@langchain/google-genai 0.0.3 → 0.0.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md ADDED
@@ -0,0 +1,163 @@
1
+ # @langchain/google-genai
2
+
3
+ This package contains the LangChain.js integrations for Gemini through their generative-ai SDK.
4
+
5
+ ## Installation
6
+
7
+ ```bash npm2yarn
8
+ npm install @langchain/google-genai
9
+ ```
10
+
11
+ This package, along with the main LangChain package, depends on [`@langchain/core`](https://npmjs.com/package/@langchain/core/).
12
+ If you are using this package with other LangChain packages, you should make sure that all of the packages depend on the same instance of @langchain/core.
13
+ You can do so by adding appropriate field to your project's `package.json` like this:
14
+
15
+ ```json
16
+ {
17
+ "name": "your-project",
18
+ "version": "0.0.0",
19
+ "dependencies": {
20
+ "@langchain/google-genai": "^0.0.0",
21
+ "langchain": "0.0.207"
22
+ },
23
+ "resolutions": {
24
+ "@langchain/core": "0.1.1"
25
+ },
26
+ "overrides": {
27
+ "@langchain/core": "0.1.1"
28
+ },
29
+ "pnpm": {
30
+ "overrides": {
31
+ "@langchain/core": "0.1.1"
32
+ }
33
+ }
34
+ }
35
+ ```
36
+
37
+ The field you need depends on the package manager you're using, but we recommend adding a field for the common `yarn`, `npm`, and `pnpm` to maximize compatibility.
38
+
39
+ ## Chat Models
40
+
41
+ This package contains the `ChatGoogleGenerativeAI` class, which is the recommended way to interface with the Google Gemini series of models.
42
+
43
+ To use, install the requirements, and configure your environment.
44
+
45
+ ```bash
46
+ export GOOGLE_API_KEY=your-api-key
47
+ ```
48
+
49
+ Then initialize
50
+
51
+ ```typescript
52
+ import { ChatGoogleGenerativeAI } from "@langchain/google-genai";
53
+
54
+ const model = new ChatGoogleGenerativeAI({
55
+ modelName: "gemini-pro",
56
+ maxOutputTokens: 2048,
57
+ });
58
+ const response = await mode.invoke(new HumanMessage("Hello world!"));
59
+ ```
60
+
61
+ #### Multimodal inputs
62
+
63
+ Gemini vision model supports image inputs when providing a single chat message. Example:
64
+
65
+ ```bash npm2yarn
66
+ npm install @langchain/core
67
+ ```
68
+
69
+ ```typescript
70
+ import fs from "fs";
71
+ import { ChatGoogleGenerativeAI } from "@langchain/google-genai";
72
+ import { HumanMessage } from "@langchain/core/messages";
73
+
74
+ const vision = new ChatGoogleGenerativeAI({
75
+ modelName: "gemini-pro-vision",
76
+ maxOutputTokens: 2048,
77
+ });
78
+ const image = fs.readFileSync("./hotdog.jpg").toString("base64");
79
+ const input = [
80
+ new HumanMessage({
81
+ content: [
82
+ {
83
+ type: "text",
84
+ text: "Describe the following image.",
85
+ },
86
+ {
87
+ type: "image_url",
88
+ image_url: `data:image/png;base64,${image}`,
89
+ },
90
+ ],
91
+ }),
92
+ ];
93
+
94
+ const res = await vision.invoke(input);
95
+ ```
96
+
97
+ The value of `image_url` can be any of the following:
98
+
99
+ - A public image URL
100
+ - An accessible gcs file (e.g., "gcs://path/to/file.png")
101
+ - A base64 encoded image (e.g., ``)
102
+ - A PIL image
103
+
104
+ ## Embeddings
105
+
106
+ This package also adds support for google's embeddings models.
107
+
108
+ ```typescript
109
+ import { GoogleGenerativeAIEmbeddings } from "@langchain/google-genai";
110
+ import { TaskType } from "@google/generative-ai";
111
+
112
+ const embeddings = new GoogleGenerativeAIEmbeddings({
113
+ modelName: "embedding-001", // 768 dimensions
114
+ taskType: TaskType.RETRIEVAL_DOCUMENT,
115
+ title: "Document title",
116
+ });
117
+
118
+ const res = await embeddings.embedQuery("OK Google");
119
+ ```
120
+
121
+ ## Development
122
+
123
+ To develop the Google GenAI package, you'll need to follow these instructions:
124
+
125
+ ### Install dependencies
126
+
127
+ ```bash
128
+ yarn install
129
+ ```
130
+
131
+ ### Build the package
132
+
133
+ ```bash
134
+ yarn build
135
+ ```
136
+
137
+ Or from the repo root:
138
+
139
+ ```bash
140
+ yarn build --filter=@langchain/google-genai
141
+ ```
142
+
143
+ ### Run tests
144
+
145
+ Test files should live within a `tests/` file in the `src/` folder. Unit tests should end in `.test.ts` and integration tests should
146
+ end in `.int.test.ts`:
147
+
148
+ ```bash
149
+ $ yarn test
150
+ $ yarn test:int
151
+ ```
152
+
153
+ ### Lint & Format
154
+
155
+ Run the linter & formatter to ensure your code is up to standard:
156
+
157
+ ```bash
158
+ yarn lint && yarn format
159
+ ```
160
+
161
+ ### Adding new entrypoints
162
+
163
+ If you add a new file to be exported, either import & re-export from `src/index.ts`, or add it to `scripts/create-entrypoints.js` and run `yarn build` to generate the new entrypoint.
@@ -129,6 +129,7 @@ class ChatGoogleGenerativeAI extends chat_models_1.BaseChatModel {
129
129
  if (this.topK && this.topK < 0) {
130
130
  throw new Error("`topK` must be a positive integer");
131
131
  }
132
+ this.stopSequences = fields?.stopSequences ?? this.stopSequences;
132
133
  this.apiKey = fields?.apiKey ?? (0, env_1.getEnvironmentVariable)("GOOGLE_API_KEY");
133
134
  if (!this.apiKey) {
134
135
  throw new Error("Please set an API key for Google GenerativeAI " +
@@ -126,6 +126,7 @@ export class ChatGoogleGenerativeAI extends BaseChatModel {
126
126
  if (this.topK && this.topK < 0) {
127
127
  throw new Error("`topK` must be a positive integer");
128
128
  }
129
+ this.stopSequences = fields?.stopSequences ?? this.stopSequences;
129
130
  this.apiKey = fields?.apiKey ?? getEnvironmentVariable("GOOGLE_API_KEY");
130
131
  if (!this.apiKey) {
131
132
  throw new Error("Please set an API key for Google GenerativeAI " +
package/dist/utils.cjs CHANGED
@@ -128,7 +128,7 @@ function mapGenerateContentResultToChatResult(response) {
128
128
  message: new messages_1.AIMessage({
129
129
  content: text,
130
130
  name: content === null ? undefined : content.role,
131
- additional_kwargs: {},
131
+ additional_kwargs: generationInfo,
132
132
  }),
133
133
  generationInfo,
134
134
  };
@@ -149,6 +149,8 @@ function convertResponseContentToChatGenerationChunk(response) {
149
149
  message: new messages_1.AIMessageChunk({
150
150
  content: text,
151
151
  name: content === null ? undefined : content.role,
152
+ // Each chunk can have unique "generationInfo", and merging strategy is unclear,
153
+ // so leave blank for now.
152
154
  additional_kwargs: {},
153
155
  }),
154
156
  generationInfo,
package/dist/utils.js CHANGED
@@ -121,7 +121,7 @@ export function mapGenerateContentResultToChatResult(response) {
121
121
  message: new AIMessage({
122
122
  content: text,
123
123
  name: content === null ? undefined : content.role,
124
- additional_kwargs: {},
124
+ additional_kwargs: generationInfo,
125
125
  }),
126
126
  generationInfo,
127
127
  };
@@ -141,6 +141,8 @@ export function convertResponseContentToChatGenerationChunk(response) {
141
141
  message: new AIMessageChunk({
142
142
  content: text,
143
143
  name: content === null ? undefined : content.role,
144
+ // Each chunk can have unique "generationInfo", and merging strategy is unclear,
145
+ // so leave blank for now.
144
146
  additional_kwargs: {},
145
147
  }),
146
148
  generationInfo,
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@langchain/google-genai",
3
- "version": "0.0.3",
3
+ "version": "0.0.4",
4
4
  "description": "Sample integration for LangChain.js",
5
5
  "type": "module",
6
6
  "engines": {
@@ -35,7 +35,7 @@
35
35
  "license": "MIT",
36
36
  "dependencies": {
37
37
  "@google/generative-ai": "^0.1.0",
38
- "@langchain/core": "~0.1.1"
38
+ "@langchain/core": "~0.1.2"
39
39
  },
40
40
  "devDependencies": {
41
41
  "@jest/globals": "^29.5.0",