@langchain/google-genai 0.0.26 → 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -5,7 +5,7 @@ This package contains the LangChain.js integrations for Gemini through their gen
5
5
  ## Installation
6
6
 
7
7
  ```bash npm2yarn
8
- npm install @langchain/google-genai
8
+ npm install @langchain/google-genai @langchain/core
9
9
  ```
10
10
 
11
11
  This package, along with the main LangChain package, depends on [`@langchain/core`](https://npmjs.com/package/@langchain/core/).
@@ -17,18 +17,18 @@ You can do so by adding appropriate field to your project's `package.json` like
17
17
  "name": "your-project",
18
18
  "version": "0.0.0",
19
19
  "dependencies": {
20
- "@langchain/google-genai": "^0.0.0",
21
- "langchain": "0.0.207"
20
+ "@langchain/core": "^0.3.0",
21
+ "@langchain/google-genai": "^0.0.0"
22
22
  },
23
23
  "resolutions": {
24
- "@langchain/core": "0.1.5"
24
+ "@langchain/core": "^0.3.0"
25
25
  },
26
26
  "overrides": {
27
- "@langchain/core": "0.1.5"
27
+ "@langchain/core": "^0.3.0"
28
28
  },
29
29
  "pnpm": {
30
30
  "overrides": {
31
- "@langchain/core": "0.1.5"
31
+ "@langchain/core": "^0.3.0"
32
32
  }
33
33
  }
34
34
  }
@@ -10,33 +10,339 @@ const zod_to_genai_parameters_js_1 = require("./utils/zod_to_genai_parameters.cj
10
10
  const common_js_1 = require("./utils/common.cjs");
11
11
  const output_parsers_js_1 = require("./output_parsers.cjs");
12
12
  /**
13
- * A class that wraps the Google Palm chat model.
14
- * @example
13
+ * Google Generative AI chat model integration.
14
+ *
15
+ * Setup:
16
+ * Install `@langchain/google-genai` and set an environment variable named `GOOGLE_API_KEY`.
17
+ *
18
+ * ```bash
19
+ * npm install @langchain/google-genai
20
+ * export GOOGLE_API_KEY="your-api-key"
21
+ * ```
22
+ *
23
+ * ## [Constructor args](https://api.js.langchain.com/classes/langchain_google_genai.ChatGoogleGenerativeAI.html#constructor)
24
+ *
25
+ * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_genai.GoogleGenerativeAIChatCallOptions.html)
26
+ *
27
+ * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
28
+ * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
29
+ *
30
+ * ```typescript
31
+ * // When calling `.bind`, call options should be passed via the first argument
32
+ * const llmWithArgsBound = llm.bind({
33
+ * stop: ["\n"],
34
+ * tools: [...],
35
+ * });
36
+ *
37
+ * // When calling `.bindTools`, call options should be passed via the second argument
38
+ * const llmWithTools = llm.bindTools(
39
+ * [...],
40
+ * {
41
+ * stop: ["\n"],
42
+ * }
43
+ * );
44
+ * ```
45
+ *
46
+ * ## Examples
47
+ *
48
+ * <details open>
49
+ * <summary><strong>Instantiate</strong></summary>
50
+ *
15
51
  * ```typescript
16
- * const model = new ChatGoogleGenerativeAI({
17
- * apiKey: "<YOUR API KEY>",
18
- * temperature: 0.7,
19
- * modelName: "gemini-pro",
20
- * topK: 40,
21
- * topP: 1,
52
+ * import { ChatGoogleGenerativeAI } from '@langchain/google-genai';
53
+ *
54
+ * const llm = new ChatGoogleGenerativeAI({
55
+ * model: "gemini-1.5-flash",
56
+ * temperature: 0,
57
+ * maxRetries: 2,
58
+ * // apiKey: "...",
59
+ * // other params...
22
60
  * });
23
- * const questions = [
24
- * new HumanMessage({
25
- * content: [
61
+ * ```
62
+ * </details>
63
+ *
64
+ * <br />
65
+ *
66
+ * <details>
67
+ * <summary><strong>Invoking</strong></summary>
68
+ *
69
+ * ```typescript
70
+ * const input = `Translate "I love programming" into French.`;
71
+ *
72
+ * // Models also accept a list of chat messages or a formatted prompt
73
+ * const result = await llm.invoke(input);
74
+ * console.log(result);
75
+ * ```
76
+ *
77
+ * ```txt
78
+ * AIMessage {
79
+ * "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
80
+ * "response_metadata": {
81
+ * "finishReason": "STOP",
82
+ * "index": 0,
83
+ * "safetyRatings": [
84
+ * {
85
+ * "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
86
+ * "probability": "NEGLIGIBLE"
87
+ * },
26
88
  * {
27
- * type: "text",
28
- * text: "You are a funny assistant that answers in pirate language.",
89
+ * "category": "HARM_CATEGORY_HATE_SPEECH",
90
+ * "probability": "NEGLIGIBLE"
29
91
  * },
30
92
  * {
31
- * type: "text",
32
- * text: "What is your favorite food?",
93
+ * "category": "HARM_CATEGORY_HARASSMENT",
94
+ * "probability": "NEGLIGIBLE"
33
95
  * },
96
+ * {
97
+ * "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
98
+ * "probability": "NEGLIGIBLE"
99
+ * }
34
100
  * ]
35
- * })
36
- * ];
37
- * const res = await model.invoke(questions);
38
- * console.log({ res });
101
+ * },
102
+ * "usage_metadata": {
103
+ * "input_tokens": 10,
104
+ * "output_tokens": 149,
105
+ * "total_tokens": 159
106
+ * }
107
+ * }
108
+ * ```
109
+ * </details>
110
+ *
111
+ * <br />
112
+ *
113
+ * <details>
114
+ * <summary><strong>Streaming Chunks</strong></summary>
115
+ *
116
+ * ```typescript
117
+ * for await (const chunk of await llm.stream(input)) {
118
+ * console.log(chunk);
119
+ * }
120
+ * ```
121
+ *
122
+ * ```txt
123
+ * AIMessageChunk {
124
+ * "content": "There",
125
+ * "response_metadata": {
126
+ * "index": 0
127
+ * }
128
+ * "usage_metadata": {
129
+ * "input_tokens": 10,
130
+ * "output_tokens": 1,
131
+ * "total_tokens": 11
132
+ * }
133
+ * }
134
+ * AIMessageChunk {
135
+ * "content": " are a few ways to translate \"I love programming\" into French, depending on",
136
+ * }
137
+ * AIMessageChunk {
138
+ * "content": " the level of formality and nuance you want to convey:\n\n**Formal:**\n\n",
139
+ * }
140
+ * AIMessageChunk {
141
+ * "content": "* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This",
142
+ * }
143
+ * AIMessageChunk {
144
+ * "content": " is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More",
145
+ * }
146
+ * AIMessageChunk {
147
+ * "content": " specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and",
148
+ * }
149
+ * AIMessageChunk {
150
+ * "content": " your intended audience. \n",
151
+ * }
152
+ * ```
153
+ * </details>
154
+ *
155
+ * <br />
156
+ *
157
+ * <details>
158
+ * <summary><strong>Aggregate Streamed Chunks</strong></summary>
159
+ *
160
+ * ```typescript
161
+ * import { AIMessageChunk } from '@langchain/core/messages';
162
+ * import { concat } from '@langchain/core/utils/stream';
163
+ *
164
+ * const stream = await llm.stream(input);
165
+ * let full: AIMessageChunk | undefined;
166
+ * for await (const chunk of stream) {
167
+ * full = !full ? chunk : concat(full, chunk);
168
+ * }
169
+ * console.log(full);
170
+ * ```
171
+ *
172
+ * ```txt
173
+ * AIMessageChunk {
174
+ * "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
175
+ * "usage_metadata": {
176
+ * "input_tokens": 10,
177
+ * "output_tokens": 277,
178
+ * "total_tokens": 287
179
+ * }
180
+ * }
181
+ * ```
182
+ * </details>
183
+ *
184
+ * <br />
185
+ *
186
+ * <details>
187
+ * <summary><strong>Bind tools</strong></summary>
188
+ *
189
+ * ```typescript
190
+ * import { z } from 'zod';
191
+ *
192
+ * const GetWeather = {
193
+ * name: "GetWeather",
194
+ * description: "Get the current weather in a given location",
195
+ * schema: z.object({
196
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
197
+ * }),
198
+ * }
199
+ *
200
+ * const GetPopulation = {
201
+ * name: "GetPopulation",
202
+ * description: "Get the current population in a given location",
203
+ * schema: z.object({
204
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
205
+ * }),
206
+ * }
207
+ *
208
+ * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
209
+ * const aiMsg = await llmWithTools.invoke(
210
+ * "Which city is hotter today and which is bigger: LA or NY?"
211
+ * );
212
+ * console.log(aiMsg.tool_calls);
213
+ * ```
214
+ *
215
+ * ```txt
216
+ * [
217
+ * {
218
+ * name: 'GetWeather',
219
+ * args: { location: 'Los Angeles, CA' },
220
+ * type: 'tool_call'
221
+ * },
222
+ * {
223
+ * name: 'GetWeather',
224
+ * args: { location: 'New York, NY' },
225
+ * type: 'tool_call'
226
+ * },
227
+ * {
228
+ * name: 'GetPopulation',
229
+ * args: { location: 'Los Angeles, CA' },
230
+ * type: 'tool_call'
231
+ * },
232
+ * {
233
+ * name: 'GetPopulation',
234
+ * args: { location: 'New York, NY' },
235
+ * type: 'tool_call'
236
+ * }
237
+ * ]
238
+ * ```
239
+ * </details>
240
+ *
241
+ * <br />
242
+ *
243
+ * <details>
244
+ * <summary><strong>Structured Output</strong></summary>
245
+ *
246
+ * ```typescript
247
+ * const Joke = z.object({
248
+ * setup: z.string().describe("The setup of the joke"),
249
+ * punchline: z.string().describe("The punchline to the joke"),
250
+ * rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
251
+ * }).describe('Joke to tell user.');
252
+ *
253
+ * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
254
+ * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
255
+ * console.log(jokeResult);
256
+ * ```
257
+ *
258
+ * ```txt
259
+ * {
260
+ * setup: "Why don\\'t cats play poker?",
261
+ * punchline: "Why don\\'t cats play poker? Because they always have an ace up their sleeve!"
262
+ * }
263
+ * ```
264
+ * </details>
265
+ *
266
+ * <br />
267
+ *
268
+ * <details>
269
+ * <summary><strong>Multimodal</strong></summary>
270
+ *
271
+ * ```typescript
272
+ * import { HumanMessage } from '@langchain/core/messages';
273
+ *
274
+ * const imageUrl = "https://example.com/image.jpg";
275
+ * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());
276
+ * const base64Image = Buffer.from(imageData).toString('base64');
277
+ *
278
+ * const message = new HumanMessage({
279
+ * content: [
280
+ * { type: "text", text: "describe the weather in this image" },
281
+ * {
282
+ * type: "image_url",
283
+ * image_url: { url: `data:image/jpeg;base64,${base64Image}` },
284
+ * },
285
+ * ]
286
+ * });
287
+ *
288
+ * const imageDescriptionAiMsg = await llm.invoke([message]);
289
+ * console.log(imageDescriptionAiMsg.content);
290
+ * ```
291
+ *
292
+ * ```txt
293
+ * The weather in the image appears to be clear and sunny. The sky is mostly blue with a few scattered white clouds, indicating fair weather. The bright sunlight is casting shadows on the green, grassy hill, suggesting it is a pleasant day with good visibility. There are no signs of rain or stormy conditions.
294
+ * ```
295
+ * </details>
296
+ *
297
+ * <br />
298
+ *
299
+ * <details>
300
+ * <summary><strong>Usage Metadata</strong></summary>
301
+ *
302
+ * ```typescript
303
+ * const aiMsgForMetadata = await llm.invoke(input);
304
+ * console.log(aiMsgForMetadata.usage_metadata);
305
+ * ```
306
+ *
307
+ * ```txt
308
+ * { input_tokens: 10, output_tokens: 149, total_tokens: 159 }
309
+ * ```
310
+ * </details>
311
+ *
312
+ * <br />
313
+ *
314
+ * <details>
315
+ * <summary><strong>Response Metadata</strong></summary>
316
+ *
317
+ * ```typescript
318
+ * const aiMsgForResponseMetadata = await llm.invoke(input);
319
+ * console.log(aiMsgForResponseMetadata.response_metadata);
320
+ * ```
321
+ *
322
+ * ```txt
323
+ * {
324
+ * finishReason: 'STOP',
325
+ * index: 0,
326
+ * safetyRatings: [
327
+ * {
328
+ * category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
329
+ * probability: 'NEGLIGIBLE'
330
+ * },
331
+ * {
332
+ * category: 'HARM_CATEGORY_HATE_SPEECH',
333
+ * probability: 'NEGLIGIBLE'
334
+ * },
335
+ * { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
336
+ * {
337
+ * category: 'HARM_CATEGORY_DANGEROUS_CONTENT',
338
+ * probability: 'NEGLIGIBLE'
339
+ * }
340
+ * ]
341
+ * }
39
342
  * ```
343
+ * </details>
344
+ *
345
+ * <br />
40
346
  */
41
347
  class ChatGoogleGenerativeAI extends chat_models_1.BaseChatModel {
42
348
  static lc_name() {
@@ -117,33 +117,339 @@ export interface GoogleGenerativeAIChatInput extends BaseChatModelParams, Pick<G
117
117
  json?: boolean;
118
118
  }
119
119
  /**
120
- * A class that wraps the Google Palm chat model.
121
- * @example
120
+ * Google Generative AI chat model integration.
121
+ *
122
+ * Setup:
123
+ * Install `@langchain/google-genai` and set an environment variable named `GOOGLE_API_KEY`.
124
+ *
125
+ * ```bash
126
+ * npm install @langchain/google-genai
127
+ * export GOOGLE_API_KEY="your-api-key"
128
+ * ```
129
+ *
130
+ * ## [Constructor args](https://api.js.langchain.com/classes/langchain_google_genai.ChatGoogleGenerativeAI.html#constructor)
131
+ *
132
+ * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_genai.GoogleGenerativeAIChatCallOptions.html)
133
+ *
134
+ * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
135
+ * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
136
+ *
137
+ * ```typescript
138
+ * // When calling `.bind`, call options should be passed via the first argument
139
+ * const llmWithArgsBound = llm.bind({
140
+ * stop: ["\n"],
141
+ * tools: [...],
142
+ * });
143
+ *
144
+ * // When calling `.bindTools`, call options should be passed via the second argument
145
+ * const llmWithTools = llm.bindTools(
146
+ * [...],
147
+ * {
148
+ * stop: ["\n"],
149
+ * }
150
+ * );
151
+ * ```
152
+ *
153
+ * ## Examples
154
+ *
155
+ * <details open>
156
+ * <summary><strong>Instantiate</strong></summary>
157
+ *
122
158
  * ```typescript
123
- * const model = new ChatGoogleGenerativeAI({
124
- * apiKey: "<YOUR API KEY>",
125
- * temperature: 0.7,
126
- * modelName: "gemini-pro",
127
- * topK: 40,
128
- * topP: 1,
159
+ * import { ChatGoogleGenerativeAI } from '@langchain/google-genai';
160
+ *
161
+ * const llm = new ChatGoogleGenerativeAI({
162
+ * model: "gemini-1.5-flash",
163
+ * temperature: 0,
164
+ * maxRetries: 2,
165
+ * // apiKey: "...",
166
+ * // other params...
129
167
  * });
130
- * const questions = [
131
- * new HumanMessage({
132
- * content: [
168
+ * ```
169
+ * </details>
170
+ *
171
+ * <br />
172
+ *
173
+ * <details>
174
+ * <summary><strong>Invoking</strong></summary>
175
+ *
176
+ * ```typescript
177
+ * const input = `Translate "I love programming" into French.`;
178
+ *
179
+ * // Models also accept a list of chat messages or a formatted prompt
180
+ * const result = await llm.invoke(input);
181
+ * console.log(result);
182
+ * ```
183
+ *
184
+ * ```txt
185
+ * AIMessage {
186
+ * "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
187
+ * "response_metadata": {
188
+ * "finishReason": "STOP",
189
+ * "index": 0,
190
+ * "safetyRatings": [
191
+ * {
192
+ * "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
193
+ * "probability": "NEGLIGIBLE"
194
+ * },
133
195
  * {
134
- * type: "text",
135
- * text: "You are a funny assistant that answers in pirate language.",
196
+ * "category": "HARM_CATEGORY_HATE_SPEECH",
197
+ * "probability": "NEGLIGIBLE"
136
198
  * },
137
199
  * {
138
- * type: "text",
139
- * text: "What is your favorite food?",
200
+ * "category": "HARM_CATEGORY_HARASSMENT",
201
+ * "probability": "NEGLIGIBLE"
140
202
  * },
203
+ * {
204
+ * "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
205
+ * "probability": "NEGLIGIBLE"
206
+ * }
141
207
  * ]
142
- * })
143
- * ];
144
- * const res = await model.invoke(questions);
145
- * console.log({ res });
208
+ * },
209
+ * "usage_metadata": {
210
+ * "input_tokens": 10,
211
+ * "output_tokens": 149,
212
+ * "total_tokens": 159
213
+ * }
214
+ * }
215
+ * ```
216
+ * </details>
217
+ *
218
+ * <br />
219
+ *
220
+ * <details>
221
+ * <summary><strong>Streaming Chunks</strong></summary>
222
+ *
223
+ * ```typescript
224
+ * for await (const chunk of await llm.stream(input)) {
225
+ * console.log(chunk);
226
+ * }
227
+ * ```
228
+ *
229
+ * ```txt
230
+ * AIMessageChunk {
231
+ * "content": "There",
232
+ * "response_metadata": {
233
+ * "index": 0
234
+ * }
235
+ * "usage_metadata": {
236
+ * "input_tokens": 10,
237
+ * "output_tokens": 1,
238
+ * "total_tokens": 11
239
+ * }
240
+ * }
241
+ * AIMessageChunk {
242
+ * "content": " are a few ways to translate \"I love programming\" into French, depending on",
243
+ * }
244
+ * AIMessageChunk {
245
+ * "content": " the level of formality and nuance you want to convey:\n\n**Formal:**\n\n",
246
+ * }
247
+ * AIMessageChunk {
248
+ * "content": "* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This",
249
+ * }
250
+ * AIMessageChunk {
251
+ * "content": " is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More",
252
+ * }
253
+ * AIMessageChunk {
254
+ * "content": " specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and",
255
+ * }
256
+ * AIMessageChunk {
257
+ * "content": " your intended audience. \n",
258
+ * }
259
+ * ```
260
+ * </details>
261
+ *
262
+ * <br />
263
+ *
264
+ * <details>
265
+ * <summary><strong>Aggregate Streamed Chunks</strong></summary>
266
+ *
267
+ * ```typescript
268
+ * import { AIMessageChunk } from '@langchain/core/messages';
269
+ * import { concat } from '@langchain/core/utils/stream';
270
+ *
271
+ * const stream = await llm.stream(input);
272
+ * let full: AIMessageChunk | undefined;
273
+ * for await (const chunk of stream) {
274
+ * full = !full ? chunk : concat(full, chunk);
275
+ * }
276
+ * console.log(full);
277
+ * ```
278
+ *
279
+ * ```txt
280
+ * AIMessageChunk {
281
+ * "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
282
+ * "usage_metadata": {
283
+ * "input_tokens": 10,
284
+ * "output_tokens": 277,
285
+ * "total_tokens": 287
286
+ * }
287
+ * }
288
+ * ```
289
+ * </details>
290
+ *
291
+ * <br />
292
+ *
293
+ * <details>
294
+ * <summary><strong>Bind tools</strong></summary>
295
+ *
296
+ * ```typescript
297
+ * import { z } from 'zod';
298
+ *
299
+ * const GetWeather = {
300
+ * name: "GetWeather",
301
+ * description: "Get the current weather in a given location",
302
+ * schema: z.object({
303
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
304
+ * }),
305
+ * }
306
+ *
307
+ * const GetPopulation = {
308
+ * name: "GetPopulation",
309
+ * description: "Get the current population in a given location",
310
+ * schema: z.object({
311
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
312
+ * }),
313
+ * }
314
+ *
315
+ * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
316
+ * const aiMsg = await llmWithTools.invoke(
317
+ * "Which city is hotter today and which is bigger: LA or NY?"
318
+ * );
319
+ * console.log(aiMsg.tool_calls);
320
+ * ```
321
+ *
322
+ * ```txt
323
+ * [
324
+ * {
325
+ * name: 'GetWeather',
326
+ * args: { location: 'Los Angeles, CA' },
327
+ * type: 'tool_call'
328
+ * },
329
+ * {
330
+ * name: 'GetWeather',
331
+ * args: { location: 'New York, NY' },
332
+ * type: 'tool_call'
333
+ * },
334
+ * {
335
+ * name: 'GetPopulation',
336
+ * args: { location: 'Los Angeles, CA' },
337
+ * type: 'tool_call'
338
+ * },
339
+ * {
340
+ * name: 'GetPopulation',
341
+ * args: { location: 'New York, NY' },
342
+ * type: 'tool_call'
343
+ * }
344
+ * ]
345
+ * ```
346
+ * </details>
347
+ *
348
+ * <br />
349
+ *
350
+ * <details>
351
+ * <summary><strong>Structured Output</strong></summary>
352
+ *
353
+ * ```typescript
354
+ * const Joke = z.object({
355
+ * setup: z.string().describe("The setup of the joke"),
356
+ * punchline: z.string().describe("The punchline to the joke"),
357
+ * rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
358
+ * }).describe('Joke to tell user.');
359
+ *
360
+ * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
361
+ * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
362
+ * console.log(jokeResult);
363
+ * ```
364
+ *
365
+ * ```txt
366
+ * {
367
+ * setup: "Why don\\'t cats play poker?",
368
+ * punchline: "Why don\\'t cats play poker? Because they always have an ace up their sleeve!"
369
+ * }
370
+ * ```
371
+ * </details>
372
+ *
373
+ * <br />
374
+ *
375
+ * <details>
376
+ * <summary><strong>Multimodal</strong></summary>
377
+ *
378
+ * ```typescript
379
+ * import { HumanMessage } from '@langchain/core/messages';
380
+ *
381
+ * const imageUrl = "https://example.com/image.jpg";
382
+ * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());
383
+ * const base64Image = Buffer.from(imageData).toString('base64');
384
+ *
385
+ * const message = new HumanMessage({
386
+ * content: [
387
+ * { type: "text", text: "describe the weather in this image" },
388
+ * {
389
+ * type: "image_url",
390
+ * image_url: { url: `data:image/jpeg;base64,${base64Image}` },
391
+ * },
392
+ * ]
393
+ * });
394
+ *
395
+ * const imageDescriptionAiMsg = await llm.invoke([message]);
396
+ * console.log(imageDescriptionAiMsg.content);
397
+ * ```
398
+ *
399
+ * ```txt
400
+ * The weather in the image appears to be clear and sunny. The sky is mostly blue with a few scattered white clouds, indicating fair weather. The bright sunlight is casting shadows on the green, grassy hill, suggesting it is a pleasant day with good visibility. There are no signs of rain or stormy conditions.
401
+ * ```
402
+ * </details>
403
+ *
404
+ * <br />
405
+ *
406
+ * <details>
407
+ * <summary><strong>Usage Metadata</strong></summary>
408
+ *
409
+ * ```typescript
410
+ * const aiMsgForMetadata = await llm.invoke(input);
411
+ * console.log(aiMsgForMetadata.usage_metadata);
412
+ * ```
413
+ *
414
+ * ```txt
415
+ * { input_tokens: 10, output_tokens: 149, total_tokens: 159 }
416
+ * ```
417
+ * </details>
418
+ *
419
+ * <br />
420
+ *
421
+ * <details>
422
+ * <summary><strong>Response Metadata</strong></summary>
423
+ *
424
+ * ```typescript
425
+ * const aiMsgForResponseMetadata = await llm.invoke(input);
426
+ * console.log(aiMsgForResponseMetadata.response_metadata);
427
+ * ```
428
+ *
429
+ * ```txt
430
+ * {
431
+ * finishReason: 'STOP',
432
+ * index: 0,
433
+ * safetyRatings: [
434
+ * {
435
+ * category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
436
+ * probability: 'NEGLIGIBLE'
437
+ * },
438
+ * {
439
+ * category: 'HARM_CATEGORY_HATE_SPEECH',
440
+ * probability: 'NEGLIGIBLE'
441
+ * },
442
+ * { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
443
+ * {
444
+ * category: 'HARM_CATEGORY_DANGEROUS_CONTENT',
445
+ * probability: 'NEGLIGIBLE'
446
+ * }
447
+ * ]
448
+ * }
146
449
  * ```
450
+ * </details>
451
+ *
452
+ * <br />
147
453
  */
148
454
  export declare class ChatGoogleGenerativeAI extends BaseChatModel<GoogleGenerativeAIChatCallOptions, AIMessageChunk> implements GoogleGenerativeAIChatInput {
149
455
  static lc_name(): string;
@@ -7,33 +7,339 @@ import { zodToGenerativeAIParameters } from "./utils/zod_to_genai_parameters.js"
7
7
  import { convertBaseMessagesToContent, convertResponseContentToChatGenerationChunk, convertToGenerativeAITools, mapGenerateContentResultToChatResult, } from "./utils/common.js";
8
8
  import { GoogleGenerativeAIToolsOutputParser } from "./output_parsers.js";
9
9
  /**
10
- * A class that wraps the Google Palm chat model.
11
- * @example
10
+ * Google Generative AI chat model integration.
11
+ *
12
+ * Setup:
13
+ * Install `@langchain/google-genai` and set an environment variable named `GOOGLE_API_KEY`.
14
+ *
15
+ * ```bash
16
+ * npm install @langchain/google-genai
17
+ * export GOOGLE_API_KEY="your-api-key"
18
+ * ```
19
+ *
20
+ * ## [Constructor args](https://api.js.langchain.com/classes/langchain_google_genai.ChatGoogleGenerativeAI.html#constructor)
21
+ *
22
+ * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_genai.GoogleGenerativeAIChatCallOptions.html)
23
+ *
24
+ * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
25
+ * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
26
+ *
27
+ * ```typescript
28
+ * // When calling `.bind`, call options should be passed via the first argument
29
+ * const llmWithArgsBound = llm.bind({
30
+ * stop: ["\n"],
31
+ * tools: [...],
32
+ * });
33
+ *
34
+ * // When calling `.bindTools`, call options should be passed via the second argument
35
+ * const llmWithTools = llm.bindTools(
36
+ * [...],
37
+ * {
38
+ * stop: ["\n"],
39
+ * }
40
+ * );
41
+ * ```
42
+ *
43
+ * ## Examples
44
+ *
45
+ * <details open>
46
+ * <summary><strong>Instantiate</strong></summary>
47
+ *
12
48
  * ```typescript
13
- * const model = new ChatGoogleGenerativeAI({
14
- * apiKey: "<YOUR API KEY>",
15
- * temperature: 0.7,
16
- * modelName: "gemini-pro",
17
- * topK: 40,
18
- * topP: 1,
49
+ * import { ChatGoogleGenerativeAI } from '@langchain/google-genai';
50
+ *
51
+ * const llm = new ChatGoogleGenerativeAI({
52
+ * model: "gemini-1.5-flash",
53
+ * temperature: 0,
54
+ * maxRetries: 2,
55
+ * // apiKey: "...",
56
+ * // other params...
19
57
  * });
20
- * const questions = [
21
- * new HumanMessage({
22
- * content: [
58
+ * ```
59
+ * </details>
60
+ *
61
+ * <br />
62
+ *
63
+ * <details>
64
+ * <summary><strong>Invoking</strong></summary>
65
+ *
66
+ * ```typescript
67
+ * const input = `Translate "I love programming" into French.`;
68
+ *
69
+ * // Models also accept a list of chat messages or a formatted prompt
70
+ * const result = await llm.invoke(input);
71
+ * console.log(result);
72
+ * ```
73
+ *
74
+ * ```txt
75
+ * AIMessage {
76
+ * "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
77
+ * "response_metadata": {
78
+ * "finishReason": "STOP",
79
+ * "index": 0,
80
+ * "safetyRatings": [
81
+ * {
82
+ * "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
83
+ * "probability": "NEGLIGIBLE"
84
+ * },
23
85
  * {
24
- * type: "text",
25
- * text: "You are a funny assistant that answers in pirate language.",
86
+ * "category": "HARM_CATEGORY_HATE_SPEECH",
87
+ * "probability": "NEGLIGIBLE"
26
88
  * },
27
89
  * {
28
- * type: "text",
29
- * text: "What is your favorite food?",
90
+ * "category": "HARM_CATEGORY_HARASSMENT",
91
+ * "probability": "NEGLIGIBLE"
30
92
  * },
93
+ * {
94
+ * "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
95
+ * "probability": "NEGLIGIBLE"
96
+ * }
31
97
  * ]
32
- * })
33
- * ];
34
- * const res = await model.invoke(questions);
35
- * console.log({ res });
98
+ * },
99
+ * "usage_metadata": {
100
+ * "input_tokens": 10,
101
+ * "output_tokens": 149,
102
+ * "total_tokens": 159
103
+ * }
104
+ * }
105
+ * ```
106
+ * </details>
107
+ *
108
+ * <br />
109
+ *
110
+ * <details>
111
+ * <summary><strong>Streaming Chunks</strong></summary>
112
+ *
113
+ * ```typescript
114
+ * for await (const chunk of await llm.stream(input)) {
115
+ * console.log(chunk);
116
+ * }
117
+ * ```
118
+ *
119
+ * ```txt
120
+ * AIMessageChunk {
121
+ * "content": "There",
122
+ * "response_metadata": {
123
+ * "index": 0
124
+ * }
125
+ * "usage_metadata": {
126
+ * "input_tokens": 10,
127
+ * "output_tokens": 1,
128
+ * "total_tokens": 11
129
+ * }
130
+ * }
131
+ * AIMessageChunk {
132
+ * "content": " are a few ways to translate \"I love programming\" into French, depending on",
133
+ * }
134
+ * AIMessageChunk {
135
+ * "content": " the level of formality and nuance you want to convey:\n\n**Formal:**\n\n",
136
+ * }
137
+ * AIMessageChunk {
138
+ * "content": "* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This",
139
+ * }
140
+ * AIMessageChunk {
141
+ * "content": " is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More",
142
+ * }
143
+ * AIMessageChunk {
144
+ * "content": " specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and",
145
+ * }
146
+ * AIMessageChunk {
147
+ * "content": " your intended audience. \n",
148
+ * }
149
+ * ```
150
+ * </details>
151
+ *
152
+ * <br />
153
+ *
154
+ * <details>
155
+ * <summary><strong>Aggregate Streamed Chunks</strong></summary>
156
+ *
157
+ * ```typescript
158
+ * import { AIMessageChunk } from '@langchain/core/messages';
159
+ * import { concat } from '@langchain/core/utils/stream';
160
+ *
161
+ * const stream = await llm.stream(input);
162
+ * let full: AIMessageChunk | undefined;
163
+ * for await (const chunk of stream) {
164
+ * full = !full ? chunk : concat(full, chunk);
165
+ * }
166
+ * console.log(full);
167
+ * ```
168
+ *
169
+ * ```txt
170
+ * AIMessageChunk {
171
+ * "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup développer des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
172
+ * "usage_metadata": {
173
+ * "input_tokens": 10,
174
+ * "output_tokens": 277,
175
+ * "total_tokens": 287
176
+ * }
177
+ * }
178
+ * ```
179
+ * </details>
180
+ *
181
+ * <br />
182
+ *
183
+ * <details>
184
+ * <summary><strong>Bind tools</strong></summary>
185
+ *
186
+ * ```typescript
187
+ * import { z } from 'zod';
188
+ *
189
+ * const GetWeather = {
190
+ * name: "GetWeather",
191
+ * description: "Get the current weather in a given location",
192
+ * schema: z.object({
193
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
194
+ * }),
195
+ * }
196
+ *
197
+ * const GetPopulation = {
198
+ * name: "GetPopulation",
199
+ * description: "Get the current population in a given location",
200
+ * schema: z.object({
201
+ * location: z.string().describe("The city and state, e.g. San Francisco, CA")
202
+ * }),
203
+ * }
204
+ *
205
+ * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
206
+ * const aiMsg = await llmWithTools.invoke(
207
+ * "Which city is hotter today and which is bigger: LA or NY?"
208
+ * );
209
+ * console.log(aiMsg.tool_calls);
210
+ * ```
211
+ *
212
+ * ```txt
213
+ * [
214
+ * {
215
+ * name: 'GetWeather',
216
+ * args: { location: 'Los Angeles, CA' },
217
+ * type: 'tool_call'
218
+ * },
219
+ * {
220
+ * name: 'GetWeather',
221
+ * args: { location: 'New York, NY' },
222
+ * type: 'tool_call'
223
+ * },
224
+ * {
225
+ * name: 'GetPopulation',
226
+ * args: { location: 'Los Angeles, CA' },
227
+ * type: 'tool_call'
228
+ * },
229
+ * {
230
+ * name: 'GetPopulation',
231
+ * args: { location: 'New York, NY' },
232
+ * type: 'tool_call'
233
+ * }
234
+ * ]
235
+ * ```
236
+ * </details>
237
+ *
238
+ * <br />
239
+ *
240
+ * <details>
241
+ * <summary><strong>Structured Output</strong></summary>
242
+ *
243
+ * ```typescript
244
+ * const Joke = z.object({
245
+ * setup: z.string().describe("The setup of the joke"),
246
+ * punchline: z.string().describe("The punchline to the joke"),
247
+ * rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
248
+ * }).describe('Joke to tell user.');
249
+ *
250
+ * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
251
+ * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
252
+ * console.log(jokeResult);
253
+ * ```
254
+ *
255
+ * ```txt
256
+ * {
257
+ * setup: "Why don\\'t cats play poker?",
258
+ * punchline: "Why don\\'t cats play poker? Because they always have an ace up their sleeve!"
259
+ * }
260
+ * ```
261
+ * </details>
262
+ *
263
+ * <br />
264
+ *
265
+ * <details>
266
+ * <summary><strong>Multimodal</strong></summary>
267
+ *
268
+ * ```typescript
269
+ * import { HumanMessage } from '@langchain/core/messages';
270
+ *
271
+ * const imageUrl = "https://example.com/image.jpg";
272
+ * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());
273
+ * const base64Image = Buffer.from(imageData).toString('base64');
274
+ *
275
+ * const message = new HumanMessage({
276
+ * content: [
277
+ * { type: "text", text: "describe the weather in this image" },
278
+ * {
279
+ * type: "image_url",
280
+ * image_url: { url: `data:image/jpeg;base64,${base64Image}` },
281
+ * },
282
+ * ]
283
+ * });
284
+ *
285
+ * const imageDescriptionAiMsg = await llm.invoke([message]);
286
+ * console.log(imageDescriptionAiMsg.content);
287
+ * ```
288
+ *
289
+ * ```txt
290
+ * The weather in the image appears to be clear and sunny. The sky is mostly blue with a few scattered white clouds, indicating fair weather. The bright sunlight is casting shadows on the green, grassy hill, suggesting it is a pleasant day with good visibility. There are no signs of rain or stormy conditions.
291
+ * ```
292
+ * </details>
293
+ *
294
+ * <br />
295
+ *
296
+ * <details>
297
+ * <summary><strong>Usage Metadata</strong></summary>
298
+ *
299
+ * ```typescript
300
+ * const aiMsgForMetadata = await llm.invoke(input);
301
+ * console.log(aiMsgForMetadata.usage_metadata);
302
+ * ```
303
+ *
304
+ * ```txt
305
+ * { input_tokens: 10, output_tokens: 149, total_tokens: 159 }
306
+ * ```
307
+ * </details>
308
+ *
309
+ * <br />
310
+ *
311
+ * <details>
312
+ * <summary><strong>Response Metadata</strong></summary>
313
+ *
314
+ * ```typescript
315
+ * const aiMsgForResponseMetadata = await llm.invoke(input);
316
+ * console.log(aiMsgForResponseMetadata.response_metadata);
317
+ * ```
318
+ *
319
+ * ```txt
320
+ * {
321
+ * finishReason: 'STOP',
322
+ * index: 0,
323
+ * safetyRatings: [
324
+ * {
325
+ * category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
326
+ * probability: 'NEGLIGIBLE'
327
+ * },
328
+ * {
329
+ * category: 'HARM_CATEGORY_HATE_SPEECH',
330
+ * probability: 'NEGLIGIBLE'
331
+ * },
332
+ * { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
333
+ * {
334
+ * category: 'HARM_CATEGORY_DANGEROUS_CONTENT',
335
+ * probability: 'NEGLIGIBLE'
336
+ * }
337
+ * ]
338
+ * }
36
339
  * ```
340
+ * </details>
341
+ *
342
+ * <br />
37
343
  */
38
344
  export class ChatGoogleGenerativeAI extends BaseChatModel {
39
345
  static lc_name() {
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@langchain/google-genai",
3
- "version": "0.0.26",
3
+ "version": "0.1.0",
4
4
  "description": "Google Generative AI integration for LangChain.js",
5
5
  "type": "module",
6
6
  "engines": {
@@ -15,7 +15,7 @@
15
15
  "homepage": "https://github.com/langchain-ai/langchainjs/tree/main/libs/langchain-google-genai/",
16
16
  "scripts": {
17
17
  "build": "yarn turbo:command build:internal --filter=@langchain/google-genai",
18
- "build:internal": "yarn lc_build_v2 --create-entrypoints --pre --tree-shaking",
18
+ "build:internal": "yarn lc_build --create-entrypoints --pre --tree-shaking",
19
19
  "lint:eslint": "NODE_OPTIONS=--max-old-space-size=4096 eslint --cache --ext .ts,.js src/",
20
20
  "lint:dpdm": "dpdm --exit-code circular:1 --no-warning --no-tree src/*.ts src/**/*.ts",
21
21
  "lint": "yarn lint:eslint && yarn lint:dpdm",
@@ -36,12 +36,15 @@
36
36
  "license": "MIT",
37
37
  "dependencies": {
38
38
  "@google/generative-ai": "^0.7.0",
39
- "@langchain/core": ">=0.2.21 <0.3.0",
40
39
  "zod-to-json-schema": "^3.22.4"
41
40
  },
41
+ "peerDependencies": {
42
+ "@langchain/core": ">=0.2.21 <0.4.0"
43
+ },
42
44
  "devDependencies": {
43
45
  "@jest/globals": "^29.5.0",
44
- "@langchain/scripts": "~0.0.20",
46
+ "@langchain/core": "workspace:*",
47
+ "@langchain/scripts": ">=0.1.0 <0.2.0",
45
48
  "@langchain/standard-tests": "0.0.0",
46
49
  "@swc/core": "^1.3.90",
47
50
  "@swc/jest": "^0.2.29",