
+ if (n._s === 0) {
1385
+ return ONE
1386
+ } else if (n._s < 0) {
1387
+ if (this._s === 0) {
1388
+ throw new Error('Divide by zero')
1389
+ } else {
1390
+ return ZERO
1391
+ }
1392
+ }
1393
+ if (this._s === 0) {
1394
+ return ZERO
1395
+ }
1396
+ if (n.isUnit()) {
1397
+ return this
1398
+ }
1399
+
1400
+ if (n.compareAbs(MAX_EXP) > 0) {
1401
+ throw new Error('exponent too large in BigInteger.pow')
1402
+ }
1403
+ var x = this
1404
+ var aux = ONE
1405
+ var two = BigInteger.small[2]
1406
+
1407
+ while (n.isPositive()) {
1408
+ if (n.isOdd()) {
1409
+ aux = aux.multiply(x)
1410
+ if (n.isUnit()) {
1411
+ return aux
1412
+ }
1413
+ }
1414
+ x = x.square()
1415
+ n = n.quotient(two)
1416
+ }
1417
+
1418
+ return aux
1419
+ }
1420
+
1421
+ /*
1422
+ Function: modPow
1423
+ Raise a <BigInteger> to a power (mod m).
1424
+
1425
+ Because it is reduced by a modulus, <modPow> is not limited by
1426
+ <BigInteger.MAX_EXP> like <pow>.
1427
+
1428
+ Parameters:
1429
+
1430
+ exponent - The exponent to raise *this* by. Must be positive.
1431
+ modulus - The modulus.
1432
+
1433
+ Returns:
1434
+
1435
+ *this* ^ *exponent* (mod *modulus*).
1436
+
1437
+ See Also:
1438
+
1439
+ <pow>, <mod>
1440
+ */
1441
+ BigInteger.prototype.modPow = function (exponent, modulus) {
1442
+ var result = ONE
1443
+ var base = this
1444
+
1445
+ while (exponent.isPositive()) {
1446
+ if (exponent.isOdd()) {
1447
+ result = result.multiply(base).remainder(modulus)
1448
+ }
1449
+
1450
+ exponent = exponent.quotient(BigInteger.small[2])
1451
+ if (exponent.isPositive()) {
1452
+ base = base.square().remainder(modulus)
1453
+ }
1454
+ }
1455
+
1456
+ return result
1457
+ }
1458
+
1459
+ /*
1460
+ Function: log
1461
+ Get the natural logarithm of a <BigInteger> as a native JavaScript number.
1462
+
1463
+ This is equivalent to
1464
+
1465
+ > Math.log(this.toJSValue())
1466
+
1467
+ but handles values outside of the native number range.
1468
+
1469
+ Returns:
1470
+
1471
+ log( *this* )
1472
+
1473
+ See Also:
1474
+
1475
+ <toJSValue>
1476
+ */
1477
+ BigInteger.prototype.log = function () {
1478
+ switch (this._s) {
1479
+ case 0: return -Infinity
1480
+ case -1: return NaN
1481
+ default: // Fall through.
1482
+ }
1483
+
1484
+ var l = this._d.length
1485
+
1486
+ if (l * bigIntegerBaseLog10 < 30) {
1487
+ return Math.log(this.valueOf())
1488
+ }
1489
+
1490
+ var N = Math.ceil(30 / bigIntegerBaseLog10)
1491
+ var firstNdigits = this._d.slice(l - N)
1492
+ return Math.log((new BigInteger(firstNdigits, 1, CONSTRUCT)).valueOf()) + (l - N) * Math.log(bigIntegerBase)
1493
+ }
1494
+
1495
+ /*
1496
+ Function: valueOf
1497
+ Convert a <BigInteger> to a native JavaScript integer.
1498
+
1499
+ This is called automatically by JavaScipt to convert a <BigInteger> to a
1500
+ native value.
1501
+
1502
+ Returns:
1503
+
1504
+ > parseInt(this.toString(), 10)
1505
+
1506
+ See Also:
1507
+
1508
+ <toString>, <toJSValue>
1509
+ */
1510
+ BigInteger.prototype.valueOf = function () {
1511
+ return parseInt(this.toString(), 10)
1512
+ }
1513
+
1514
+ /*
1515
+ Function: toJSValue
1516
+ Convert a <BigInteger> to a native JavaScript integer.
1517
+
1518
+ This is the same as valueOf, but more explicitly named.
1519
+
1520
+ Returns:
1521
+
1522
+ > parseInt(this.toString(), 10)
1523
+
1524
+ See Also:
1525
+
1526
+ <toString>, <valueOf>
1527
+ */
1528
+ BigInteger.prototype.toJSValue = function () {
1529
+ return parseInt(this.toString(), 10)
1530
+ }
1531
+
1532
+ /*
1533
+ Function: lowVal
1534
+ Author: Lucas Jones
1535
+ */
1536
+ BigInteger.prototype.lowVal = function () {
1537
+ return this._d[0] || 0
1538
+ }
1539
+
1540
+ var MAX_EXP = new BigInteger(0x7FFFFFFF)
1541
+ // Constant: MAX_EXP
1542
+ // The largest exponent allowed in <pow> and <exp10> (0x7FFFFFFF or 2147483647).
1543
+ BigInteger.MAX_EXP = MAX_EXP;
1544
+
1545
+ (function () {
1546
+ function makeUnary (fn) {
1547
+ return function (a) {
1548
+ return fn.call(new BigInteger(a))
1549
+ }
1550
+ }
1551
+
1552
+ function makeBinary (fn) {
1553
+ return function (a, b) {
1554
+ return fn.call(new BigInteger(a), new BigInteger(b))
1555
+ }
1556
+ }
1557
+
1558
+ function makeTrinary (fn) {
1559
+ return function (a, b, c) {
1560
+ return fn.call(new BigInteger(a), new BigInteger(b), new BigInteger(c))
1561
+ }
1562
+ }
1563
+
1564
+ (function () {
1565
+ var i, fn
1566
+ var unary = 'toJSValue,isEven,isOdd,sign,isZero,isNegative,abs,isUnit,square,negate,isPositive,toString,next,prev,log'.split(',')
1567
+ var binary = 'compare,remainder,divRem,subtract,add,quotient,divide,multiply,pow,compareAbs'.split(',')
1568
+ var trinary = ['modPow']
1569
+
1570
+ for (i = 0; i < unary.length; i++) {
1571
+ fn = unary[i]
1572
+ BigInteger[fn] = makeUnary(BigInteger.prototype[fn])
1573
+ }
1574
+
1575
+ for (i = 0; i < binary.length; i++) {
1576
+ fn = binary[i]
1577
+ BigInteger[fn] = makeBinary(BigInteger.prototype[fn])
1578
+ }
1579
+
1580
+ for (i = 0; i < trinary.length; i++) {
1581
+ fn = trinary[i]
1582
+ BigInteger[fn] = makeTrinary(BigInteger.prototype[fn])
1583
+ }
1584
+
1585
+ BigInteger.exp10 = function (x, n) {
1586
+ return new BigInteger(x).exp10(n)
1587
+ }
1588
+ })()
1589
+ })()
1590
+
1591
+ module.exports = BigInteger