@langchain/google-vertexai-web 0.0.25 → 0.0.27

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,8 +3,289 @@ Object.defineProperty(exports, "__esModule", { value: true });
3
3
  exports.ChatVertexAI = void 0;
4
4
  const google_webauth_1 = require("@langchain/google-webauth");
5
5
  /**
6
- * Integration with a Google Vertex AI chat model using
7
- * the "@langchain/google-webauth" package for auth.
6
+ * Integration with Google Vertex AI chat models in web environments.
7
+ *
8
+ * Setup:
9
+ * Install `@langchain/google-vertexai-web` and set your stringified
10
+ * Vertex AI credentials as an environment variable named `GOOGLE_VERTEX_AI_WEB_CREDENTIALS`.
11
+ *
12
+ * ```bash
13
+ * npm install @langchain/google-vertexai-web
14
+ * export GOOGLE_VERTEX_AI_WEB_CREDENTIALS={"type":"service_account","project_id":"YOUR_PROJECT-12345",...}
15
+ * ```
16
+ *
17
+ * ## [Constructor args](https://api.js.langchain.com/classes/langchain_community_chat_models_googlevertexai_web.ChatGoogleVertexAI.html#constructor)
18
+ *
19
+ * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_common_types.GoogleAIBaseLanguageModelCallOptions.html)
20
+ *
21
+ * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
22
+ * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
23
+ *
24
+ * ```typescript
25
+ * // When calling `.bind`, call options should be passed via the first argument
26
+ * const llmWithArgsBound = llm.bind({
27
+ * stop: ["\n"],
28
+ * tools: [...],
29
+ * });
30
+ *
31
+ * // When calling `.bindTools`, call options should be passed via the second argument
32
+ * const llmWithTools = llm.bindTools(
33
+ * [...],
34
+ * {
35
+ * tool_choice: "auto",
36
+ * }
37
+ * );
38
+ * ```
39
+ *
40
+ * ## Examples
41
+ *
42
+ * <details open>
43
+ * <summary><strong>Instantiate</strong></summary>
44
+ *
45
+ * ```typescript
46
+ * import { ChatVertexAI } from '@langchain/google-vertexai-web';
47
+ *
48
+ * const llm = new ChatVertexAI({
49
+ * model: "gemini-1.5-pro",
50
+ * temperature: 0,
51
+ * authOptions: {
52
+ * credentials: process.env.GOOGLE_VERTEX_AI_WEB_CREDENTIALS,
53
+ * },
54
+ * // other params...
55
+ * });
56
+ * ```
57
+ * </details>
58
+ *
59
+ * <br />
60
+ *
61
+ * <details>
62
+ * <summary><strong>Invoking</strong></summary>
63
+ *
64
+ * ```typescript
65
+ * const input = `Translate "I love programming" into French.`;
66
+ *
67
+ * // Models also accept a list of chat messages or a formatted prompt
68
+ * const result = await llm.invoke(input);
69
+ * console.log(result);
70
+ * ```
71
+ *
72
+ * ```txt
73
+ * AIMessageChunk {
74
+ * "content": "\"J'adore programmer\" \n\nHere's why this is the best translation:\n\n* **J'adore** means \"I love\" and conveys a strong passion.\n* **Programmer** is the French verb for \"to program.\"\n\nThis translation is natural and idiomatic in French. \n",
75
+ * "additional_kwargs": {},
76
+ * "response_metadata": {},
77
+ * "tool_calls": [],
78
+ * "tool_call_chunks": [],
79
+ * "invalid_tool_calls": [],
80
+ * "usage_metadata": {
81
+ * "input_tokens": 9,
82
+ * "output_tokens": 63,
83
+ * "total_tokens": 72
84
+ * }
85
+ * }
86
+ * ```
87
+ * </details>
88
+ *
89
+ * <br />
90
+ *
91
+ * <details>
92
+ * <summary><strong>Streaming Chunks</strong></summary>
93
+ *
94
+ * ```typescript
95
+ * for await (const chunk of await llm.stream(input)) {
96
+ * console.log(chunk);
97
+ * }
98
+ * ```
99
+ *
100
+ * ```txt
101
+ * AIMessageChunk {
102
+ * "content": "\"",
103
+ * "additional_kwargs": {},
104
+ * "response_metadata": {},
105
+ * "tool_calls": [],
106
+ * "tool_call_chunks": [],
107
+ * "invalid_tool_calls": []
108
+ * }
109
+ * AIMessageChunk {
110
+ * "content": "J'adore programmer\" \n",
111
+ * "additional_kwargs": {},
112
+ * "response_metadata": {},
113
+ * "tool_calls": [],
114
+ * "tool_call_chunks": [],
115
+ * "invalid_tool_calls": []
116
+ * }
117
+ * AIMessageChunk {
118
+ * "content": "",
119
+ * "additional_kwargs": {},
120
+ * "response_metadata": {},
121
+ * "tool_calls": [],
122
+ * "tool_call_chunks": [],
123
+ * "invalid_tool_calls": []
124
+ * }
125
+ * AIMessageChunk {
126
+ * "content": "",
127
+ * "additional_kwargs": {},
128
+ * "response_metadata": {
129
+ * "finishReason": "stop"
130
+ * },
131
+ * "tool_calls": [],
132
+ * "tool_call_chunks": [],
133
+ * "invalid_tool_calls": [],
134
+ * "usage_metadata": {
135
+ * "input_tokens": 9,
136
+ * "output_tokens": 8,
137
+ * "total_tokens": 17
138
+ * }
139
+ * }
140
+ * ```
141
+ * </details>
142
+ *
143
+ * <br />
144
+ *
145
+ * <details>
146
+ * <summary><strong>Aggregate Streamed Chunks</strong></summary>
147
+ *
148
+ * ```typescript
149
+ * import { AIMessageChunk } from '@langchain/core/messages';
150
+ * import { concat } from '@langchain/core/utils/stream';
151
+ *
152
+ * const stream = await llm.stream(input);
153
+ * let full: AIMessageChunk | undefined;
154
+ * for await (const chunk of stream) {
155
+ * full = !full ? chunk : concat(full, chunk);
156
+ * }
157
+ * console.log(full);
158
+ * ```
159
+ *
160
+ * ```txt
161
+ * AIMessageChunk {
162
+ * "content": "\"J'adore programmer\" \n",
163
+ * "additional_kwargs": {},
164
+ * "response_metadata": {
165
+ * "finishReason": "stop"
166
+ * },
167
+ * "tool_calls": [],
168
+ * "tool_call_chunks": [],
169
+ * "invalid_tool_calls": [],
170
+ * "usage_metadata": {
171
+ * "input_tokens": 9,
172
+ * "output_tokens": 8,
173
+ * "total_tokens": 17
174
+ * }
175
+ * }
176
+ * ```
177
+ * </details>
178
+ *
179
+ * <br />
180
+ *
181
+ * <details>
182
+ * <summary><strong>Bind tools</strong></summary>
183
+ *
184
+ * ```typescript
185
+ * import { z } from 'zod';
186
+ *
187
+ * const GetWeather = {
188
+ * name: "GetWeather",
189
+ * description: "Get the current weather in a given location",
190
+ * schema: z.object({
191
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
192
+ * }),
193
+ * }
194
+ *
195
+ * const GetPopulation = {
196
+ * name: "GetPopulation",
197
+ * description: "Get the current population in a given location",
198
+ * schema: z.object({
199
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
200
+ * }),
201
+ * }
202
+ *
203
+ * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
204
+ * const aiMsg = await llmWithTools.invoke(
205
+ * "Which city is hotter today and which is bigger: LA or NY?"
206
+ * );
207
+ * console.log(aiMsg.tool_calls);
208
+ * ```
209
+ *
210
+ * ```txt
211
+ * [
212
+ * {
213
+ * name: 'GetPopulation',
214
+ * args: { location: 'New York City, NY' },
215
+ * id: '33c1c1f47e2f492799c77d2800a43912',
216
+ * type: 'tool_call'
217
+ * }
218
+ * ]
219
+ * ```
220
+ * </details>
221
+ *
222
+ * <br />
223
+ *
224
+ * <details>
225
+ * <summary><strong>Structured Output</strong></summary>
226
+ *
227
+ * ```typescript
228
+ * import { z } from 'zod';
229
+ *
230
+ * const Joke = z.object({
231
+ * setup: z.string().describe("The setup of the joke"),
232
+ * punchline: z.string().describe("The punchline to the joke"),
233
+ * rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
234
+ * }).describe('Joke to tell user.');
235
+ *
236
+ * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
237
+ * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
238
+ * console.log(jokeResult);
239
+ * ```
240
+ *
241
+ * ```txt
242
+ * {
243
+ * setup: 'What do you call a cat that loves to bowl?',
244
+ * punchline: 'An alley cat!'
245
+ * }
246
+ * ```
247
+ * </details>
248
+ *
249
+ * <br />
250
+ *
251
+ * <details>
252
+ * <summary><strong>Usage Metadata</strong></summary>
253
+ *
254
+ * ```typescript
255
+ * const aiMsgForMetadata = await llm.invoke(input);
256
+ * console.log(aiMsgForMetadata.usage_metadata);
257
+ * ```
258
+ *
259
+ * ```txt
260
+ * { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
261
+ * ```
262
+ * </details>
263
+ *
264
+ * <br />
265
+ *
266
+ * <details>
267
+ * <summary><strong>Stream Usage Metadata</strong></summary>
268
+ *
269
+ * ```typescript
270
+ * const streamForMetadata = await llm.stream(
271
+ * input,
272
+ * {
273
+ * streamUsage: true
274
+ * }
275
+ * );
276
+ * let fullForMetadata: AIMessageChunk | undefined;
277
+ * for await (const chunk of streamForMetadata) {
278
+ * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);
279
+ * }
280
+ * console.log(fullForMetadata?.usage_metadata);
281
+ * ```
282
+ *
283
+ * ```txt
284
+ * { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
285
+ * ```
286
+ * </details>
287
+ *
288
+ * <br />
8
289
  */
9
290
  class ChatVertexAI extends google_webauth_1.ChatGoogle {
10
291
  static lc_name() {
@@ -5,8 +5,289 @@ import { type ChatGoogleInput, ChatGoogle } from "@langchain/google-webauth";
5
5
  export interface ChatVertexAIInput extends ChatGoogleInput {
6
6
  }
7
7
  /**
8
- * Integration with a Google Vertex AI chat model using
9
- * the "@langchain/google-webauth" package for auth.
8
+ * Integration with Google Vertex AI chat models in web environments.
9
+ *
10
+ * Setup:
11
+ * Install `@langchain/google-vertexai-web` and set your stringified
12
+ * Vertex AI credentials as an environment variable named `GOOGLE_VERTEX_AI_WEB_CREDENTIALS`.
13
+ *
14
+ * ```bash
15
+ * npm install @langchain/google-vertexai-web
16
+ * export GOOGLE_VERTEX_AI_WEB_CREDENTIALS={"type":"service_account","project_id":"YOUR_PROJECT-12345",...}
17
+ * ```
18
+ *
19
+ * ## [Constructor args](https://api.js.langchain.com/classes/langchain_community_chat_models_googlevertexai_web.ChatGoogleVertexAI.html#constructor)
20
+ *
21
+ * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_common_types.GoogleAIBaseLanguageModelCallOptions.html)
22
+ *
23
+ * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
24
+ * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
25
+ *
26
+ * ```typescript
27
+ * // When calling `.bind`, call options should be passed via the first argument
28
+ * const llmWithArgsBound = llm.bind({
29
+ * stop: ["\n"],
30
+ * tools: [...],
31
+ * });
32
+ *
33
+ * // When calling `.bindTools`, call options should be passed via the second argument
34
+ * const llmWithTools = llm.bindTools(
35
+ * [...],
36
+ * {
37
+ * tool_choice: "auto",
38
+ * }
39
+ * );
40
+ * ```
41
+ *
42
+ * ## Examples
43
+ *
44
+ * <details open>
45
+ * <summary><strong>Instantiate</strong></summary>
46
+ *
47
+ * ```typescript
48
+ * import { ChatVertexAI } from '@langchain/google-vertexai-web';
49
+ *
50
+ * const llm = new ChatVertexAI({
51
+ * model: "gemini-1.5-pro",
52
+ * temperature: 0,
53
+ * authOptions: {
54
+ * credentials: process.env.GOOGLE_VERTEX_AI_WEB_CREDENTIALS,
55
+ * },
56
+ * // other params...
57
+ * });
58
+ * ```
59
+ * </details>
60
+ *
61
+ * <br />
62
+ *
63
+ * <details>
64
+ * <summary><strong>Invoking</strong></summary>
65
+ *
66
+ * ```typescript
67
+ * const input = `Translate "I love programming" into French.`;
68
+ *
69
+ * // Models also accept a list of chat messages or a formatted prompt
70
+ * const result = await llm.invoke(input);
71
+ * console.log(result);
72
+ * ```
73
+ *
74
+ * ```txt
75
+ * AIMessageChunk {
76
+ * "content": "\"J'adore programmer\" \n\nHere's why this is the best translation:\n\n* **J'adore** means \"I love\" and conveys a strong passion.\n* **Programmer** is the French verb for \"to program.\"\n\nThis translation is natural and idiomatic in French. \n",
77
+ * "additional_kwargs": {},
78
+ * "response_metadata": {},
79
+ * "tool_calls": [],
80
+ * "tool_call_chunks": [],
81
+ * "invalid_tool_calls": [],
82
+ * "usage_metadata": {
83
+ * "input_tokens": 9,
84
+ * "output_tokens": 63,
85
+ * "total_tokens": 72
86
+ * }
87
+ * }
88
+ * ```
89
+ * </details>
90
+ *
91
+ * <br />
92
+ *
93
+ * <details>
94
+ * <summary><strong>Streaming Chunks</strong></summary>
95
+ *
96
+ * ```typescript
97
+ * for await (const chunk of await llm.stream(input)) {
98
+ * console.log(chunk);
99
+ * }
100
+ * ```
101
+ *
102
+ * ```txt
103
+ * AIMessageChunk {
104
+ * "content": "\"",
105
+ * "additional_kwargs": {},
106
+ * "response_metadata": {},
107
+ * "tool_calls": [],
108
+ * "tool_call_chunks": [],
109
+ * "invalid_tool_calls": []
110
+ * }
111
+ * AIMessageChunk {
112
+ * "content": "J'adore programmer\" \n",
113
+ * "additional_kwargs": {},
114
+ * "response_metadata": {},
115
+ * "tool_calls": [],
116
+ * "tool_call_chunks": [],
117
+ * "invalid_tool_calls": []
118
+ * }
119
+ * AIMessageChunk {
120
+ * "content": "",
121
+ * "additional_kwargs": {},
122
+ * "response_metadata": {},
123
+ * "tool_calls": [],
124
+ * "tool_call_chunks": [],
125
+ * "invalid_tool_calls": []
126
+ * }
127
+ * AIMessageChunk {
128
+ * "content": "",
129
+ * "additional_kwargs": {},
130
+ * "response_metadata": {
131
+ * "finishReason": "stop"
132
+ * },
133
+ * "tool_calls": [],
134
+ * "tool_call_chunks": [],
135
+ * "invalid_tool_calls": [],
136
+ * "usage_metadata": {
137
+ * "input_tokens": 9,
138
+ * "output_tokens": 8,
139
+ * "total_tokens": 17
140
+ * }
141
+ * }
142
+ * ```
143
+ * </details>
144
+ *
145
+ * <br />
146
+ *
147
+ * <details>
148
+ * <summary><strong>Aggregate Streamed Chunks</strong></summary>
149
+ *
150
+ * ```typescript
151
+ * import { AIMessageChunk } from '@langchain/core/messages';
152
+ * import { concat } from '@langchain/core/utils/stream';
153
+ *
154
+ * const stream = await llm.stream(input);
155
+ * let full: AIMessageChunk | undefined;
156
+ * for await (const chunk of stream) {
157
+ * full = !full ? chunk : concat(full, chunk);
158
+ * }
159
+ * console.log(full);
160
+ * ```
161
+ *
162
+ * ```txt
163
+ * AIMessageChunk {
164
+ * "content": "\"J'adore programmer\" \n",
165
+ * "additional_kwargs": {},
166
+ * "response_metadata": {
167
+ * "finishReason": "stop"
168
+ * },
169
+ * "tool_calls": [],
170
+ * "tool_call_chunks": [],
171
+ * "invalid_tool_calls": [],
172
+ * "usage_metadata": {
173
+ * "input_tokens": 9,
174
+ * "output_tokens": 8,
175
+ * "total_tokens": 17
176
+ * }
177
+ * }
178
+ * ```
179
+ * </details>
180
+ *
181
+ * <br />
182
+ *
183
+ * <details>
184
+ * <summary><strong>Bind tools</strong></summary>
185
+ *
186
+ * ```typescript
187
+ * import { z } from 'zod';
188
+ *
189
+ * const GetWeather = {
190
+ * name: "GetWeather",
191
+ * description: "Get the current weather in a given location",
192
+ * schema: z.object({
193
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
194
+ * }),
195
+ * }
196
+ *
197
+ * const GetPopulation = {
198
+ * name: "GetPopulation",
199
+ * description: "Get the current population in a given location",
200
+ * schema: z.object({
201
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
202
+ * }),
203
+ * }
204
+ *
205
+ * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
206
+ * const aiMsg = await llmWithTools.invoke(
207
+ * "Which city is hotter today and which is bigger: LA or NY?"
208
+ * );
209
+ * console.log(aiMsg.tool_calls);
210
+ * ```
211
+ *
212
+ * ```txt
213
+ * [
214
+ * {
215
+ * name: 'GetPopulation',
216
+ * args: { location: 'New York City, NY' },
217
+ * id: '33c1c1f47e2f492799c77d2800a43912',
218
+ * type: 'tool_call'
219
+ * }
220
+ * ]
221
+ * ```
222
+ * </details>
223
+ *
224
+ * <br />
225
+ *
226
+ * <details>
227
+ * <summary><strong>Structured Output</strong></summary>
228
+ *
229
+ * ```typescript
230
+ * import { z } from 'zod';
231
+ *
232
+ * const Joke = z.object({
233
+ * setup: z.string().describe("The setup of the joke"),
234
+ * punchline: z.string().describe("The punchline to the joke"),
235
+ * rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
236
+ * }).describe('Joke to tell user.');
237
+ *
238
+ * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
239
+ * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
240
+ * console.log(jokeResult);
241
+ * ```
242
+ *
243
+ * ```txt
244
+ * {
245
+ * setup: 'What do you call a cat that loves to bowl?',
246
+ * punchline: 'An alley cat!'
247
+ * }
248
+ * ```
249
+ * </details>
250
+ *
251
+ * <br />
252
+ *
253
+ * <details>
254
+ * <summary><strong>Usage Metadata</strong></summary>
255
+ *
256
+ * ```typescript
257
+ * const aiMsgForMetadata = await llm.invoke(input);
258
+ * console.log(aiMsgForMetadata.usage_metadata);
259
+ * ```
260
+ *
261
+ * ```txt
262
+ * { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
263
+ * ```
264
+ * </details>
265
+ *
266
+ * <br />
267
+ *
268
+ * <details>
269
+ * <summary><strong>Stream Usage Metadata</strong></summary>
270
+ *
271
+ * ```typescript
272
+ * const streamForMetadata = await llm.stream(
273
+ * input,
274
+ * {
275
+ * streamUsage: true
276
+ * }
277
+ * );
278
+ * let fullForMetadata: AIMessageChunk | undefined;
279
+ * for await (const chunk of streamForMetadata) {
280
+ * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);
281
+ * }
282
+ * console.log(fullForMetadata?.usage_metadata);
283
+ * ```
284
+ *
285
+ * ```txt
286
+ * { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
287
+ * ```
288
+ * </details>
289
+ *
290
+ * <br />
10
291
  */
11
292
  export declare class ChatVertexAI extends ChatGoogle {
12
293
  static lc_name(): string;
@@ -1,7 +1,288 @@
1
1
  import { ChatGoogle } from "@langchain/google-webauth";
2
2
  /**
3
- * Integration with a Google Vertex AI chat model using
4
- * the "@langchain/google-webauth" package for auth.
3
+ * Integration with Google Vertex AI chat models in web environments.
4
+ *
5
+ * Setup:
6
+ * Install `@langchain/google-vertexai-web` and set your stringified
7
+ * Vertex AI credentials as an environment variable named `GOOGLE_VERTEX_AI_WEB_CREDENTIALS`.
8
+ *
9
+ * ```bash
10
+ * npm install @langchain/google-vertexai-web
11
+ * export GOOGLE_VERTEX_AI_WEB_CREDENTIALS={"type":"service_account","project_id":"YOUR_PROJECT-12345",...}
12
+ * ```
13
+ *
14
+ * ## [Constructor args](https://api.js.langchain.com/classes/langchain_community_chat_models_googlevertexai_web.ChatGoogleVertexAI.html#constructor)
15
+ *
16
+ * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_common_types.GoogleAIBaseLanguageModelCallOptions.html)
17
+ *
18
+ * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
19
+ * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
20
+ *
21
+ * ```typescript
22
+ * // When calling `.bind`, call options should be passed via the first argument
23
+ * const llmWithArgsBound = llm.bind({
24
+ * stop: ["\n"],
25
+ * tools: [...],
26
+ * });
27
+ *
28
+ * // When calling `.bindTools`, call options should be passed via the second argument
29
+ * const llmWithTools = llm.bindTools(
30
+ * [...],
31
+ * {
32
+ * tool_choice: "auto",
33
+ * }
34
+ * );
35
+ * ```
36
+ *
37
+ * ## Examples
38
+ *
39
+ * <details open>
40
+ * <summary><strong>Instantiate</strong></summary>
41
+ *
42
+ * ```typescript
43
+ * import { ChatVertexAI } from '@langchain/google-vertexai-web';
44
+ *
45
+ * const llm = new ChatVertexAI({
46
+ * model: "gemini-1.5-pro",
47
+ * temperature: 0,
48
+ * authOptions: {
49
+ * credentials: process.env.GOOGLE_VERTEX_AI_WEB_CREDENTIALS,
50
+ * },
51
+ * // other params...
52
+ * });
53
+ * ```
54
+ * </details>
55
+ *
56
+ * <br />
57
+ *
58
+ * <details>
59
+ * <summary><strong>Invoking</strong></summary>
60
+ *
61
+ * ```typescript
62
+ * const input = `Translate "I love programming" into French.`;
63
+ *
64
+ * // Models also accept a list of chat messages or a formatted prompt
65
+ * const result = await llm.invoke(input);
66
+ * console.log(result);
67
+ * ```
68
+ *
69
+ * ```txt
70
+ * AIMessageChunk {
71
+ * "content": "\"J'adore programmer\" \n\nHere's why this is the best translation:\n\n* **J'adore** means \"I love\" and conveys a strong passion.\n* **Programmer** is the French verb for \"to program.\"\n\nThis translation is natural and idiomatic in French. \n",
72
+ * "additional_kwargs": {},
73
+ * "response_metadata": {},
74
+ * "tool_calls": [],
75
+ * "tool_call_chunks": [],
76
+ * "invalid_tool_calls": [],
77
+ * "usage_metadata": {
78
+ * "input_tokens": 9,
79
+ * "output_tokens": 63,
80
+ * "total_tokens": 72
81
+ * }
82
+ * }
83
+ * ```
84
+ * </details>
85
+ *
86
+ * <br />
87
+ *
88
+ * <details>
89
+ * <summary><strong>Streaming Chunks</strong></summary>
90
+ *
91
+ * ```typescript
92
+ * for await (const chunk of await llm.stream(input)) {
93
+ * console.log(chunk);
94
+ * }
95
+ * ```
96
+ *
97
+ * ```txt
98
+ * AIMessageChunk {
99
+ * "content": "\"",
100
+ * "additional_kwargs": {},
101
+ * "response_metadata": {},
102
+ * "tool_calls": [],
103
+ * "tool_call_chunks": [],
104
+ * "invalid_tool_calls": []
105
+ * }
106
+ * AIMessageChunk {
107
+ * "content": "J'adore programmer\" \n",
108
+ * "additional_kwargs": {},
109
+ * "response_metadata": {},
110
+ * "tool_calls": [],
111
+ * "tool_call_chunks": [],
112
+ * "invalid_tool_calls": []
113
+ * }
114
+ * AIMessageChunk {
115
+ * "content": "",
116
+ * "additional_kwargs": {},
117
+ * "response_metadata": {},
118
+ * "tool_calls": [],
119
+ * "tool_call_chunks": [],
120
+ * "invalid_tool_calls": []
121
+ * }
122
+ * AIMessageChunk {
123
+ * "content": "",
124
+ * "additional_kwargs": {},
125
+ * "response_metadata": {
126
+ * "finishReason": "stop"
127
+ * },
128
+ * "tool_calls": [],
129
+ * "tool_call_chunks": [],
130
+ * "invalid_tool_calls": [],
131
+ * "usage_metadata": {
132
+ * "input_tokens": 9,
133
+ * "output_tokens": 8,
134
+ * "total_tokens": 17
135
+ * }
136
+ * }
137
+ * ```
138
+ * </details>
139
+ *
140
+ * <br />
141
+ *
142
+ * <details>
143
+ * <summary><strong>Aggregate Streamed Chunks</strong></summary>
144
+ *
145
+ * ```typescript
146
+ * import { AIMessageChunk } from '@langchain/core/messages';
147
+ * import { concat } from '@langchain/core/utils/stream';
148
+ *
149
+ * const stream = await llm.stream(input);
150
+ * let full: AIMessageChunk | undefined;
151
+ * for await (const chunk of stream) {
152
+ * full = !full ? chunk : concat(full, chunk);
153
+ * }
154
+ * console.log(full);
155
+ * ```
156
+ *
157
+ * ```txt
158
+ * AIMessageChunk {
159
+ * "content": "\"J'adore programmer\" \n",
160
+ * "additional_kwargs": {},
161
+ * "response_metadata": {
162
+ * "finishReason": "stop"
163
+ * },
164
+ * "tool_calls": [],
165
+ * "tool_call_chunks": [],
166
+ * "invalid_tool_calls": [],
167
+ * "usage_metadata": {
168
+ * "input_tokens": 9,
169
+ * "output_tokens": 8,
170
+ * "total_tokens": 17
171
+ * }
172
+ * }
173
+ * ```
174
+ * </details>
175
+ *
176
+ * <br />
177
+ *
178
+ * <details>
179
+ * <summary><strong>Bind tools</strong></summary>
180
+ *
181
+ * ```typescript
182
+ * import { z } from 'zod';
183
+ *
184
+ * const GetWeather = {
185
+ * name: "GetWeather",
186
+ * description: "Get the current weather in a given location",
187
+ * schema: z.object({
188
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
189
+ * }),
190
+ * }
191
+ *
192
+ * const GetPopulation = {
193
+ * name: "GetPopulation",
194
+ * description: "Get the current population in a given location",
195
+ * schema: z.object({
196
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
197
+ * }),
198
+ * }
199
+ *
200
+ * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
201
+ * const aiMsg = await llmWithTools.invoke(
202
+ * "Which city is hotter today and which is bigger: LA or NY?"
203
+ * );
204
+ * console.log(aiMsg.tool_calls);
205
+ * ```
206
+ *
207
+ * ```txt
208
+ * [
209
+ * {
210
+ * name: 'GetPopulation',
211
+ * args: { location: 'New York City, NY' },
212
+ * id: '33c1c1f47e2f492799c77d2800a43912',
213
+ * type: 'tool_call'
214
+ * }
215
+ * ]
216
+ * ```
217
+ * </details>
218
+ *
219
+ * <br />
220
+ *
221
+ * <details>
222
+ * <summary><strong>Structured Output</strong></summary>
223
+ *
224
+ * ```typescript
225
+ * import { z } from 'zod';
226
+ *
227
+ * const Joke = z.object({
228
+ * setup: z.string().describe("The setup of the joke"),
229
+ * punchline: z.string().describe("The punchline to the joke"),
230
+ * rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
231
+ * }).describe('Joke to tell user.');
232
+ *
233
+ * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
234
+ * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
235
+ * console.log(jokeResult);
236
+ * ```
237
+ *
238
+ * ```txt
239
+ * {
240
+ * setup: 'What do you call a cat that loves to bowl?',
241
+ * punchline: 'An alley cat!'
242
+ * }
243
+ * ```
244
+ * </details>
245
+ *
246
+ * <br />
247
+ *
248
+ * <details>
249
+ * <summary><strong>Usage Metadata</strong></summary>
250
+ *
251
+ * ```typescript
252
+ * const aiMsgForMetadata = await llm.invoke(input);
253
+ * console.log(aiMsgForMetadata.usage_metadata);
254
+ * ```
255
+ *
256
+ * ```txt
257
+ * { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
258
+ * ```
259
+ * </details>
260
+ *
261
+ * <br />
262
+ *
263
+ * <details>
264
+ * <summary><strong>Stream Usage Metadata</strong></summary>
265
+ *
266
+ * ```typescript
267
+ * const streamForMetadata = await llm.stream(
268
+ * input,
269
+ * {
270
+ * streamUsage: true
271
+ * }
272
+ * );
273
+ * let fullForMetadata: AIMessageChunk | undefined;
274
+ * for await (const chunk of streamForMetadata) {
275
+ * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);
276
+ * }
277
+ * console.log(fullForMetadata?.usage_metadata);
278
+ * ```
279
+ *
280
+ * ```txt
281
+ * { input_tokens: 9, output_tokens: 8, total_tokens: 17 }
282
+ * ```
283
+ * </details>
284
+ *
285
+ * <br />
5
286
  */
6
287
  export class ChatVertexAI extends ChatGoogle {
7
288
  static lc_name() {
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@langchain/google-vertexai-web",
3
- "version": "0.0.25",
3
+ "version": "0.0.27",
4
4
  "description": "LangChain.js support for Google Vertex AI Web",
5
5
  "type": "module",
6
6
  "engines": {
@@ -15,12 +15,7 @@
15
15
  "homepage": "https://github.com/langchain-ai/langchainjs/tree/main/libs/langchain-google-vertexai-web/",
16
16
  "scripts": {
17
17
  "build": "yarn turbo:command build:internal --filter=@langchain/google-vertexai-web",
18
- "build:internal": "yarn lc_build_v2 --create-entrypoints --pre --tree-shaking",
19
- "build:deps": "yarn run turbo:command build --filter=@langchain/google-gauth",
20
- "build:esm": "NODE_OPTIONS=--max-old-space-size=4096 tsc --outDir dist/ && rm -rf dist/tests dist/**/tests",
21
- "build:cjs": "NODE_OPTIONS=--max-old-space-size=4096 tsc --outDir dist-cjs/ -p tsconfig.cjs.json && yarn move-cjs-to-dist && rm -rf dist-cjs",
22
- "build:watch": "yarn create-entrypoints && tsc --outDir dist/ --watch",
23
- "build:scripts": "yarn create-entrypoints && yarn check-tree-shaking",
18
+ "build:internal": "yarn lc_build --create-entrypoints --pre --tree-shaking",
24
19
  "lint:eslint": "NODE_OPTIONS=--max-old-space-size=4096 eslint --cache --ext .ts,.js src/",
25
20
  "lint:dpdm": "dpdm --exit-code circular:1 --no-warning --no-tree src/*.ts src/**/*.ts",
26
21
  "lint": "yarn lint:eslint && yarn lint:dpdm",
@@ -32,20 +27,19 @@
32
27
  "test:single": "NODE_OPTIONS=--experimental-vm-modules yarn run jest --config jest.config.cjs --testTimeout 100000",
33
28
  "test:int": "NODE_OPTIONS=--experimental-vm-modules jest --testPathPattern=\\.int\\.test.ts --testTimeout 100000 --maxWorkers=50%",
34
29
  "format": "prettier --config .prettierrc --write \"src\"",
35
- "format:check": "prettier --config .prettierrc --check \"src\"",
36
- "move-cjs-to-dist": "yarn lc-build --config ./langchain.config.js --move-cjs-dist",
37
- "create-entrypoints": "yarn lc-build --config ./langchain.config.js --create-entrypoints",
38
- "check-tree-shaking": "yarn lc-build --config ./langchain.config.js --tree-shaking"
30
+ "format:check": "prettier --config .prettierrc --check \"src\""
39
31
  },
40
32
  "author": "LangChain",
41
33
  "license": "MIT",
42
34
  "dependencies": {
43
35
  "@langchain/core": ">=0.2.21 <0.3.0",
44
- "@langchain/google-webauth": "~0.0.25"
36
+ "@langchain/google-webauth": "~0.0.27"
45
37
  },
46
38
  "devDependencies": {
47
39
  "@jest/globals": "^29.5.0",
48
- "@langchain/scripts": "~0.0.20",
40
+ "@langchain/google-common": "^0.0.27",
41
+ "@langchain/scripts": ">=0.1.0 <0.2.0",
42
+ "@langchain/standard-tests": "0.0.0",
49
43
  "@swc/core": "^1.3.90",
50
44
  "@swc/jest": "^0.2.29",
51
45
  "@tsconfig/recommended": "^1.0.3",