@langgraph-js/sdk 1.1.4 → 1.1.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,163 +1,163 @@
1
- # @langgraph-js/sdk
2
-
3
- ![npm version](https://img.shields.io/npm/v/@langgraph-js/sdk)
4
- ![license](https://img.shields.io/npm/l/@langgraph-js/sdk)
5
-
6
- > The missing UI SDK for LangGraph - seamlessly integrate your AI agents with frontend interfaces
7
-
8
- ## Why @langgraph-js/sdk?
9
-
10
- Building AI agent applications is complex, especially when you need to bridge the gap between LangGraph agents and interactive user interfaces. This SDK solves the critical challenges of frontend integration:
11
-
12
- - **Provides a complete UI integration layer** - no more complex custom code to handle tools, streaming, and state management
13
- - **Simplifies human-in-the-loop interactions** - easily incorporate user feedback within agent workflows
14
- - **Handles edge cases automatically** - interruptions, errors, token management and more
15
- - **Offers a rich set of UI components** - ready-to-use elements to display agent interactions
16
-
17
- [DOCS](https://langgraph-js.netlify.app)
18
-
19
- ## Installation
20
-
21
- ```bash
22
- # Using npm
23
- npm install @langgraph-js/sdk
24
-
25
- # Using yarn
26
- yarn add @langgraph-js/sdk
27
-
28
- # Using pnpm
29
- pnpm add @langgraph-js/sdk
30
- ```
31
-
32
- ## Key Features
33
-
34
- ### Generative UI
35
-
36
- - ✅ Custom Tool Messages
37
- - ✅ Token Counter
38
- - ✅ Stop Graph Progress
39
- - ✅ Interrupt Handling
40
- - ✅ Error Handling
41
- - ✅ Spend Time Tracking
42
- - ✅ Time Persistence
43
-
44
- ### Frontend Actions
45
-
46
- - ✅ Definition of Union Tools
47
- - ✅ Frontend Functions As Tools
48
- - ✅ Human-in-the-Loop Interaction
49
- - ✅ Interrupt Mode
50
-
51
- ### Authorization
52
-
53
- - ✅ Cookie-Based Authentication
54
- - ✅ Custom Token Authentication
55
-
56
- ### Persistence
57
-
58
- - ✅ Read History from LangGraph
59
-
60
- ## Advanced Usage
61
-
62
- ### Creating a Chat Store
63
-
64
- You can easily create a reactive store for your LangGraph client:
65
-
66
- ```typescript
67
- import { createChatStore } from "@langgraph-js/sdk";
68
-
69
- export const globalChatStore = createChatStore(
70
- "agent",
71
- {
72
- // Custom LangGraph backend interaction
73
- apiUrl: "http://localhost:8123",
74
- // Custom headers for authentication
75
- defaultHeaders: JSON.parse(localStorage.getItem("code") || "{}"),
76
- callerOptions: {
77
- // Example for including cookies
78
- // fetch(url: string, options: RequestInit) {
79
- // options.credentials = "include";
80
- // return fetch(url, options);
81
- // },
82
- },
83
- },
84
- {
85
- onInit(client) {
86
- client.tools.bindTools([]);
87
- },
88
- }
89
- );
90
- ```
91
-
92
- ### React Integration
93
-
94
- First, install the nanostores React integration:
95
-
96
- ```bash
97
- pnpm i @nanostores/react
98
- ```
99
-
100
- Then create a context provider for your chat:
101
-
102
- ```tsx
103
- import React, { createContext, useContext, useEffect } from "react";
104
- import { globalChatStore } from "../store"; // Import your store
105
- import { UnionStore, useUnionStore } from "@langgraph-js/sdk";
106
- import { useStore } from "@nanostores/react";
107
-
108
- type ChatContextType = UnionStore<typeof globalChatStore>;
109
-
110
- const ChatContext = createContext<ChatContextType | undefined>(undefined);
111
-
112
- export const useChat = () => {
113
- const context = useContext(ChatContext);
114
- if (!context) {
115
- throw new Error("useChat must be used within a ChatProvider");
116
- }
117
- return context;
118
- };
119
-
120
- export const ChatProvider = ({ children }) => {
121
- // Use store to ensure React gets reactive state updates
122
- const store = useUnionStore(globalChatStore, useStore);
123
-
124
- useEffect(() => {
125
- // Initialize client
126
- store.initClient().then(() => {
127
- // Initialize conversation history
128
- store.refreshHistoryList();
129
- });
130
- }, [store.currentAgent]);
131
-
132
- return <ChatContext.Provider value={store}>{children}</ChatContext.Provider>;
133
- };
134
- ```
135
-
136
- Use it in your components:
137
-
138
- ```tsx
139
- export const MyChat = () => {
140
- return (
141
- <ChatProvider>
142
- <ChatComp></ChatComp>
143
- </ChatProvider>
144
- );
145
- };
146
-
147
- function ChatComp() {
148
- const chat = useChat();
149
- // Use chat store methods and state here
150
- }
151
- ```
152
-
153
- ## Documentation
154
-
155
- For complete documentation, visit our [official docs](https://langgraph-js.netlify.app).
156
-
157
- ## Contributing
158
-
159
- Contributions are welcome! Please feel free to submit a Pull Request.
160
-
161
- ## License
162
-
163
- This project is licensed under the Apache-2.0 License.
1
+ # @langgraph-js/sdk
2
+
3
+ ![npm version](https://img.shields.io/npm/v/@langgraph-js/sdk)
4
+ ![license](https://img.shields.io/npm/l/@langgraph-js/sdk)
5
+
6
+ > The missing UI SDK for LangGraph - seamlessly integrate your AI agents with frontend interfaces
7
+
8
+ ## Why @langgraph-js/sdk?
9
+
10
+ Building AI agent applications is complex, especially when you need to bridge the gap between LangGraph agents and interactive user interfaces. This SDK solves the critical challenges of frontend integration:
11
+
12
+ - **Provides a complete UI integration layer** - no more complex custom code to handle tools, streaming, and state management
13
+ - **Simplifies human-in-the-loop interactions** - easily incorporate user feedback within agent workflows
14
+ - **Handles edge cases automatically** - interruptions, errors, token management and more
15
+ - **Offers a rich set of UI components** - ready-to-use elements to display agent interactions
16
+
17
+ [DOCS](https://langgraph-js.netlify.app)
18
+
19
+ ## Installation
20
+
21
+ ```bash
22
+ # Using npm
23
+ npm install @langgraph-js/sdk
24
+
25
+ # Using yarn
26
+ yarn add @langgraph-js/sdk
27
+
28
+ # Using pnpm
29
+ pnpm add @langgraph-js/sdk
30
+ ```
31
+
32
+ ## Key Features
33
+
34
+ ### Generative UI
35
+
36
+ - ✅ Custom Tool Messages
37
+ - ✅ Token Counter
38
+ - ✅ Stop Graph Progress
39
+ - ✅ Interrupt Handling
40
+ - ✅ Error Handling
41
+ - ✅ Spend Time Tracking
42
+ - ✅ Time Persistence
43
+
44
+ ### Frontend Actions
45
+
46
+ - ✅ Definition of Union Tools
47
+ - ✅ Frontend Functions As Tools
48
+ - ✅ Human-in-the-Loop Interaction
49
+ - ✅ Interrupt Mode
50
+
51
+ ### Authorization
52
+
53
+ - ✅ Cookie-Based Authentication
54
+ - ✅ Custom Token Authentication
55
+
56
+ ### Persistence
57
+
58
+ - ✅ Read History from LangGraph
59
+
60
+ ## Advanced Usage
61
+
62
+ ### Creating a Chat Store
63
+
64
+ You can easily create a reactive store for your LangGraph client:
65
+
66
+ ```typescript
67
+ import { createChatStore } from "@langgraph-js/sdk";
68
+
69
+ export const globalChatStore = createChatStore(
70
+ "agent",
71
+ {
72
+ // Custom LangGraph backend interaction
73
+ apiUrl: "http://localhost:8123",
74
+ // Custom headers for authentication
75
+ defaultHeaders: JSON.parse(localStorage.getItem("code") || "{}"),
76
+ callerOptions: {
77
+ // Example for including cookies
78
+ // fetch(url: string, options: RequestInit) {
79
+ // options.credentials = "include";
80
+ // return fetch(url, options);
81
+ // },
82
+ },
83
+ },
84
+ {
85
+ onInit(client) {
86
+ client.tools.bindTools([]);
87
+ },
88
+ }
89
+ );
90
+ ```
91
+
92
+ ### React Integration
93
+
94
+ First, install the nanostores React integration:
95
+
96
+ ```bash
97
+ pnpm i @nanostores/react
98
+ ```
99
+
100
+ Then create a context provider for your chat:
101
+
102
+ ```tsx
103
+ import React, { createContext, useContext, useEffect } from "react";
104
+ import { globalChatStore } from "../store"; // Import your store
105
+ import { UnionStore, useUnionStore } from "@langgraph-js/sdk";
106
+ import { useStore } from "@nanostores/react";
107
+
108
+ type ChatContextType = UnionStore<typeof globalChatStore>;
109
+
110
+ const ChatContext = createContext<ChatContextType | undefined>(undefined);
111
+
112
+ export const useChat = () => {
113
+ const context = useContext(ChatContext);
114
+ if (!context) {
115
+ throw new Error("useChat must be used within a ChatProvider");
116
+ }
117
+ return context;
118
+ };
119
+
120
+ export const ChatProvider = ({ children }) => {
121
+ // Use store to ensure React gets reactive state updates
122
+ const store = useUnionStore(globalChatStore, useStore);
123
+
124
+ useEffect(() => {
125
+ // Initialize client
126
+ store.initClient().then(() => {
127
+ // Initialize conversation history
128
+ store.refreshHistoryList();
129
+ });
130
+ }, [store.currentAgent]);
131
+
132
+ return <ChatContext.Provider value={store}>{children}</ChatContext.Provider>;
133
+ };
134
+ ```
135
+
136
+ Use it in your components:
137
+
138
+ ```tsx
139
+ export const MyChat = () => {
140
+ return (
141
+ <ChatProvider>
142
+ <ChatComp></ChatComp>
143
+ </ChatProvider>
144
+ );
145
+ };
146
+
147
+ function ChatComp() {
148
+ const chat = useChat();
149
+ // Use chat store methods and state here
150
+ }
151
+ ```
152
+
153
+ ## Documentation
154
+
155
+ For complete documentation, visit our [official docs](https://langgraph-js.netlify.app).
156
+
157
+ ## Contributing
158
+
159
+ Contributions are welcome! Please feel free to submit a Pull Request.
160
+
161
+ ## License
162
+
163
+ This project is licensed under the Apache-2.0 License.
@@ -42,9 +42,9 @@ export class LangGraphClient extends Client {
42
42
  const assistants = await this.listAssistants();
43
43
  this.availableAssistants = assistants;
44
44
  if (assistants.length > 0) {
45
- this.currentAssistant = assistants.find((assistant) => assistant.name === agentName) || null;
45
+ this.currentAssistant = assistants.find((assistant) => assistant.graph_id === agentName) || null;
46
46
  if (!this.currentAssistant) {
47
- throw new Error("Agent not found");
47
+ throw new Error("Agent not found: " + agentName);
48
48
  }
49
49
  }
50
50
  else {
@@ -128,12 +128,12 @@ export class LangGraphClient extends Client {
128
128
  /** @ts-ignore */
129
129
  const tool_calls = ((_a = m.tool_calls) === null || _a === void 0 ? void 0 : _a.length) ? m.tool_calls : m.tool_call_chunks;
130
130
  const new_tool_calls = tool_calls.map((tool, index) => {
131
- var _a;
131
+ var _a, _b, _c, _d;
132
132
  return this.replaceMessageWithValuesMessage({
133
133
  type: "tool",
134
134
  additional_kwargs: {},
135
135
  /** @ts-ignore */
136
- tool_input: (_a = m.additional_kwargs) === null || _a === void 0 ? void 0 : _a.tool_calls[index].function.arguments,
136
+ tool_input: (_d = (_c = (_b = (_a = m.additional_kwargs) === null || _a === void 0 ? void 0 : _a.tool_calls) === null || _b === void 0 ? void 0 : _b[index]) === null || _c === void 0 ? void 0 : _c.function) === null || _d === void 0 ? void 0 : _d.arguments,
137
137
  id: tool.id,
138
138
  name: tool.name,
139
139
  response_metadata: {},
@@ -201,7 +201,7 @@ export class LangGraphClient extends Client {
201
201
  const assistantToolMessage = assistantToolMessages.get(message.tool_call_id);
202
202
  const parentMessage = toolParentMessage.get(message.tool_call_id);
203
203
  if (assistantToolMessage) {
204
- message.tool_input = typeof assistantToolMessage.args !== "object" ? JSON.stringify(assistantToolMessage.args) : assistantToolMessage.args;
204
+ message.tool_input = typeof assistantToolMessage.args !== "string" ? JSON.stringify(assistantToolMessage.args) : assistantToolMessage.args;
205
205
  if (message.additional_kwargs) {
206
206
  message.additional_kwargs.done = true;
207
207
  }
@@ -3,6 +3,7 @@ import { Message, Thread } from "@langchain/langgraph-sdk";
3
3
  export declare const formatTime: (date: Date) => string;
4
4
  export declare const formatTokens: (tokens: number) => string;
5
5
  export declare const getMessageContent: (content: any) => string;
6
+ export declare const getHistoryContent: (thread: Thread) => string | any[];
6
7
  export declare const createChatStore: (initClientName: string, config: LangGraphClientConfig, context?: {
7
8
  onInit?: (client: LangGraphClient) => void;
8
9
  }) => {
@@ -24,6 +24,23 @@ export const getMessageContent = (content) => {
24
24
  }
25
25
  return JSON.stringify(content);
26
26
  };
27
+ export const getHistoryContent = (thread) => {
28
+ var _a, _b, _c;
29
+ const content = (_c = (_b = (_a = thread === null || thread === void 0 ? void 0 : thread.values) === null || _a === void 0 ? void 0 : _a.messages) === null || _b === void 0 ? void 0 : _b[0]) === null || _c === void 0 ? void 0 : _c.content;
30
+ if (content && Array.isArray(content)) {
31
+ return content.map((item) => {
32
+ if (item.type === "text") {
33
+ return item.text;
34
+ }
35
+ });
36
+ }
37
+ else if (typeof content === "string") {
38
+ return content;
39
+ }
40
+ else {
41
+ return "";
42
+ }
43
+ };
27
44
  export const createChatStore = (initClientName, config, context = {}) => {
28
45
  const client = atom(null);
29
46
  const renderMessages = atom([]);
package/index.html CHANGED
@@ -1,12 +1,12 @@
1
- <!doctype html>
2
- <html lang="en">
3
- <head>
4
- <meta charset="UTF-8" />
5
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6
- <title>Document</title>
7
- </head>
8
- <body>
9
- <div id="message"></div>
10
- </body>
11
- <script type="module" src="/ui/index.ts"></script>
12
- </html>
1
+ <!doctype html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8" />
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6
+ <title>Document</title>
7
+ </head>
8
+ <body>
9
+ <div id="message"></div>
10
+ </body>
11
+ <script type="module" src="/ui/index.ts"></script>
12
+ </html>
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@langgraph-js/sdk",
3
- "version": "1.1.4",
3
+ "version": "1.1.6",
4
4
  "description": "The UI SDK for LangGraph - seamlessly integrate your AI agents with frontend interfaces",
5
5
  "main": "dist/index.js",
6
6
  "type": "module",