@langgraph-js/sdk 1.1.3 → 1.1.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,163 +1,163 @@
1
- # @langgraph-js/sdk
2
-
3
- ![npm version](https://img.shields.io/npm/v/@langgraph-js/sdk)
4
- ![license](https://img.shields.io/npm/l/@langgraph-js/sdk)
5
-
6
- > The missing UI SDK for LangGraph - seamlessly integrate your AI agents with frontend interfaces
7
-
8
- ## Why @langgraph-js/sdk?
9
-
10
- Building AI agent applications is complex, especially when you need to bridge the gap between LangGraph agents and interactive user interfaces. This SDK solves the critical challenges of frontend integration:
11
-
12
- - **Provides a complete UI integration layer** - no more complex custom code to handle tools, streaming, and state management
13
- - **Simplifies human-in-the-loop interactions** - easily incorporate user feedback within agent workflows
14
- - **Handles edge cases automatically** - interruptions, errors, token management and more
15
- - **Offers a rich set of UI components** - ready-to-use elements to display agent interactions
16
-
17
- [DOCS](https://langgraph-js.netlify.app)
18
-
19
- ## Installation
20
-
21
- ```bash
22
- # Using npm
23
- npm install @langgraph-js/sdk
24
-
25
- # Using yarn
26
- yarn add @langgraph-js/sdk
27
-
28
- # Using pnpm
29
- pnpm add @langgraph-js/sdk
30
- ```
31
-
32
- ## Key Features
33
-
34
- ### Generative UI
35
-
36
- - ✅ Custom Tool Messages
37
- - ✅ Token Counter
38
- - ✅ Stop Graph Progress
39
- - ✅ Interrupt Handling
40
- - ✅ Error Handling
41
- - ✅ Spend Time Tracking
42
- - ✅ Time Persistence
43
-
44
- ### Frontend Actions
45
-
46
- - ✅ Definition of Union Tools
47
- - ✅ Frontend Functions As Tools
48
- - ✅ Human-in-the-Loop Interaction
49
- - ✅ Interrupt Mode
50
-
51
- ### Authorization
52
-
53
- - ✅ Cookie-Based Authentication
54
- - ✅ Custom Token Authentication
55
-
56
- ### Persistence
57
-
58
- - ✅ Read History from LangGraph
59
-
60
- ## Advanced Usage
61
-
62
- ### Creating a Chat Store
63
-
64
- You can easily create a reactive store for your LangGraph client:
65
-
66
- ```typescript
67
- import { createChatStore } from "@langgraph-js/sdk";
68
-
69
- export const globalChatStore = createChatStore(
70
- "agent",
71
- {
72
- // Custom LangGraph backend interaction
73
- apiUrl: "http://localhost:8123",
74
- // Custom headers for authentication
75
- defaultHeaders: JSON.parse(localStorage.getItem("code") || "{}"),
76
- callerOptions: {
77
- // Example for including cookies
78
- // fetch(url: string, options: RequestInit) {
79
- // options.credentials = "include";
80
- // return fetch(url, options);
81
- // },
82
- },
83
- },
84
- {
85
- onInit(client) {
86
- client.tools.bindTools([]);
87
- },
88
- }
89
- );
90
- ```
91
-
92
- ### React Integration
93
-
94
- First, install the nanostores React integration:
95
-
96
- ```bash
97
- pnpm i @nanostores/react
98
- ```
99
-
100
- Then create a context provider for your chat:
101
-
102
- ```tsx
103
- import React, { createContext, useContext, useEffect } from "react";
104
- import { globalChatStore } from "../store"; // Import your store
105
- import { UnionStore, useUnionStore } from "@langgraph-js/sdk";
106
- import { useStore } from "@nanostores/react";
107
-
108
- type ChatContextType = UnionStore<typeof globalChatStore>;
109
-
110
- const ChatContext = createContext<ChatContextType | undefined>(undefined);
111
-
112
- export const useChat = () => {
113
- const context = useContext(ChatContext);
114
- if (!context) {
115
- throw new Error("useChat must be used within a ChatProvider");
116
- }
117
- return context;
118
- };
119
-
120
- export const ChatProvider = ({ children }) => {
121
- // Use store to ensure React gets reactive state updates
122
- const store = useUnionStore(globalChatStore, useStore);
123
-
124
- useEffect(() => {
125
- // Initialize client
126
- store.initClient().then(() => {
127
- // Initialize conversation history
128
- store.refreshHistoryList();
129
- });
130
- }, [store.currentAgent]);
131
-
132
- return <ChatContext.Provider value={store}>{children}</ChatContext.Provider>;
133
- };
134
- ```
135
-
136
- Use it in your components:
137
-
138
- ```tsx
139
- export const MyChat = () => {
140
- return (
141
- <ChatProvider>
142
- <ChatComp></ChatComp>
143
- </ChatProvider>
144
- );
145
- };
146
-
147
- function ChatComp() {
148
- const chat = useChat();
149
- // Use chat store methods and state here
150
- }
151
- ```
152
-
153
- ## Documentation
154
-
155
- For complete documentation, visit our [official docs](https://langgraph-js.netlify.app).
156
-
157
- ## Contributing
158
-
159
- Contributions are welcome! Please feel free to submit a Pull Request.
160
-
161
- ## License
162
-
163
- This project is licensed under the Apache-2.0 License.
1
+ # @langgraph-js/sdk
2
+
3
+ ![npm version](https://img.shields.io/npm/v/@langgraph-js/sdk)
4
+ ![license](https://img.shields.io/npm/l/@langgraph-js/sdk)
5
+
6
+ > The missing UI SDK for LangGraph - seamlessly integrate your AI agents with frontend interfaces
7
+
8
+ ## Why @langgraph-js/sdk?
9
+
10
+ Building AI agent applications is complex, especially when you need to bridge the gap between LangGraph agents and interactive user interfaces. This SDK solves the critical challenges of frontend integration:
11
+
12
+ - **Provides a complete UI integration layer** - no more complex custom code to handle tools, streaming, and state management
13
+ - **Simplifies human-in-the-loop interactions** - easily incorporate user feedback within agent workflows
14
+ - **Handles edge cases automatically** - interruptions, errors, token management and more
15
+ - **Offers a rich set of UI components** - ready-to-use elements to display agent interactions
16
+
17
+ [DOCS](https://langgraph-js.netlify.app)
18
+
19
+ ## Installation
20
+
21
+ ```bash
22
+ # Using npm
23
+ npm install @langgraph-js/sdk
24
+
25
+ # Using yarn
26
+ yarn add @langgraph-js/sdk
27
+
28
+ # Using pnpm
29
+ pnpm add @langgraph-js/sdk
30
+ ```
31
+
32
+ ## Key Features
33
+
34
+ ### Generative UI
35
+
36
+ - ✅ Custom Tool Messages
37
+ - ✅ Token Counter
38
+ - ✅ Stop Graph Progress
39
+ - ✅ Interrupt Handling
40
+ - ✅ Error Handling
41
+ - ✅ Spend Time Tracking
42
+ - ✅ Time Persistence
43
+
44
+ ### Frontend Actions
45
+
46
+ - ✅ Definition of Union Tools
47
+ - ✅ Frontend Functions As Tools
48
+ - ✅ Human-in-the-Loop Interaction
49
+ - ✅ Interrupt Mode
50
+
51
+ ### Authorization
52
+
53
+ - ✅ Cookie-Based Authentication
54
+ - ✅ Custom Token Authentication
55
+
56
+ ### Persistence
57
+
58
+ - ✅ Read History from LangGraph
59
+
60
+ ## Advanced Usage
61
+
62
+ ### Creating a Chat Store
63
+
64
+ You can easily create a reactive store for your LangGraph client:
65
+
66
+ ```typescript
67
+ import { createChatStore } from "@langgraph-js/sdk";
68
+
69
+ export const globalChatStore = createChatStore(
70
+ "agent",
71
+ {
72
+ // Custom LangGraph backend interaction
73
+ apiUrl: "http://localhost:8123",
74
+ // Custom headers for authentication
75
+ defaultHeaders: JSON.parse(localStorage.getItem("code") || "{}"),
76
+ callerOptions: {
77
+ // Example for including cookies
78
+ // fetch(url: string, options: RequestInit) {
79
+ // options.credentials = "include";
80
+ // return fetch(url, options);
81
+ // },
82
+ },
83
+ },
84
+ {
85
+ onInit(client) {
86
+ client.tools.bindTools([]);
87
+ },
88
+ }
89
+ );
90
+ ```
91
+
92
+ ### React Integration
93
+
94
+ First, install the nanostores React integration:
95
+
96
+ ```bash
97
+ pnpm i @nanostores/react
98
+ ```
99
+
100
+ Then create a context provider for your chat:
101
+
102
+ ```tsx
103
+ import React, { createContext, useContext, useEffect } from "react";
104
+ import { globalChatStore } from "../store"; // Import your store
105
+ import { UnionStore, useUnionStore } from "@langgraph-js/sdk";
106
+ import { useStore } from "@nanostores/react";
107
+
108
+ type ChatContextType = UnionStore<typeof globalChatStore>;
109
+
110
+ const ChatContext = createContext<ChatContextType | undefined>(undefined);
111
+
112
+ export const useChat = () => {
113
+ const context = useContext(ChatContext);
114
+ if (!context) {
115
+ throw new Error("useChat must be used within a ChatProvider");
116
+ }
117
+ return context;
118
+ };
119
+
120
+ export const ChatProvider = ({ children }) => {
121
+ // Use store to ensure React gets reactive state updates
122
+ const store = useUnionStore(globalChatStore, useStore);
123
+
124
+ useEffect(() => {
125
+ // Initialize client
126
+ store.initClient().then(() => {
127
+ // Initialize conversation history
128
+ store.refreshHistoryList();
129
+ });
130
+ }, [store.currentAgent]);
131
+
132
+ return <ChatContext.Provider value={store}>{children}</ChatContext.Provider>;
133
+ };
134
+ ```
135
+
136
+ Use it in your components:
137
+
138
+ ```tsx
139
+ export const MyChat = () => {
140
+ return (
141
+ <ChatProvider>
142
+ <ChatComp></ChatComp>
143
+ </ChatProvider>
144
+ );
145
+ };
146
+
147
+ function ChatComp() {
148
+ const chat = useChat();
149
+ // Use chat store methods and state here
150
+ }
151
+ ```
152
+
153
+ ## Documentation
154
+
155
+ For complete documentation, visit our [official docs](https://langgraph-js.netlify.app).
156
+
157
+ ## Contributing
158
+
159
+ Contributions are welcome! Please feel free to submit a Pull Request.
160
+
161
+ ## License
162
+
163
+ This project is licensed under the Apache-2.0 License.
@@ -42,9 +42,9 @@ export class LangGraphClient extends Client {
42
42
  const assistants = await this.listAssistants();
43
43
  this.availableAssistants = assistants;
44
44
  if (assistants.length > 0) {
45
- this.currentAssistant = assistants.find((assistant) => assistant.name === agentName) || null;
45
+ this.currentAssistant = assistants.find((assistant) => assistant.graph_id === agentName) || null;
46
46
  if (!this.currentAssistant) {
47
- throw new Error("Agent not found");
47
+ throw new Error("Agent not found: " + agentName);
48
48
  }
49
49
  }
50
50
  else {
@@ -162,8 +162,13 @@ export class LangGraphClient extends Client {
162
162
  let lastMessage = null;
163
163
  for (const message of result) {
164
164
  const createTime = ((_a = message.response_metadata) === null || _a === void 0 ? void 0 : _a.create_time) || "";
165
- // 用长度作为渲染 id,长度变了就要重新渲染
166
- message.unique_id = message.id + JSON.stringify(message.content).length;
165
+ try {
166
+ // 用长度作为渲染 id,长度变了就要重新渲染
167
+ message.unique_id = message.id + JSON.stringify(message.content).length;
168
+ }
169
+ catch (e) {
170
+ message.unique_id = message.id;
171
+ }
167
172
  message.spend_time = new Date(createTime).getTime() - new Date(((_b = lastMessage === null || lastMessage === void 0 ? void 0 : lastMessage.response_metadata) === null || _b === void 0 ? void 0 : _b.create_time) || createTime).getTime();
168
173
  if (!message.usage_metadata && ((_c = message.response_metadata) === null || _c === void 0 ? void 0 : _c.usage)) {
169
174
  const usage = message.response_metadata.usage;
@@ -185,7 +190,7 @@ export class LangGraphClient extends Client {
185
190
  for (const message of messages) {
186
191
  if (StreamingMessageType.isToolAssistant(message)) {
187
192
  /** @ts-ignore 只有 tool_call_chunks 的 args 才是文本 */
188
- (_a = message.tool_call_chunks) === null || _a === void 0 ? void 0 : _a.forEach((element) => {
193
+ (_a = (message.tool_calls || message.tool_call_chunks)) === null || _a === void 0 ? void 0 : _a.forEach((element) => {
189
194
  assistantToolMessages.set(element.id, element);
190
195
  toolParentMessage.set(element.id, message);
191
196
  });
@@ -196,7 +201,7 @@ export class LangGraphClient extends Client {
196
201
  const assistantToolMessage = assistantToolMessages.get(message.tool_call_id);
197
202
  const parentMessage = toolParentMessage.get(message.tool_call_id);
198
203
  if (assistantToolMessage) {
199
- message.tool_input = assistantToolMessage.args;
204
+ message.tool_input = typeof assistantToolMessage.args !== "string" ? JSON.stringify(assistantToolMessage.args) : assistantToolMessage.args;
200
205
  if (message.additional_kwargs) {
201
206
  message.additional_kwargs.done = true;
202
207
  }
@@ -51,7 +51,7 @@ export const createChatStore = (initClientName, config, context = {}) => {
51
51
  loading.set(false);
52
52
  inChatError.set(((_a = event.data) === null || _a === void 0 ? void 0 : _a.message) || "发生错误");
53
53
  }
54
- console.log(newClient.renderMessage);
54
+ // console.log(newClient.renderMessage);
55
55
  renderMessages.set(newClient.renderMessage);
56
56
  });
57
57
  (_a = context.onInit) === null || _a === void 0 ? void 0 : _a.call(context, newClient);
package/index.html CHANGED
@@ -1,12 +1,12 @@
1
- <!doctype html>
2
- <html lang="en">
3
- <head>
4
- <meta charset="UTF-8" />
5
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6
- <title>Document</title>
7
- </head>
8
- <body>
9
- <div id="message"></div>
10
- </body>
11
- <script type="module" src="/ui/index.ts"></script>
12
- </html>
1
+ <!doctype html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8" />
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6
+ <title>Document</title>
7
+ </head>
8
+ <body>
9
+ <div id="message"></div>
10
+ </body>
11
+ <script type="module" src="/ui/index.ts"></script>
12
+ </html>
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@langgraph-js/sdk",
3
- "version": "1.1.3",
3
+ "version": "1.1.5",
4
4
  "description": "The UI SDK for LangGraph - seamlessly integrate your AI agents with frontend interfaces",
5
5
  "main": "dist/index.js",
6
6
  "type": "module",